Chun-Hung Yeh

Chun-Hung Yeh
Chang Gung University | CGU · Institute for Radiological Research

PhD

About

50
Publications
10,447
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,386
Citations
Citations since 2016
38 Research Items
1972 Citations
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
Additional affiliations
July 2014 - December 2019
The Florey Institute of Neuroscience and Mental Health
Position
  • PostDoc Position
March 2013 - June 2014
National Yang Ming University
Position
  • PostDoc Position

Publications

Publications (50)
Article
Full-text available
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (...
Article
Full-text available
Diffusion MRI‐based tractography is the most commonly‐used technique when inferring the structural brain connectome, i.e., the comprehensive map of the connections in the brain. The utility of graph theory—a powerful mathematical approach for modeling complex network systems—for analyzing tractography‐based connectomes brings important opportunitie...
Article
MRtrix3 is an open-source, cross-platform software package for medical image processing, analysis and visualisation, with a particular emphasis on the investigation of the brain using diffusion MRI. It is implemented using a fast, modular and flexible general-purpose code framework for image data access and manipulation, enabling efficient developm...
Article
When using diffusion MRI streamlines tractograms to construct structural connectomes, ideally, each streamline should connect exactly 2 regions-of-interest (i.e. network nodes) as defined by a given brain parcellation scheme. However, the ill-posed nature of termination criteria in many tractography algorithms can cause streamlines apparently being...
Article
Full-text available
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain’s white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain’s structural connectivity using measures of connectivity or tissue microstructure. Over the last two...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Article
Full-text available
Accumulating evidence shows that brain functional deficits may be impacted by damage to remote brain regions. Recent advances in neuroimaging suggest that stroke impairment can be better predicted based on disruption to brain networks rather than from lesion locations or volumes only. Our aim was to explore the feasibility of predicting post-stroke...
Preprint
Full-text available
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Article
Full-text available
Diffusion MRI (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tracts in vivo prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgery planning and intraoperative image guidanc...
Article
Background and Purpose Changes in connectivity of white matter fibers remote to a stroke lesion, suggestive of structural connectional diaschisis, may impact on clinical impairment and recovery after stroke. However, until recently, we have not had tract-specific techniques to map changes in white matter tracts in vivo in humans to enable investiga...
Cover Page
Cover image of JMRI Volume 53, Issue 6, June 2021. DOI of the article: 10.1002/jmri.27188. Image caption: The effects of the misalignment between image‐intensity‐based tissue segmentation and brain parcellation on the assignment of streamlines to network nodes: Upper panel: (a) With the application of anatomical constraints (e.g., Ref. 35), streaml...
Preprint
Full-text available
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections at macro scale. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provid...
Article
Full-text available
Background and objectives Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. However, little attention has been devoted to uncovering the under...
Article
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Preprint
Full-text available
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Conference Paper
Full-text available
Synopsis Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. Training programs have shown behavioral improvement; evidence of changes in WM morp...
Article
Full-text available
Background Optic radiation (OR) tractography may help predict and reduce post-neurosurgical visual field deficits. OR tractography methods currently lack pediatric and surgical focus.PurposeWe propose a clinically feasible OR tractography strategy in a pediatric neurosurgery setting and examine its intra-rater and inter-rater reliability/agreements...
Article
Full-text available
Brain network modularity analysis has attracted increasing interest due to its capability in measuring the level of integration and segregation across subnetworks. Most studies have focused on extracting modules at a single level, although brain network modules are known to be organized in a hierarchical manner. A few techniques have been developed...
Article
Full-text available
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ w...
Preprint
Full-text available
MRtrix3 is an open-source, cross-platform software package for medical image processing, analysis and visualization, with a particular emphasis on the investigation of the brain using diffusion MRI. It is implemented using a fast, modular and flexible general-purpose code framework for image data access and manipulation, enabling efficient developm...
Preprint
Full-text available
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ w...
Article
Full-text available
The human brain is a complex network, in which some brain regions, denoted as 'hub' regions, play critically important roles. Some of these hubs are highly interconnected forming a rich-club organization, which has been identified based on the degree metric from structural connectomes constructed using diffusion tensor imaging (DTI)-based fiber tra...
Conference Paper
Full-text available
This study systematically investigates a fundamental question for tractogram- based connectomics research: for a given resolution of brain parcellation, how many streamlines are required for reproducible connectome construction? We incorporate state-of-the-art tractography techniques with surface parcellation schemes of multiple granularities to in...
Conference Paper
Full-text available
Synopsis Brain-network has an intrinsic hierarchical structure, which, however, cannot be uncovered using the current methods exclusively for modularity analysis. A recent study has investigated hierarchical structure of brain-network using a hierarchical-clustering approach, which, nevertheless, has the following issues: (i) it relies on applying...
Conference Paper
Full-text available
Synopsis Rich-club organizations, characterizing the higher-level topology of the brain network, has been commonly identií³ˆed from structural connectomes constructed using DTI based on network degrees. This analysis can however be compromised by the following issues: (i) DTI limitations in resolving crossing-í³ˆbers; and (ii) the original degree...
Conference Paper
Full-text available
This study introduces a novel diffusion MRI streamlines tractography framework called mesh-based anatomically-constrained tractography (MACT) that incorporates high-resolution surface models of various brain tissues as more accurate anatomical constraints in the fibre-tracking process. By detecting intersections between streamlines and tissue surfa...
Conference Paper
Full-text available
Diffusion MRI streamlines tractography is the main in vivo technique for inferring structural brain connectivity. Ideally, during structural connectome construction, each streamline should connect exactly 2 brain regions-of-interest (i.e. network nodes); the efficacy of identifying such 'pairwise' connectivity has however been shown to be heavily a...
Conference Paper
Full-text available
This study highlights the issue of using the common strategy for assigning individual streamlines to an atlas-based brain parcellation. This process is non-trivial and can introduce ambiguity into connectome quantification. In many fibre-tracking algorithms, track termination criteria can cause premature termination of streamlines within WM or CSF,...
Article
Full-text available
This article describes the development and application of an integrated, generalized, and efficient Monte Carlo simulation system for diffusion magnetic resonance imaging (dMRI), named Diffusion Microscopist Simulator (DMS). DMS comprises a random walk Monte Carlo simulator and an MR image synthesizer. The former has the capacity to perform large-s...
Conference Paper
We proposed a filtered q-ball imaging (fQBI) method for the reconstruction of fiber orientation distribution function (ODF) together with the quantitative comparison to unfiltered QBI. The filter kernel increases the high angular frequency content that is beneficial for the angular resolution in resolving crossing fibers. Through a series of simula...
Article
An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations within each imaging voxel, and a number of methods have been proposed to reconstruct the orientation distribution function based on sampling three-dimensional q-space. In the q-space formalism, very short (infinitesimal) gradient pulses are the basic requ...
Article
The function of the corpus callosum (CC) is to distribute perceptual, motor, cognitive, learned, and voluntary information between the two hemispheres of the brain. Accurate parcellation of the CC according to fiber composition and fiber connection is of upmost important. In this work, population-based probabilistic connection topographies of the C...
Article
Diffusion orientation transform (DOT) is a powerful imaging technique that allows the reconstruction of the microgeometry of fibrous tissues based on diffusion MRI data. The three main error sources involving this methodology are the finite sampling of the q-space, the practical truncation of the series of spherical harmonics and the use of a mono-...
Article
To reduce the scan time of high angular resolution diffusion imaging (HARDI) by using the hemispherical encoding scheme with the cross-term correction. Unidirectional and 45 degrees crossing phantoms were built to evaluate the accuracy of the fiber orientation estimation when using a hemispherical encoding scheme with and without the cross-term cor...
Article
Full-text available
Diffusion spectrum imaging (DSI) can map complex fiber microstructures in tissues by characterizing their 3-D water diffusion spectra. However, a long acquisition time is required for adequate q-space sampling to completely reconstruct the 3-D diffusion probability density function. Furthermore, to achieve a high q-value encoding for sufficient spa...
Article
Q-ball imaging (QBI) has been proposed for the mapping of multiple intravoxel fiber structures using the Funk-Radon transform on high angular resolution diffusion images (HARDI). However, the accuracy and the angular resolution of QBI to define fiber orientations and its dependence on diffusion imaging parameters remain unclear. The phantom models,...
Article
Diffusion-weighted imaging can potentially be used to infer the connectivity of the human brain in vivo using fibre-tracking techniques, and is therefore of great interest to neuroscientists and clinicians. A key requirement for fibre tracking is the accurate estimation of white matter fibre orientations within each imaging voxel. The diffusion ten...
Article
Diffusion-weighted magnetic resonance imaging has the ability to map neuronal architecture by estimating the 3D diffusion displacement within fibrous brain structures. This approach has non-invasively been demonstrated in the human brain with diffusion tensor tractography. Despite its valuable application in neuroscience and clinical studies howeve...
Conference Paper
Recently developed methods to resolve multiple fiber orientations within a voxel from high angular resolution diffusion imaging (HARDI) are applied to resolve complex neuronal connectivity. In the study, an extension of multiple streamline tractography was proposed to estimate the probabilistic fiber tracking between brain areas. Multi-fiber compon...

Network

Cited By