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There is dearth of information in the field of statistics on the innovative estimation 
methods that can replace missing values in descriptive time series data. Therefore, this 
review work provides information on the existing and new methods of estimating 
missing values in descriptive time series data. The work provides new insight on the 
comparative performance of the recently-developed methods and the existing ones and 
discussed model structure and trending curves as important parameters in estimation of 
missing values. It is expected that the present contribution will assist statisticians 
seeking to solve the problem of missing values in descriptive time series data. The 
application of this work should be restricted to time series data with trend (linear, 
quadratic and exponential) and seasonal components combined in the additive and 
multiplicative forms. The contribution covers data missing at one point at a time in a 
row or column when data are arranged in a Buys-Ballot table. Use of the Buys-Ballot 
table arrangement in the estimation of missing values is new, convenient and merits 
scientific analysis. 
 

Contribution/Originality: This review work is one of the few papers that discussed the novelty and efficiency 

of Buys-Ballot table in the estimation of missing values in descriptive time series statistics. 

 

1. INTRODUCTION 

1.1. Background  

A time series is a sequential set of data recorded over time on a particular variable (Fung, 2006). Missing 

observations at certain points within the data collected has been identified as a frequent problem facing data 

analysis (Fung, 2006; Howell, 2007; Owili, Nassiuma, & Orawo, 2015). When an observation is missing, it is 

pertinent to estimate the missing value for thorough understanding of data nature (Howell, 2007). Unquestionably, 

obtaining a good estimate leads to a more accurate forecast. The inability to account for missing values can 

culminate in serious misinterpretation of the phenomenon under investigation (Owili et al., 2015). Abraham and 

Thavaneswaran (1991) noted that unaccounted missing values can cause severe problem in the estimation and 

forecasting of linear and nonlinear time series. Therefore, it is necessary to replace the missing value using 

appropriate estimation methods.  

Data may be missing due to several reasons which include equipment malfunctioning, bad weather and 

incorrect data entry. These reasons lead to different natures of missing values, namely missing completely at 

random, missing at random and missing not at random. Missing values can lead to erroneous conclusions about 

data and unfortunately this does not favour the progress of an economy that depends on the result of a forecast from 
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such data. Many countries are currently experiencing economic crises and there is every need to enhance the 

accuracy of data needed for solving economic problems. The use of the Buys-Ballot table arrangement in the 

estimation of missing values is new and merits further analysis (Iwueze., Nwogu, Nlebedim, Nwosu, & Chinyem, 

2018). Iwueze and Nwogu (2004) recorded that the use of the Buys-Ballot table arrangement is convenient and 

enhances accuracy of the estimates. Investigating claims by Iwueze and Nwogu (2004) should form part of new 

studies, the review recommends.    

 

1.2. Components and Properties of a Time Series 

The components of time series are defined as follows: 

 

i. The Trend Component 

Trend is generally thought of as a smooth and slow movement over a long term. The concept of “long” in the 

connection is relative to what is identified as trend for a given series. Tests for trend are given by Kendal and Ord 

(1990). Correlation analysis can also be used to assess trend. According to Chatfield (2004) the autocorrelation 

value will not be zero except for very large values of the lag if a time series contains a trend. 

 

ii. Seasonal Component 

Seasonal components, denoted by St, are short-term fluctuation in a time series which occur periodically in a 

year. This continues to repeat year after year. The seasonal component, St, is associated with the property that: 

S (i – 1)s+j  = Sj, i = 1, 2,…                                                                                                  (1)                                                                                                      

where s is the periodicity. 

 

iii. The Cyclical Component  

Cyclical component, denoted by Ct, is defined as the recurrent upward or downward movements in a time 

series, but the period of cycle is greater than a year. For short duration of data, trend and cyclical components are 

customarily combined into a trend-cycle component denoted as Mt (Chatfield, 2004). 

 

iv. Irregular Component 

Irregular components, denoted by It, are erratic movements in a time series that follow no regular pattern.  

 

1.3. Model Structure 

A model describes the properties of a system. In time series forecasting, one tries to find a model of a system 

suitable for the realization of the time series variables. Model is used to simulate the system, analyze it and to derive 

future values of the time series. As a model is inferred from the time series and not from the system itself, it is a 

description of time series rather than the system and it can be hoped that a model says something useful about the 

underlying system (Theiler, Linsaly, & Rubin, 1993). 

Apart from identifying the pattern (the components) of time series data, for a good analysis of a time series data 

to be done, the correct model to be used is very important. The specific functional relationship between these 

components can assume different forms. However, two main possibilities are that they combine in an additive or a 

multiplicative form; 

1. Additive model (when trend, seasonal and cyclical components are additively combined): 

            Xt = Mt + St + et                                                                                          (2) 
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2. Multiplicative model (when trend, seasonal and cyclical components are multiplicatively combined): 
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2. BUYS-BALLOT TABLE 

The Buys-Ballot table arranges a seasonal time series data of length n conventionally into m rows and s 

columns as shown in Table 1. The rows represent the periods/year while the columns are the seasons (Iwueze & 

Nwogu, 2004; Wold, 1938). The Buys-Ballot procedure was developed by Iwueze and Nwogu (2004) for short 

period data in which trend and cyclical component are jointly estimated. In their findings, the row and column 

means are unbiased estimates of the observations found in the respective rows and columns. Based on this 

assumption, the row and column mean imputation methods of estimating missing value were developed by Nwosu 

(2016). The information presented in this work concerns data that have trend (linear, quadratic and exponential) 

and seasonal components combined in the additive and multiplicative forms. In addition, during estimation, the 

power of the methods developed through the Buys-Ballot procedure are measured by comparing them with already 

existing methods using appropriate accuracy measures. 

 

Table-1. The buys-ballot table. 

P (period) Season 

1 2 … J … S Total 
Ti. 

Mean 
Xi. 

Std 

i. 

1 X1 X2 … Xj … Xs T1. X1. 
1. 

2 Xs+1 Xs+2 … Xs+j … X2s T2. X2. 
2. 

3 X2s + 1 X2s + 2 … X2s+j … X3s T3s. X3. 
3. 

… … … … … … … … … … 
I X(i-1)s+1 X(i-1)s+2 … X(i-1)s+j … X(i-1)s+s Ti. Xi. 

i.  

… … … … … … … … … … 
M X(m-1)s+1 X(m-1)s+2 … X(m-1)s+j … Xms Tm. Xm. 

m. 

T.j T.1 T.2 … T.j … T.s T..   
X.j X.1 X.2 … X.j … X.s  X..  

j .1 2 … 
.j … 

.s   
.. 

Note: Std: Standard deveation. 
Source: Iwueze and Nwogu (2004). 

 

where                                       (6) 
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                        (7) 

                                              (8) 

                   (9) 

                      (10) 

                               (11) 

                                   (12) 

                                          (13) 

                          (14) 

 

2.1. Important Equations 

In using the methods, simulated or real life data that fit additive (2) and multiplicative (4) models with the 

linear (15), quadratic (16) and exponential (17) trend curves should be considered as follow: 

i. For the linear trend curve,   

Mt = a+bt, t = 1, 2, …, m                                                                                    (15) 

ii. For the quadratic trend curve,    

Mt = a+bt+ct2, t = 1, 2, …, m                                                                                 (16) 

iii. For the exponential trend curve,  

Mt = bect, t = 1, 2, …, m                                                                                    (17) 

 

3. ESTIMATION METHODS FOR REPLACING MISSING VALUES 

The existing methods for estimating missing values in time series data and the recently developed estimation 

methods are as follow. These methods are adaptable to single missing condition and suitable in buys-ballot 

arrangement. However, their adaptability to double missing condition or more, has not been tested in a buys-ballot 

arrangement.  
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1. Mean imputation 

2. Linear interpolation                Existing methods 

3. Linear trend at point 

4. Series mean 

5. Row mean imputation                                               Recently-developed when value is missing at a point  

6. Column mean imputation                    but never tested under double missing condition.  

7. Decomposition without the missing value  

Notably, methods 1 to 4 are some of the existing methods in literature (Damsleth, 1979; Owili et al., 2015; 

Pourahmadi, 1989). Methods 5 to 7 are the recently-developed methods by Iwueze. et al. (2018) used to estimate 

missing value in time series when data is missing at a point. The recent estimation methods by Iwueze. et al. (2018) 

have not been tested under multiple missing conditions. This is one of the gaps which Statisticians should bridge 

through further scientific studies. Assuming an observation is missing in the Buys - Ballot table at one point (say 

X(i-1)s+j), it is estimated using the different methods as follows: 

 

3.1. Mean Imputations (MI) 

Mean imputation replaces the missing value with the mean of the values below the missing position. This is 

achieved by taking the sum of the non-missing values below the missing value and dividing by the corresponding 

number of observations.  

 
( )

 1)1(321)1( ...
11

1ˆ
−+−+− ++++

−+−
== jsijsi XXXX

jsi
XMI                                      (18) 

Equation 18 gives the missing observation. 

 

3.2. Linear Interpolation (LI) 

The linear interpolation method replaces missing value employing a linear interpolation. In this method, the 

last value before the missing value and the first value after the missing value are used for the interpolation. 

 )(
2

1ˆ
1)1(1)1()1( ++−−+−+− +== jsijsijsi XXXLI                          (19) 

 

3.3. Linear Trend at Point (LTP) 

Linear trend at point replaces the missing value with the linear trend for that point. The remaining series is 

regressed on an index variable scaled 1, 2, 3,…, (i-1)s+j-1, (i-1)s+j+1,…, (i)s+j-2, (i)s+j,…, ms. Missing value is 

then replaced with its predicted value. Then, the missing values will be estimated from the regression equations. 

      jsibaXLTP jsi +−+== +− )1(ˆˆˆ
)1(                                                                            (20) 

 

3.4. Series Mean (SM) 

Series mean achieves replacement of the missing value with the mean of the remaining series, by using the 

average of the available data values to replace the missing observation. 

 msn
n

T
XSM jsi =
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)1(                                                                                      (21) 

Where, 

  msjsijsi XXXXXT +++++= ++−−+− 1)1(1)1(21

*

.. ...                                                        (22) 
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3.5. Row Mean Imputation (RMI) 

According to Iwueze and Nwogu (2004) the row mean of the Buys-Ballot Table 1 is an unbiased estimate of the 

row observations. Therefore, the row mean imputation replaces the missing values with the row mean and this is 

achievable by finding the average of the available row values and replacing the missing value with the estimate 

(Nwosu, 2016). 

 RMI = (i-1)s+j    X(i-1) s+ 1 + X(i-1)s+2+…+X(i-1)s+j-1 + X(i-1) s+j+ 1 +…+X(i-1)s+s]                (23)  

 




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+=

−

=

j+1)s-(i

1

j +s 1)-(i

1

1

 j+1)s-(i X + X 
1-s

1
   X̂ = RMI

s

jt

j

t

                          (24) 

The missing value is replaced using Equation 24. 

 

3.6. Column Mean Imputation (CMI)   

The column mean of the Buys-Ballot table was recognized as an unbiased estimate of the column observations. 

Therefore, the column mean imputation by Iwueze. et al. (2018) entails replacing the missing value with the column 

mean of the Buys-Ballot table. This is achieved by finding the mean of the respective column values and replacing 

the missing value with this estimate. 

From Equation 9 

  

Which implies that: 

  X.j= Xj + Xs+j + X2s+j + …..+ X(i-2) s+j + X(i-1)s+j + Xis+j + X(i+1)s+j  +…X(m-1)s+j]      (25)   

Then                   

 CM I = (i-1)s+j= Xj + Xs+ j + X2s+j +…+X(i-2)s+j + Xis+j + X(i+1)s+j  +…X(m-1)s+j]      (26) 

Summing Equation 26 gives:  
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t

                                                    (27)             

 

3.7. Decomposing Without the Missing Value (DWMV) 

This method decomposes the remaining data series without the missing value to obtain the trend at point (i-

1)s+j (Iwueze. et al., 2018).       

        (i-1)s+j =  + (i-1)s+j                                                                                                                                            (28) 

Note that:    

(i-1)s+j =  j                                                                                                                                                                                                                                                          (29) 

Then, the estimate at the aforementioned point for additive model becomes: 

 X̂ = DWMV  j+1)s-(i  = (i-1)s+j  +  j                                                                                                                             (30)  

Similarly, the estimate at the aforementioned point for multiplicative model becomes 

   X̂ = DWMV  j+1)s-(i = (i-1)s+j  x  j                                                                                                                            (31) 
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4. COMPARATIVE NOVELTY AND EFFICIENCY OF ESTIMATION METHODS OF 

MISSING VALUE IN LITERATURE 

Findings of different workers on estimation methods of missing values revealed that an estimate is never 

completely accurate and usually deviates from the actual value (Chinyem, 2014; Mario, 2012). From the literature 

reviewed (Chinyem, 2014; Iwueze. et al., 2018; Nwosu, 2016) some estimation methods have shown better novelty 

and efficiency than others. According to Nwosu (2016) and Iwueze. et al. (2018) the Decomposing without the 

Missing Value estimation method was most effective using mean absolute error, mean absolute percentage error 

and root mean square error as criteria. According to Iwueze. et al. (2018) the novelty shown by the Decomposing 

without the Missing Value estimation method is probably because it considers seasonality of the missing value. In 

the recent ranking by these authors, the Linear Interpolation estimation method was second, Linear Trend at Point 

third, Row Mean Imputation fourth, Series Mean fifth, Column Mean Imputation sixth and Mean Imputation 

estimation method seventh in position. Each of these methods in comparison with the others maintained its position 

100%, the literature concluded. This indicates that the methods of estimation of missing values highlighted in this 

review were consistent in their performance without being prone to minimal variations. These are important 

statistical information.  

 

5. ACCURACY MEASURES FOR DETERMINING EFFICIENCY OF ESTIMATORS 

To evaluate the accuracy of estimators, the estimated values obtained from the various estimation methods are 

compared with the actual values in the data. However, in Buys-Ballot arrangement when data is missing at a point, 

the estimated values ( (i-1)s+j) should be subtracted from the actual value (X(i-1)s+j) to obtain the estimated error. The 

estimated error is denoted by  

(i-1)s+j = X(i-1)s+j  - (i-1)s+j                                                  (32) 

Given a data set of size n = ms, and data missing at one point at a time in a row or column of the Buys-Ballot 

table for different m0 positions, m0 < n > 1. 

the m0 estimated errors is denoted by Uk, k = 1,2,…, m0 .  

where 

  Uk = Xk - k, k = 1,2,…, m0                                                                                      (33) 

m0 = the number of estimated missing value, Xk is the actual value of the series at position k and k is the estimated 

missing value. 

The estimated errors Uk, k = 1,2,…, m0 are used to define accuracy measures (Makridakis & Hibon, 1995) for 

comparing the different methods of estimation of missing values. The performance criteria used in ascertaining the 

efficiency of these estimates discussed in this review are: Mean Error (ME), Mean Absolute Error (MAE), Mean 

Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute percentage Error (MAPE).  

 

5.1. Mean Error (ME) 

It indicates the deviation between the actual values and estimates. Mean Error is given as: 


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5.2. Mean Absolute Error (MAE) 

MAE is the positive derivation between the actual values and estimates, it is denoted as: 
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5.3 Mean Absolute Percentage Error (MAPE) 

This accounts for the percentage of deviation between the actual values and estimates. 

This can be obtained as:  

            100
m

1
   MAPE

0m

00
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=k k

k

X
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5.4. Mean Square Error (MSE) 

Mean square error indicates the fluctuations of the deviations and it can be calculated as:  


=

=
0m

1

2

0m

1
  MSE

k

kU                                                                                                                 (37) 

 

5.5. Root Mean Square Error (RMSE) 

  This is calculated as the square root of the square error: 

 
=

=
0m

1

2

0m

1
  RMSE

k

kU                                    (38)       

 

6. CONCLUSION 

This work reviewed seven methods of estimating missing values in descriptive time series data arranged in a 

Buys-Ballot table. The values in question shall not be missing from the same row or column at the same time in 

Buys-Ballot table. It was revealed that model structure and trending curves are important parameters which should 

be considered in the estimation of missing values. Findings (Iwueze. et al., 2018; Nwosu, 2016) revealed that the 

Decomposing without the Missing Value estimation method is effective, novel and gave the best result when 

compared with the other six methods. This contribution will be meaningful to statisticians seeking to tackle the 

problem of missing values in descriptive time series data. 
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