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Abstract—Trust relationship prediction among people provides
valuable supports for decision making, information dissemina-
tion, and product promotion in online social networks. Network
embedding has achieved promising performance for link pre-
diction by learning node representations that encode intrinsic
network structures. However, most of the existing network
embedding solutions cannot effectively capture the properties of
a trust network that has directed edges and nodes with in/out
links. Furthermore, there usually exist rich user attributes in
trust networks, such as ratings, reviews, and the rated/reviewed
items, which may exert significant impacts on the formation of
trust relationships. It is still lacking a network embedding-based
method that can adequately integrate these properties for trust
prediction. In this work, we develop an AtNE-Trust model to
address these issues. We firstly capture user embedding from both
the trust network structures and user attributes. Then we design
a deep multi-view representation learning module to further
mine and fuse the obtained user embedding. Finally, a trust
evaluation module is developed to predict the trust relationships
between users. Representation learning and trust evaluation are
optimized together to capture high-quality user embedding and
make accurate predictions simultaneously. A set of experiments
against the real-world datasets demonstrates the effectiveness of
the proposed approach.

Index Terms—Trust prediction, Attributed network embed-
ding, Online social networks

I. INTRODUCTION

Trust prediction among users provides critical supports for

reliable marketing, information dissemination, and recommen-

dation on social networks. An emerging solution for link (trust)

prediction in complicated networks is network embedding,

which learns representations for each user by reconstructing

the network structures in low-dimensional spaces.

Trust relationships between people are asymmetric, i.e., that

A trusts B does not necessarily mean B trusts A the same

way. For example, the users in the online review website

Epinions can add other users to a trust list when finding

their reviews useful. Such relationships have directions in

which we need to distinguish the user’s role as a trustor
or as a trustee. Link directions are important information in

trust networks [1]. However, most of the existing network

embedding methods mainly focus on networks with symmetric

relationships. Furthermore, we often observe from a social

network that a large number of users only maintain several

relationships while a small number of users maintain a large
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Fig. 1. An example of attributed trust network. As shown in the figure, there
exist trust relationships among users and each user may have dual roles as a
trustor or trustee. Also, different users have different connectivity properties,
e.g., u2 has more out-links while u3 has more in-links. In addition, there are
user attributes including ratings, reviews, and rated/reviewed items for each
user.

number of relationships. For example, a well-known celebrity

tends to have more in-links while an advertiser has more

out-links to disseminate information (See Fig.1). Therefore,

capturing the roles in a relationship and the connectivity

properties of users is crucial for trust network embedding [2].

Trust networks have their particular structures on how the

nodes are connected and node attributes with information

about the users. As an example, Fig.1 shows that users

provide ratings and comments/reviews on items. In addition,

the items rated/reviewed by the users also reflect users’

interests/preferences. We call the information revealing the

users’ characteristics as user attributes. Based on the social

science theory [3], attributes usually exert crucial impacts on

the formation of trust relationships. There have been some

researches on analyzing the importance of attributes such as

user demographics [4] and user subjective preferences [5].

The structure of a trust network and user attributes provide

useful sources of information for trust relationship prediction.

It is necessary to capture both of them in network embedding

to learn a comprehensive representation of the user’s social

characteristics for trust prediction.

Learning attributed trust network representations faces the

following challenges: (1) Trust Properties-preserving: different

from the normal symmetric social networks without direc-

tions, the underlying structure of the trust network is usually

complex. How to simultaneously preserve the dual roles and
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the connectivity properties of users is a hard problem; (2)

Multi-view Non-linearity User Attributes: social network users

are generally associated with the multi-view data such as the

ratings, reviews/comments, and the rated/reviewed items. All

the views combined form the characteristics of a user in a

social network, but it is a challenging task to represent and

fuse these high-dimension and non-linearity [6] data; (3) Data

Sparsity: in reality, many trust networks are often very sparse

with a limited number of observed links, which is not enough

to obtain informative user embedding.

To address the above challenges, we propose a novel at-

tributed trust network embedding model AtNE-Trust for trust

relationship prediction in online social networks. AtNE-Trust

firstly performs a uniformed high non-linear trust network

embedding to capture the dual roles and the connectivity

properties of users. A set of rich user attributes including

user ratings, reviews, and the rated/reviewed items are pre-

processed for user attributes embedding. Different from the

previous works that learn representations separately, we pro-

pose a multi-view representation learning module including

a set of auto-encoders and a feature fusion unit to further

learn user embedding. Finally, the learned embedding for

pairs of users is concatenated and fed into a trust evaluation

module including an MLP (Multi-Layer Perceptron) unit to

predict their trust relationships. Representation learning and

trust evaluation are jointly trained. The trust evaluation loss

from MLP is propagated back to representation learning and

guides it to capture trust-related features. Since we utilize the

user attributes and integrate the diverse information, the data

sparsity problem is alleviated. The main contributions of this

work are summarized as follows:

‚ We formally specify the problem of attributed trust net-

work embedding, based on which we propose a trust

prediction solution.

‚ We propose an attributed network embedding-based

model to capture the trust network structures and user

attributes simultaneously: for trust network embedding,

the dual roles and the connectivity properties of users are

considered; for user attributes embedding, the attributes

are considered based on user behaviors including ratings,

reviews, and the rated/reviewed items. The consideration

of rich user attributes alleviates the issue of data sparsity.

‚ We develop a unified deep learning approach by inte-

grating representation learning and trust evaluation. The

mutual refinement between the two modules ensures the

effectiveness of both generating high-quality representa-

tions and achieving better trust prediction results.

‚ Experiments on real-world datasets demonstrate the supe-

rior performance of the proposed trust prediction model

over both classic and state-of-the-art solutions.

The rest of the paper is structured as follows. Section II

reviews the related work. Section III provides the preliminaries

including notation, problem specification, and some analysis

on links and attributes. Section IV proposes the AtNE-Trust

approach. Section V describes the experiments conducted and

analyses the results. Finally, Section VI concludes the work.

II. RELATED WORK

In this section, we review the existing trust prediction

approaches in the following three categories: (1) trust network

structure-based approaches, (2) low-rank approximation-based

approaches and (3) network embedding-based approaches.

A. Trust Network Structure-based Approaches

Trust network structure has been widely exploited by ex-

isting trust prediction methods. The solution proposed in [7]

utilizes the transitivity property of trust to propagate trust

values from a source user to a target user along a path between

them and treats all the propagation paths equally. Later on,

researchers find that shorter propagation paths and paths with

higher trust values produce more accurate trust evaluations [8].

By averaging the trust values along social paths, algorithms

for inferring the trust relationships between users that are

not directly connected are proposed in [9]. Different from

the above propagation-based approaches, the neighborhood

structure of a trust network is considered in some studies.

For example, the trust value between a pair of user pui,ujq is

calculated according to the suggestions from ui’s neighbors. In

detail, the stronger ui trusts her/his trustees, the higher weighs

these trustees carry when aggregating their suggestions [8],

[10].

Network structure-based trust prediction approaches nor-

mally suffer from the data sparsity problem since the number

of trust relationships may be too small.

B. Low-rank Approximation-based Approaches

Low-rank approximation based method is widely employed

in various applications such as collaborative filtering [11], [12]

and document clustering [13]. Matrix Factorization (MF) is

the most widely employed low-rank approximation method

to generate the low-rank representations of users and their

correlations by factorizing a trust matrix [13]. Furthermore, by

incorporating prior knowledge and additional user-generated

content, the performance of low-rank approximation-based

approaches can be further improved. Homophily effect is

studied and incorporated as the rating similarity regularization

to matrix factorization [3]. Social status regularized matrix fac-

torization is proposed in [14]. This is based on the assumption

that users with lower social status are more likely to trust users

with higher status. Emotional information for trust/distrust

prediction is investigated [15] by regularizing trust based

on users’ positive/negative emotions. Recently, a power-law

distribution aware trust prediction model is proposed under

the framework of matrix factorization [16].

The low-rank approximation-based approaches suffer from

the data sparsity problem since these approaches conduct

factorization directly on the sparse trust matrix.

C. Network Embedding-based Approaches

Recent works focus more on leveraging neural network

models to embed an existing network into a low-dimensional
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TABLE I

Notation Description
U “ tu1, ¨ ¨ ¨ , umu the set of m users
V “ tv1, ¨ ¨ ¨ , vnu the set of n items
C “ tc1, ¨ ¨ ¨ , cqu the set of q item categories

Emˆm trust relationship matrix of users
eij P Emˆm the trust value of user i on user j

Rmˆn rating matrix of users on items
rij P Rmˆn the rating value of user i on item j
REmˆn review matrix of users on items

reij P REmˆn the piece of review of user i written for item j
ITmˆq user and item category matrix
itij the items of category j rated/reviewed by user i

space for link prediction. In [17], the authors deploy trun-

cated random walks on networks to generate node sequences,

which is treated like that sentences are fed to the Skip-

Gram model to learn the embedding in language models. The

work in [18] modifies the way of generating node sequences

by balancing breadth-first sampling and depth-first sampling,

which achieves significant performance improvement. Instead

of performing simulated “walks” on the networks, [19] pro-

poses clear objective functions to preserve the first-order

proximity and second-order proximity of nodes. Recently, a

representation learning method to capture the sign and direc-

tion information is proposed in [20]. In online social networks,

there usually exists rich user attributes and purely structure-

based methods fail to capture such valuable information. Ac-

cordingly, there have been some works to integrate contents for

informative representations learning [21]. For example, TADW

[22] proposes a text-associated DeepWalk to incorporate text

features into the matrix factorization framework. ASNE is

proposed to capture the structure proximity and the attributes

proximity simultaneously, of which the attributes are mainly

obtained from user profiles for friendship-based networks [23].

However, user profile information is usually limited. More rich

user attributes should be considered and combined together

for obtaining better user embedding. Most importantly, almost

all the network embedding-based approaches are designed for

the normal link prediction task [24]. However, trust prediction

is a special kind of link prediction task, of which the trust

relationships among users are stronger than the normal links

(e.g., friendship). Although existing network embedding-based

works can be used for trust prediction task but a more effective

network embedding-based method that specially considers the

influential factors on trust relationships formation is essential

for trust prediction.

III. PRELIMINARIES

In this section, we first introduce the notations and specify

the attributed trust network embedding problem. Then we

investigate the relations between attributes and link formation

in trust networks against real-world datasets.

A. Notation

For the presentation of the problem specification and

methodology in the following sections, we list the notations

of the raw input data in Table I.

TABLE II
AVERAGE OF USER ATTRIBUTE SIMILARITIES

Dataset Metric T R

Epinions
CA sim 70.49 22.67
CS sim 0.0583 0.0124

Ciao
CA sim 53.14 17.46
CS sim 0.0315 0.0116

B. Problem Specification

Attributed Trust Network Embedding: An attributed trust

network is G “ pU,E,Xq, where U is the set of users (nodes)

and E is the set of trust relationships (edges) between the users

(nodes). Each eij P E is associated with a trust value 0 or 1.

eij = 1 if there exits an edge from ui to uj . Otherwise, eij =

0. X is the matrix representing the attributes associated with

each user (node). Attributed trust network embedding (AtNE)

aims to learn an embedding function f as follows:

f : U Ñ R
d (1)

which preserves both the trust network structures and user

attributes.

C. Analysis on Trust Relationships and User Attributes

As it has been widely studied in the literature that users with

similar attributes are more likely to have trust relationships.

This shows that attributes play an important role in the forma-

tion of trust relationships. Following the research in [25], we

perform data analysis to investigate the relationships between

trust relationships and user attributes on dataset Epinions and

Ciao.

Epinions and Ciao are two popular online product review

websites, where users establish trust relationships with other

users and provide reviews for products. In this subsection, we

use the reviews written by users to construct a user-attributes

matrix X by bag-of-words. For each user ui, we construct

a trust relationships set T and an unobserved links set R as

follows:

T “ pui, ujq|uj P Ti, i “ 1, ..., n

R “ pui, ujq|uj P Ri, i “ 1, ..., n
(2)

where Ti and Ri correspond to the users who have trust

relationships with ui and the randomly selected users who

have unobserved relationships with ui, respectively. We can

then calculate the user attributes similarity for each pair of

users pui, ujq in T and R. In this work, we investigate two

ways of calculating the similarity between user pairs pui, ujq
as follows:

‚ Common Attributes: We compute the the number of

common attributes between two users pui, ujq as their

common attributes similarity CA simpui, ujq;

‚ Cosine Similarity: We compute the cosine similarity

between the attributes vectors of two users pui, ujq as

their cosine similarity CS simpui, ujq.

We then compute the similarities between each pair of users

in P and R by these two ways, which form two similarity
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vectors denoted as st and sr. The average values of CA sim
and CS sim are shown in Table II, where we find that users

are more likely to have more similar attributes with their

trusted users than other users.

To further verify the above observation statistically, we

conduct a two-sample t-test on two similarity vectors st, sr.

The null hypothesis H0 and the alternative hypothesis H1 are

defined as follows:

H0 : st ď sr H1 : st ą sr (3)

H0 indicates that the users with trust relationships have

less common attributes than that of randomly selected users

with unobserved links while H1 has the opposite meaning.

According to calculation, H0 is rejected at significance level

α “ 0.01 with p “ 7.32e´283, which verifies that users with

trust relationships have more common attributes than users

with unobserved links. It shows that user attributes do have

impacts on link formation and have the potential to learn better

user embedding for trust relationship prediction.

The observation can be easily explained from a user’s per-

spective. Consider a case that ui has more common attributes

with uj , which may be explained by their common interest in

a particular subject such as Sports. In such a case, it is more

likely for ui to know uj and have interactions with uj , e.g.,

constructing trust relationships. On the contrary, if ui has few

attributes in common with uj , then ui is not likely to know

uj at all, let alone have interactions.

IV. METHODOLOGY

In this section, we present our AtNE-Trust prediction ap-

proach. The AtNE-Trust consists of four components which

are illustrated in Fig. 2 as: 1) Trust Network Embedding
covers the dual roles and the connectivity properties of users

based on the trust network structures from the Input Layer; 2)

User Attributes Embedding covers user attributes from avail-

able data including users’ ratings, reviews and rated/reviewed

items from the Input Layer; 3) Representation Learning
feeds the obtained embedding into the Embedding Layer that

includes a set of auto-encoders and a Fusion Layer for further

representation learning. 4) Trust Relationship Evaluation
concatenates the features for each pair of users and predicts

their trust relationships by a Prediction Layer.

A. Trust Network Embedding

Trust network embedding is conducted by preserving the

dual roles and the connectivity properties of users. It mainly

consists of two steps: (1) Random Walk Generation and

(2) Likelihood Optimization. Algorithm 1 performs the trust

network embedding.

1) Random Walk Generation: In the first stage of trust

network embedding, multiple truncated random walks are

generated from each seed node on the graph derived from the

trust network. Each step of the walk follows directed edges

according to transition probabilities proportional to weights

on edges until the required length l is satisfied. If the random

walk encounters dead end, the remaining steps will restart
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…… …

Trust Network
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Fig. 2. Overview of the proposed AtNE-Trust model.

from the seed node. The resulting walk sequences cover all

the visited users on the followed edges. For each node, the

random walk process may perform w times. Two nodes are

defined to be a co-occurring pair if they are placed within the

short distance in the generated random walk sequences. Then

all the co-occurring pairs within a window size c are selected

from the walk sequences. All these co-occurring pairs will be

used for the following likelihood optimization process.

2) Likelihood Optimization: In the second stage, the vector

representations are learned with a neural language model Skip-

Gram with negative sampling (SGNS) [26], [27]. SGNS is

formulated as a likelihood maximization model by predicting

whether a pair of nodes co-occur or not in the simulated

random walk. Direct prediction on neighboring nodes from the

target node requires an infeasible amount of parameter updates

for each node pair. For example, when the user pair pui, ujq is

trained, the co-occurrence probability of uj with ui is 1 while

everything else is 0. In order to limit the number of parameters

updated in each step, SGNS samples some users to update their

weights. The weights of other users will not be calculated.

For each pair of co-occurrence users pu, vq generated in the

random walk process, the likelihood formulation function is

defined as follows:

J “
ÿ

pu,vqPD
r´logP pu, vq `

nÿ
j“1

´logP pu, v1
jqs

` λ

2
p||bin||2 ` ||bout||2q

(4)

where D represents the user pair set which contains all the

co-occurrence users generated in the random walk process. For

each pair pu, vq P D, s noise samples v
1
j are randomly sampled

as noise pairs. The latter part of the objective function regu-

larizes bias terms in the likelihood function. The likelihood
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Algorithm 1 Trust Network Embedding Learning Algorithm

Input: Directed trust network G “ pV,Eq,

dimension d, the number of walks per node w, the number of

the steps per walk l, the size of context c,
negative sampling size s, regularization parameter λ
Output: trust embedding matrix W out, W in, out-link bias

bout, in-link bias bin:

1: initialize W out, W in with random values and bout, bin

with zeros.

2: Walks = {}
3: for i from 1 to w do
4: for all v P V do
5: Generate a random walk of length l start from v and

append to Walks

6: end for
7: end for
8: for all walks P Walks do
9: for all pu, vq within distance c in walk do

10: update W out
u , W in

v and boutu , binv according to Equa-

tion (6)

11: for j from 1 to s do
12: Randomly sample v

1 P V
13: Update W out

u , W in
v according to the first two steps

of Equation (6)

14: end for
15: end for
16: end for

P pu, vq is defined as follows:

P pu, vq “
"

σpW out
u ¨ W in

v ` boutu ` binv q ifpu, vq P D
σp´W out

u ¨ W in
v q otherwise

(5)

As can be seen from the above function: the first component

is the inner product by W out
u and W in

v , where W out
u represents

user’s trustor role and W in
v represents user’s trustee role. The

inner product by W out
u and W in

v indicates the similarity score

(e.g., distance) of user pair pu, vq. By maximizing the objective

function (5), the likelihood of the co-occurrence user pairs

increases as the inner product increases. It means that trusted

users are closely placed while users without connections

are placed far apart. Such results are consistent with the

social homophily theory, which shows that trusted users have

higher similarity (e.g., shorter distance) while disconnected

users have lower similarity (e.g., larger distance); the second

component of the objective function (5) is bias terms boutu ,

binv modeling the connectivity property of users. According

to preferential attachment theory, larger connectivity induces

higher likelihood of additional link formation and thus link

formation likelihood increases when the bias term increases

as calculated in Equation (5).

The model is trained using gradient descent optimization.

For co-occurring pair pu, vq, two weight vectors W out
u , W in

v

and two bias factors boutu , binv are updated. The derivative

of objective function Jpu,vq “ ´logP pu, vq ` λ
2 p||boutu ||2 `

||binv ||2q corresponding to the co-occurring pair pu, vq is as

follows:

BJpu,vq
BW out

u

“ ´W in
v p1 ´ P pu, vqq

BJpu,vq
BW in

v

“ ´W out
u p1 ´ P pu, vqq

BJpu,vq
Bboutu

“ ´p1 ´ P pu, vqq ` λboutu

BJpu,vq
Bbinv “ ´p1 ´ P pu, vqq ` λbinv

(6)

For the noise pair pu, v1 q, only two weight vectors W out
u ,

W in
v1 are updated. Finally, the weight vectors W out

u , W in
v for

the dual roles of users and the bias factors boutu , binv for the

connectivity property of users are learned. For each user, the

trust network embedding is denoted as xt.

B. User Attributes Embedding

For an online review website such as Epinions, there

exists rich information to show user attributes. We mainly

consider user attributes by users’ ratings, reviews, and the

rated/reviewed items. Note that we do not use the user profiles

such as gender, age, and location in this work. The main

reasons are: a) the number of user profile information is

usually limited; b) online users tend to provide fake profile

information due to privacy considerations.

Modeling User Rating Behavior: Matrix Factorization is a

widely used low-dimensional factor model. The basic idea is

that k unobserved latent factors influence a user’s attitudes

and preferences. Therefore, users and items can be projected

into a joint k-dimension latent space by factorizing the user-

item-rating matrix into the inner product of the user-specific

matrix and the item-specific matrix. The user-specific matrix

represents the user’s preference for the items on k latent factors

and the item-specific matrix represents the k latent attributes

belonging to the items that can attract users’ preferences.

Therefore, in order to obtain the user attributes delivered

from rating matrix for each user ui, we factorize the rating

matrix Rmˆn into the inner product of a user-specific latent

matrix Pmˆk and an item-specific latent matrix Qnˆk, which

is represented as:

Rmˆn “ Pmˆk ˚ QJ
nˆk. (7)

Pmˆk represents the relations between m users and k-

dimension latent factors. Each row vector Pi in Pmˆk denotes

user ui’s attributes vector learned from rating matrix, which

is represented as xr.

Modeling User Review Behavior: As a number, a rating can

only express limited information. In most cases, users usually

express their full opinions by providing reviews in the form of

text that contain more information to reflect a user’s attributes.
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Doc2vec is an unsupervised algorithm to learn k-dimension

embedding feature vectors for documents with variable lengths

[28]. In a review matrix RE, the i-th row of RE denoted as

REi is the review set containing all the reviews that ui has

written. REi is fed into the doc2vec model to obtain ui’s

attributes vector, which is calculated as:

xre “ doc2vecpREiq (8)

where we use xre to represent ui’s attributes vector obtained

from the user’s provided reviews.

Modeling Item Properties: Items rated and reviewed by

a user naturally reflect the interests of the user, thus the

properties that lie behind an item should be treated as a part

of user attributes. It is worth mentioning that we are one of

the few works that consider the item’s properties as part of

user attributes.

ITmˆq is the user and item category matrix specified in

Table I. For a specific user ui, the i-th row of ITmˆq

is represented as a set tITi1, ITi2, . . . , ITiqu, where each

element represents the items belonging to different categories

that the user has rated/reviewed. Among this set, ITik that

contains the biggest number of items is selected. Then all item

names in ITik are put into Ii. Ii is fed to the doc2vec model

to obtain the item embedding vector for the user as follows:

xit “ doc2vecpIiq (9)

where we use xit to represent the item embedding vector

for a specific user ui and this item embedding vector xit is

considered as a part of user attributes embedding in this work.

C. Representation Learning

After the aforementioned embedding steps, trust network

embedding xt and user attributes embedding xr, xre, xit are

obtained in the low-dimensional space, respectively. To further

mine and fuse these information, they are fed into a multi-

view representation learning module including a set of auto-

encoders and a feature fusion unit.

1) Encoder: Each user has four set of embedding xt, xr,

xre, and xit from different views. Taking the trust network

embedding view as an example, the input of its encoder is xt,

the output of i-th hidden layer is h
piq
t , the i-th weight matrix

is Wti , and the i-th bias term by bti . For an encoder with l
layers, the l-th layer’s output is:

h
plq
t “ fpWtlh

l´1
t ` btlq (10)

where ReLU is the activation function f at hidden layers

and the output layer. Similarly, the outputs of other encoders

with l layers are obtained corresponding to other attribute

views denoted as h
plq
r , h

plq
re , h

plq
it .

2) Feature Fusion Unit: Incorporating all the information

across all the views straightforwardly may lose the unique

characteristics of each view. Therefore, we employ a feature

fusion unit to control the data fusion process. After obtaining

four after-activation vectors h
plq
t , h

plq
r , h

plq
re , h

plq
it from the top

layers of the corresponding encoders, we design a feature

fusion unit to fuse the information from other views for each

view. Here we still take the trust network embedding view h
plq
t

as an example, the detail fusion steps are as follows:

Step 1: At first, fuse the vectors from other views into a

vector by the following equation.

h
plq
fuse “ tanhpWrh

plq
r ` Wreh

plq
re ` With

plq
it q (11)

where Wr, Wre, and Wit are trainable weights, h
plq
fuse is the

weighted combination of the other three user attribute views.

Step 2: Then, calculate how much of the data from the other

views will be fused with the current view:

ft “ sigmodpVrh
plq
r ` Vreh

plq
re ` Vith

plq
it q (12)

where Vr, Vre, and Vit are trainable weights. The output

of sigmoid function is a value in the range of p0, 1q, with

0 denoting let nothing through and 1 denoting let everything

through.

Step 3: Finally, fuse the features from the target view and

other views:

yt “ p1 ´ ftqhplq
fuse ` fth

plq
t (13)

where yt is the fused representation of the current trust

network embedding view and the other attributes embedding

views. Then, the fused representations of the other attribute

views can be obtained and represented as yr, yre, yit. For sim-

plicity, We will not give the details for calculating yr, yre, yit
as the steps are similar to that when we calculate yt.

3) Decoder: The decoder takes the output vector from the

top layer of the encoder as its input and decodes it with

l layers. Taking the trust network embedding view as an

example, the l-th layer’s output of the decoder is:

x̂t “ gpWtlh
l´1
t ` btlq (14)

Correspondingly, the outputs of the other decoders cor-

responding to other views can be obtained and denoted as

x̂r, x̂re, x̂it. Auto-encoder aims to reconstruct the output

representation of its decoder with the input of its encoder.

For example, the reconstruction loss for input xt is calculated

as follows:

Lt “ 1

2

Nÿ
i“1

px̂t ´ xtq2 (15)

Then the reconstruction loss of the other three views de-

noted as Lr, Lre, Lit can be obtained in the same way. The

loss function of representation learning is the sum of the

reconstruction losses from all the views as:

Lemb “ Lt ` Lr ` Lre ` Lit (16)

D. Trust Relationship Evaluation

The concatenation representations from all the views is de-

noted as concatui
“ pyt‘yr‘yre‘yitq for each user ui. And

thus for each user pair pui, ujq, there is pconcatui , concatuj q.
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Algorithm 2 AtNE-Trust Training Algorithm

Input: Iter:the number of training iterations, set of features

pxt, xr, xre, xitq for each pair of users.

Output: Wti ,Wri ,Wrei ,Witi : weight matrices for deep auto-

encoders; bti ,bri ,brei ,biti : bias vectors for deep auto-encoders.

pi “ 1, . . . , N ´ 1q.

1: initialize weight matrices and bias vectors;

2: generate n negative instances;

3: set full training set;

4: for each it from 1 to Iter do
5: for each user of the pair pui, ujq in training set do
6: set h

plq
t , h

plq
r , h

plq
re , h

plq
it Ð use Equation (10) with

input pxt, xr, xre, xitq;

7: set fused feature yt, yr, yre, yit Ð use Equation (13)

with input h
plq
t , h

plq
r , h

plq
re , h

plq
it ;

8: set Lt, Lr, Lre, Lit Ð use Equation (15);

9: set Lpre Ð use Equation (18);

10: set L Ð use Equation (19);

11: use Adma algorithm to optimize model parameters

12: end for
13: end for

The representations for each pair of user are further concate-

nated as the input of a single-layer MLP as:

y
1
ij “ softmaxpWmlpˆpconcatui

‘concatuj
q`bmlpq (17)

where ‘ is the concatenation operator, Wmlp is the weight

matrix, bmlp is the bias parameter, y
1
ij is the predicted proba-

bilities of the user pair pui, ujq belonging to the trusted pair

or distrusted pair. We choose cross-entropy as trust prediction

loss function:

Lpre “ ´
ÿ
ij

yij logpy1
ijq (18)

where we use Lpre to represent the trust prediction loss.

E. Optimization Objective

The final optimization objective of the AtNE-Trust model

is to minimize the sum of the reconstruction loss and the trust

evaluation loss:

L “ Lpre ` γLemb (19)

where Lpre and Lemb are the trust relationship evaluation

loss and reconstruction loss, respectively. γ ě 0 is a co-

efficient that controls the balance between these two parts.

Reconstruction loss ensures the model to learn the multi-view

high non-linear embedding. Trust evaluation loss measures

the current trust evaluation and it will be propagated back

to the representation learning. The mutual refinement between

the trust evaluation and the representation learning ensures

superior trust prediction results. We utilize Adma optimization

algorithm [29] to minimize the loss L. Algorithm 2 imple-

ments the AtNE-Trust training process.

TABLE III
STATISTICS OF DATASETS

Dataset Epinions Ciao
the number of Users 7,151 4457
the number of Items 21,661 10,957
the number of Ratings/Reviews 371,263 237,285
the number of Trust Relationships 125,008 24,731

V. EXPERIMENTS AND ANALYSIS

We carry out a set of experiments against two real-world

datasets Epinions and Ciao to investigate the following

research questions:

RQ1: How does our proposed method perform in comparison

with the state-of-the-art approaches?

RQ2: How do trust network embedding and user attributes

embedding contribute to the trust prediction, respectively?

RQ3: How do different parameters affect the performance of

our method?

A. Experimental Settings

1) Datasets for Evaluation: We evaluate our method

against two widely used real-world datasets Epinions and

Ciao, which are publicly accessible [3]. Epinions and Ciao
are two knowledge-sharing websites. There are rating values

ranging from 1 to 5, which denotes an overall preference that

a user to an item. Besides, there are reviews that contain user

attitude and preference in text. Also, there are items a user has

rated/reviewed. In addition, these datasets contain explicit trust

relationships between users as trust lists can be maintained on

these websites. Epinions and Ciao have been used widely for

trust prediction. For these two datasets, we retain the users

with at least 15 rating/reviews. The statistics of the datasets

are summarized in Table III.

2) Evaluation Metrics: In this work,we adopt the widely

used AUC [30] score and F1 [31] score as evaluation metrics.

The higher the values of these metrics are, the better the

prediction performs.

3) Implementation: We implement our proposed model

with Tensorflow1. Our code is publicly available in github

page2. For directed random walk generation, we use the

parameter settings in [20]: w “ 80, l “ 40. c is set to 10

and s is set to 5 according to experimental results. Parameter

λ is set differently for a specific dataset to gain the best

performance. When training the model, the ratio of trust pairs

and unobserved negative user pairs is 1 : 5. For the deep auto-

encoders, we set the hidden layer number d as 3 and 2 for

Epinions and Ciao, respectively. The parameters are updated

based on the Adma optimizer algorithm with the learning rate

of 0.001. We set the training batch size to 500. For baseline

methods, we use the same parameter settings as suggested in

their original work.

1https: //www.tensorflow.org
2https://github.com/AtNE-Trust/AtNE-Trust
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TABLE IV
PERFORMANCE OF DIFFERENT TRUST PREDICTION METHODS

Methods
Epinions Ciao

AUC F1 AUC F1
TP 0.658 0.796 0.639 0.702
MF 0.914 0.928 0.815 0.826

DeepTrust 0.916 0.937 0.813 0.830
LINE 0.794 0.897 0.765 0.791

Node2Vec 0.896 0.919 0.798 0.807
SIDE 0.919 0.936 0.824 0.831
ASNE 0.921 0.937 0.826 0.834

AtNE-Trust 0.927 0.939 0.829 0.836

B. Effectiveness of Our Model

To answer question RQ1, we compare our proposed AtNE-

Trust model with some baseline approaches including both

classical and state-of-the-art trust prediction methods. We also

compare our method with some network embedding-based

methods. The baseline methods are as follows:

‚ TP: Trust propagation evaluates trust relationships along

a path between users, which is the most typical trust

network structure-based approach [7].

‚ MF: Matrix factorization is a classical low-rank

approximation-based approach, which performs matrix

factorization on trust matrix [13].

‚ DeepTrust: DeepTrust is a deep user model of homophily

effect for trust prediction. It is a deep learning-based

approach that considers rich user attributes [32].

‚ Node2Vec: Node2Vec is based on the Skip-Gram model

to obtain the node sequences generated by the biased

random walk [18].

‚ LINE: LINE learns two embedding vectors for each node

by preserving the first-order and second-order proximity

of the network, respectively [19].

‚ SIDE: SIDE simultaneously considers the signs and

directions of links for network embedding [20].

‚ ASNE: Attributed social network embedding (ASNE)

learns representations for social actors by preserving both

the structure proximity and attributes proximity. This

work mainly focuses on the symmetric social relation-

ships and user attributes are obtained from user profiles

[23].

Note that ASNE adopts eight different kinds of anonymized

information from the user profile for attributes embedding on

friendship-based networks including user ID, status, gender,

major, second major, dorm/house, high school, and class year.

However, some of these user profile attributes are not included

in Epinions and Ciao datasets. The dataset Epinions includes

the user ID, location, self-description, and favorite websites.

The dataset Ciao includes the user ID, the number of reviews,

the number of trustors, and the number of trustees for each

user.

As there are only positive links (e.g., trust relationships) in

our Epinions and Ciao datasets, a set of unlinked user pairs is

randomly selected as the negative instance set for training and

testing our model. The trust prediction results of our model

and baseline models are summarized in Table IV (The ratio

of training size and testing size is 90% : 10%). We have the

following observations from table IV:

‚ The AtNE-Trust has a better performance compared with

all the baseline methods. In particular, the AtNE-Trust

can achieve better performance compared with the state-

of-the-art attributed network embedding method ASNE.

‚ AtNE-Trust, ASNE, and DeepTrust achieve relatively

better performance than the other baseline methods by

considering user attributes.

‚ SIDE, Node2Vec, LINE, MF, and TP are the methods that

have not considered user attributes. SIDE outperforms the

other methods in this group due to it considers both the

sign and the direction of the links. As a classical low-rank

approximation-based method, MF achieves quite good

performance. TP gets the worst performance in these

methods due to it heavily suffers the data sparsity issue.

Our AtNE-Trust achieves better performance compared with

existing methods due to: (1) it captures both trust network

structures and user attributes; (2) it integrates representation

learning and trust evaluation into a unified deep learning

method. The mutual refinement between the representation

learning and trust evaluation helps to achieve good trust

prediction results; (3) it employs user attributes to alleviate

the suffering of the data sparsity issue.

C. Impact of Training Size

To further answer research question RQ1, we conduct

experiments with different training set sizes. The user pairs are

sorted according to when they establish trust relationships. The

first x% user pairs are put in the training set and the remaining

p1 ´ xq% pairs are put in the testing set. The x value is in

t50, 60, 70, 80, 90u. The results against two datasets are shown

in Table V, where we have the following observations:

‚ In general, the performance of all the methods increases

when the training data size becomes bigger. When the

training size is 90%, our model achieves the best perfor-

mance against both datasets.

‚ As the training size varies from 50% to 90%, AtNE-Trust

and ASNE achieve better performance compared with

the other methods. Such a result shows the advantage

of the attributed network embedding-based methods. In

addition, our AtNE-Trust outperforms ASNE against both

Epinions and Ciao datasets.

These observations show that the performance of our pro-

posed model is not only superior but also robust with different

training sizes.

D. Impact of Trust Network Embedding and User Attributes
Embedding

To answer research question RQ2 about the significance

of including trust network embedding and user attributes em-

bedding, we conduct experiments on different configurations

of the AtNE-Trust. For convenience, let AtNE-Trusttr and

AtNE-Trustat represent the customized AtNE-Trust model
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TABLE V
AREA UNDER THE ROC CURVE (AUC) SCORE AND F1 SCORE OF DIFFERENT TRUST PREDICTION METHODS WITH DIFFERENT TRAINING SIZES AGAINST

EPINIONS AND CIAO. THE BEST RESULTS ARE INDICATED IN BOLD TYPEFACE.

AUC-Score (Epinions) F1-Score (Epinions) AUC-Score (Ciao) F1-Score (Ciao)

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

TP 0.551 0.562 0.617 0.634 0.658 0.775 0.788 0.794 0.798 0.796 0.521 0.572 0.607 0.615 0.639 0.665 0.684 0.691 0.698 0.702
MF 0.901 0.906 0.911 0.912 0.914 0.912 0.914 0.923 0.926 0.928 0.742 0.803 0.810 0.814 0.815 0.802 0.803 0.809 0.817 0.826
LINE 0.754 0.768 0.769 0.772 0.794 0.846 0.851 0.872 0.893 0.897 0.700 0.709 0.734 0.741 0.765 0.712 0.723 0.754 0.767 0.791
Node2Vec 0.863 0.875 0.882 0.894 0.896 0.902 0.907 0.915 0.918 0.919 0.706 0.711 0.772 0.783 0.798 0.725 0.741 0.790 0.792 0.807
DeepTrust 0.901 0.905 0.907 0.913 0.916 0.924 0.923 0.929 0.931 0.937 0.758 0.800 0.812 0.814 0.813 0.801 0.804 0.817 0.825 0.830
SIDE 0.906 0.910 0.912 0.916 0.919 0.926 0.927 0.932 0.934 0.936 0.800 0.812 0.818 0.822 0.824 0.803 0.810 0.827 0.830 0.831
ASNE 0.910 0.914 0.917 0.919 0.921 0.928 0.930 0.934 0.936 0.937 0.801 0.818 0.819 0.822 0.826 0.805 0.814 0.830 0.832 0.834
AtNE-Trust 0.913 0.911 0.919 0.924 0.927 0.928 0.932 0.936 0.937 0.939 0.814 0.819 0.821 0.823 0.829 0.809 0.823 0.828 0.834 0.836

(a) AUC Score on Epinions (b) F1 Score on Epinions (c) AUC Score on Ciao. (d) F1 Score on Ciao

Fig. 3. AUC and F1 scores of our proposed AtNE-Trust model with different parameters against Epinions (a, b) and Ciao (c, d).

TABLE VI
SIGNIFICANCE OF TRUST NETWORK EMBEDDING AND USER ATTRIBUTES

EMBEDDING

Methods
Epinions Ciao

AUC F1 AUC F1
AtNE-Trusttr 0.908 0.920 0.812 0.819
AtNE-Trustat 0.871 0.883 0.779 0.762
AtNE-Trust 0.927 0.939 0.829 0.836

only with the trust network embedding and the user attributes

embedding, respectively.

As can be seen in Table VI, compared with that of AtNE-

Trust, the AUC score and F1 score of AtNE-Trusttr and

AtNE-Trustat decrease by an average of around 2% and 6%,

respectively. These results show that trust network embedding

contributes more than user attributes embedding for trust

prediction against both Epinions and Ciao datasets. In par-

ticular, as we mentioned previously, although trust prediction

is different from the normal link prediction task, still the trust

network structures are quite important for the trust prediction

task. Such results prove that network structures have their

common but important contribution for not only the normal

link prediction task but also the specific trust prediction task.

E. Parameters Sensitivity

To answer research question RQ3, we explore how some

important parameters in our model affect the final results.

The parameters investigated are as follows: γ controls the

relative contributions of different losses; n is the number

of negative instances for training in Algorithm 2; d is the

number of hidden layers; c is the context window size of

selected neighbors; s is the number of negative samples in

the likelihood optimization procedure in Algorithm 1. The

detailed process for investigating and analyzing the impact

of these key parameters are illustrated as the following

subsections.

1) Parameter γ: We investigate how the parameter γ in

Equation (19) has an impact on the final results. γ controls the

relative contributions of two losses and balance the whole loss

function. For the training set with x “ 90, AUC and F1 are

calculated when γ varies in the set of t0.001, 0.01, 0.1, 1, 10u.

The results of trust prediction show that the γ set to 0.1 gives

the best performance.

2) Parameter n: As mentioned in Algorithm 2, for per

trusted user pair, it is necessary to generate user pairs with un-

observed trust relationships as negative instances for training.

We conduct experiments with a different number of negative

instances against the two datasets. As can be seen in Fig.3,

the performance of our model increases when the number of

negative instances increases from 2 to 5. When the negative

instance number increases to 7, the performance begins to

decrease. These results show that a proper number of the

negative instances are effective for the training process while
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too much negative instances may introduce noises. Therefore,

the optimal negative instances number is 5 in our model. Such

results is also consistent with the previous research [32].

3) Parameter d: We conduct experiments to investigate

the proper number of different hidden layers d. d varies

from 1 to 5 in experiments as shown in Fig.3. In general,

the performance of our model increases with the increase

of deep neural network layers. However, there is no much

further improvement in the performance when the deep neural

network layer d ą 3 and d ą 2 for Epinions and Ciao,

respectively. Therefore, the optimal depth of layers d for

Epinions and Ciao are 3 and 2, respectively.

4) Parameters c and s: In Algorithm 1, there are two key

parameters c and s, we conduct experiments to investigate

how these two parameters affect the final results. c controls

the number of selected users on the left and right context

windows in a generated walk sequence. s is the selected

number of negative samples in the likelihood optimization

process. We vary c in the set t5, 10, 15, 20u to investigate

its impact. Results show that the performance improves at a

small gradient and then becomes stable when c increases from

5 to 20. However, a larger c leads to more calculations. An

acceptable trade-off is c “ 10 against the datasets used in our

paper. Similarly, s is set in the range of t1, 5, 10, 15, 20u. The

performance achieves the best when s is set to 5.

VI. CONCLUSION

In this work, we propose an AtNE-Trust approach for

trust relationship prediction in online social networks. The

attributed trust network embedding is employed to capture

trust network structures and user attributes simultaneously. For

trust network embedding, we consider the dual roles and the

connectivity properties of users. For attributes embedding, we

consider users’ attributes based on their ratings, reviews, and

the rated/reviewed items. The obtained user embedding is fed

into a representation learning module including a set of auto-

encoders and a feature fusion unit to further learn the user

representations. The trust evaluation module uses the learned

embedding to generate the prediction. Representation learning

and trust evaluation are optimized together, where the mutual

refinement between them ensures the effectiveness of the final

trust prediction results. The employment of user attributes

alleviates the suffering of the data sparsity issue. Experiments

on real-world datasets demonstrate the better performance of

the proposed trust prediction model over both classic and state-

of-the-art approaches.
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