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AbStrACt
It is well-known that speckle is a multiplicative noise that degrades image quality and the visual 
evaluation in ultrasound imaging. This necessitates the need for robust despeckling techniques 
for both routine clinical practice and teleconsultation. The goal for this book is to introduce 
the theoretical background (equations), the algorithmic steps, and the MATLAB™ code for 
the following group of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffu-
sion filtering and wavelet filtering. The book proposes a comparative evaluation framework of 
these despeckle filters based on texture analysis, image quality evaluation metrics, and visual 
evaluation by medical experts, in the assessment of cardiovascular ultrasound images recorded 
from the carotid artery. The results of our work presented in this book, suggest that the linear 
local statistics filter dsflsmv, gave the best performance, followed by the nonlinear geometric 
filter dsfgf4d, and the linear homogeneous mask area filter dsflsminsc. These filters improved 
the class separation between the asymptomatic and the symptomatic classes (of ultrasound im-
ages recorded from the carotid artery for the assessment of stroke) based on the statistics of the 
extracted texture features, gave only a marginal improvement in the classification success rate, 
and improved the visual assessment carried out by two medical experts. A despeckle filtering 
analysis and evaluation framework is proposed for selecting the most appropriate filter or filters 
for the images under investigation. These filters can be further developed and evaluated at a 
larger scale and in clinical practice in the automated image and video segmentation, texture 
analysis, and classification not only for medical ultrasound but for other modalities as well, such 
as synthetic aperture radar (SAR) images.
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Speckle is a multiplicative noise that degrades image quality and the visual evaluation in ultra-
sound and SAR imaging. This necessitates the need for robust despeckling techniques in a wide 
spectrum of the aforementioned imaging applications. Despeckle filtering applications has been a 
rapidly emerging research area in recent years. The goal for this book is to introduce the theoretical 
background (equations), the algorithmic steps, and the MATLAB™ code for the following group 
of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffusion filtering, and wavelet 
filtering. The filters covered represent only a snapshot of the vast number of despeckle filters pub-
lished in the literature. Moreover, selected representative applications of image despeckling covering 
a variety of ultrasound image processing tasks are presented. Most importantly, a despeckle filtering 
and evaluation protocol is proposed based on texture analysis, image quality evaluation metrics, 
and visual evaluation by experts. The source code of the algorithms presented in this book has 
been made available on the web, thus enabling researchers to more easily exploit the application of 
despeckle filtering in their problems under investigation.

The book is organized in six chapters. Chapter 1 presents a brief overview of ultrasound 
imaging, speckle noise, modeling, and filtering. In Chapter 2, the theoretical background (equa-
tions), the algorithmic steps, and the MATLAB™ code of selected despeckle filters are presented. 
Chapter 3 covers the material and recording of ultrasound images, and the evaluation methodology  
based on texture and statistical analysis, image quality evaluation metrics, and the experiments car-
ried out for visual evaluation. Chapter 4 presents the applications of despeckle filtering techniques 
in ultrasound images of the carotid and cardiac ultrasound images. Chapter 5 discusses, compares, 
and evaluates the proposed despeckle filtering techniques where strong and weak points for each 
filtering technique are presented. Chapter 6 presents the summary and future directions, where a 
despeckling filtering protocol is also proposed. Finally, at the end of this book, an appendix provides 
details about the despeckle filtering MATLAB™ toolbox which can also be downloaded at http://
www.medinfo.cs.ucy.ac.cy.

This book is intended for all those working in the field of image and video processing tech-
nologies, and more specifically in medical imaging and in ultrasound image and video preprocessing 
and analysis. It provides different levels of material to researchers, biomedical engineers, computing 
engineers, and medical imaging engineers interested in developing imaging systems with better 
quality images, limiting the corruption of speckle noise.
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1

According to an old Chinese proverb, “a picture is worth a thousand words.” In the modern age, this 
concept is still true for computer vision and image processing tasks, where we aim to derive better 
systems and tools that give us different perspectives on the same image, thus allowing us to under-
stand not only its content but also its meaning and significance. Image processing cannot compete 
with the human eye in terms of accuracy, but it can perform better on observational consistency 
and ability to carry out detailed mathematical operations. In the course of time, image-processing 
research has evolved from basic low-level pixel operations to high-level analysis that now includes 
sophisticated techniques for image interpretation and analysis. These new techniques are being 
developed to gain a better understanding of images based on the relationships between its compo-
nents, context, history, and knowledge gained from a range of sources.

The purpose of this chapter is to give a brief overview of ultrasound imaging and present its 
basic principles and limitations. Furthermore, speckle noise is introduced as a major noise factor, 
which limits image resolution and hinters further image processing analysis in ultrasound images. 
We then introduce different despeckle filtering techniques that may be applied as a preprocessing 
step for denoising of ultrasound images. A few examples of despeckle filtering for real ultrasound 
images are given, and some of its limitations are discussed. Finally, at the end of this chapter, we 
present the statistics of speckle noise and its mathematical model.

1.1 A brIeF reVIew oF ULtrASoUND IMAgINg
Medical imaging technology has experienced a dramatic change in the last 30 years. Previously, 
only X-ray radiographs were available, which showed the organs as shadows on a photographic film. 
With the advent of modern computers and digital imaging technology, new imaging modalities 
like computer tomography (CT or computer-assisted tomography), magnetic resonance imaging 
(MRI), positron emission tomography (PET), and ultrasound, which deliver cross-sectional im-
ages of a patient’s anatomy and physiology, have been developed. Among the imaging techniques 
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employed are X-ray angiography, X-ray, CT, ultrasound imaging, MRI, PET, and single photon 
emission computer tomography. MRI and CT have advantages over ultrasound imaging in the 
sense that higher resolution and clearer images are produced.

Imaging techniques have long been used for assessing and treating cardiac [67] and carotid 
disease [8, 24, 75]. Today’s available imaging modalities produce a wide range of image data types 
for disease assessment, which include two-dimensional (2D) projection images, reconstructed three- 
dimensional (3D) images, 2D slice images, true 3D images, time sequences of 2D and 3D images, 
and sequences of 2D interior view (endoluminal) images. The use of ultrasound in the diagnosis and 
the assessment of imaging organs and soft tissue structures, as well as human blood, is well estab-
lished [26] (see Figure 1.1, which illustrates two imaging scanners). Because of its noninvasive na-
ture and continuing improvements in imaging quality, ultrasound imaging is progressively achieving 
an important role in the assessment and the characterization of cardiac imaging (see Figure 1.2), 
and the assessment of carotid artery disease [40, 53, 59, 60, 71, 75] (see Figure 1.3). The main dis-
advantage of ultrasound is that it does not work well in the presence of bone or gas, and the opera-
tor needs a high level of skill in both image acquisition and interpretation to carry out the clinical 
evaluation. On the other hand, standard angiography cannot give reliable information on the cross-
sectional structure of the arteries [53]. This makes it difficult to accurately assess the build-up of 
plaque along the artery walls. B-mode ultrasound imaging or intravascular ultrasound (IVUS) has 
emerged, and it is widely used for visualizing carotid plaques and assessing plaque characteristics 
that are related to the onset of neurological symptoms. IVUS needs the insertion of a catheter into 
a vessel of interest that is equipped with an ultrasonic transducer enabling the reproduction of real-
time cross-sectional images. However, reproducible measurements of the severity of the plaque in 

FIgUre 1.1: Ultrasound imaging scanners: (a) ATL™ HDI-5000 and (b) ATL™ Somnosite 180 plus 
portable ultrasound system [84].
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2D and 3D ultrasound are made difficult because of the complex shapes, the asymmetry of carotid 
plaques, and the speckle noise that is present in ultrasound images [26]. Furthermore, IVUS is an 
invasive method, as a catheter is inserted in the artery under investigation and possesses, therefore, 
a certain risk for the patient.

The use of ultrasound in medicine began during the Second World War in various centers 
around the world. The work of Dr. Karl Theodore Dussik in Austria in 1942 [85] on ultrasound 
transmission investigating the brain provides the first published work on medical ultrasonics. Fur-
thermore, although other researchers in the United States, Japan, and Europe have also been cited 
as pioneers, the work of Prof. Ian Donald and his colleagues [86] in Glasgow, in the mid-1950s, did 
much to facilitate the development of practical ultrasound technology and applications. This led to 
the wider use of ultrasound in medical practice in subsequent decades.

From the mid-1960s onward, the advent of commercially available systems allowed the wider 
dissemination of the use of ultrasound. Rapid technological advances in electronics and piezoelectric 
materials provided further improvements from bistable to grayscale images and from still images to 
real-time moving images. The technical advances at this time (mid-1960s) led to the rapid growth 
in the applications of ultrasound. The development of Doppler ultrasound [87] has been progress-
ing alongside the imaging technology, but the fusing of the two technologies in duplex scanning and 
the subsequent development of color Doppler imaging provided even more scope for investigating 

FIgUre 1.2: Ultrasound B-mode cardiac image, where the left ventricle (LV), the right ventricle 
(RV), the left atrium (LA), and the right atrium (RA) are indicated.
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circulation and blood supply to organs, tumors, etc. The advent of the microchip in the 1970s and 
the subsequent exponential increase in processing power facilitated the development of faster and 
more powerful systems incorporating digital beam forming, signal enhancement, and new ways of 
interpreting and displaying data, such as power Doppler [87] and 3D imaging [46]. Ultrasound has 
long been recognized as a powerful tool for use in the diagnosis and the evaluation of many clinical 
entities. Over the past decade, as higher quality and less expensive scanners are widely available, 
ultrasound has proliferated throughout various specialties.

1.1.1 basic Principles of Ultrasound Imaging
Ultrasound is a sound wave with a frequency that exceeds 20 kHz. It transports energy and propa-
gates through several means as a pulsating pressure wave. It is described by a number of wave 
parameters such as pressure density, propagation direction, and particle displacement. If the par-
ticle displacement is parallel to the propagation direction, then the wave is called a longitudinal or 
compression wave. If the particle displacement is perpendicular to the propagation direction, it is 
a shear or transverse wave. The interaction of ultrasound waves with tissue is subject to the laws of 
geometrical optics. It includes reflection, refraction, scattering, diffraction, interference, and absorp-
tion. Except from interference, all other interactions reduce the intensity of the ultrasound beam.

The main characteristic of an ultrasound wave is its wavelength l, which is a measure of the 
distance between two adjacent maximum or minimum values of a sine curve and its frequency f, 
which is the number of waves per unit of time. The product of these two measures gives the veloc-
ity of ultrasound wave propagation n described by the equation n = f l. Ultrasound techniques are 
mainly based on measuring the echoes transmitted back from a medium when sending an ultra-
sound wave to it. In the echo impulse ultrasound technique, the ultrasound wave interacts with 
tissue and blood, and some of the transmitted energy returns to the transducer to be detected by 

FIgUre 1.3: (a) The carotid system illustrating the common carotid artery, its bifurcation, and the in-
ternal and external carotid arteries [110]. (b) Longitudinal color flow duplex image of the carotid artery 
combined with the Doppler ultrasound image. The highlighted image with white contour on top shows 
the carotid bifurcation. The 2D signal shows the velocity variation that is related to the cardiac cycle. A 
blood flow velocity spectrum is displayed with markings 1 and 2, where marking 1 represents the peak 
systolic velocity, and marking 2 represents the end diastolic velocity. This is the duration of one cardiac 
cycle. Different colors (shades) represent blood flow direction. For the current picture, red represents the 
blood moving to the brain through the carotid artery, whereas blue represents the blood returning back 
from the brain. (c) Ultrasound B-mode longitudinal image of the carotid bifurcation with a manually 
outlined plaque, which is usually confirmed with the blood flow image. (For interpretation of the refer-
ence to color in this figure legend, the reader is referred to the Web version of this book.)
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the instrument. If we know the velocity of propagation in the tissue under investigation, we can 
determine the distance from the transducer at which the interaction occurs [88]. The characteristics 
of the return signal (amplitudes, phases, etc.) provide information on the nature of the interaction, 
and, hence, they give some indication of the type of the medium in which they occurred. Mainly 
two principles are used in medical ultrasound diagnostics—the echo impulse technique and the 
Doppler technique [88].

The second principle used in ultrasound diagnostics is the Doppler principle, named after the 
physicist Christian Doppler (1803–1853) [89]. This technique is based on the principle that the re-
ceived frequency of sound echoes reflected by a moving target is related to the velocity of the target. 
The frequency shift (the Doppler frequency shift) D  f of the echo signal is proportional to the flow 
velocity n (in centimeters per second) and the ultrasound transmission frequency f (in megahertz). 
The Doppler shift is described by the formula D  f = 2 f0(n cos q)/usp, where f0 is the transmitted fre-
quency of the signal, q is the angle between the direction of movement of the moving object and the 
ultrasound beam, and usp is the speed of sound through tissue that is approximately 1540 m/s.

In Doppler ultrasound, waves are produced by a vibrating crystal using the piezoelectric 
effect, whereas the returned echoes are displayed as a 2D signal, as shown in Figure 1.3b. When 
blood flow in a vessel is examined, sound reflections caused by the blood’s corpuscular elements 
play a major role. Based on the fact that blood flow velocity varies in different areas of a vessel, the 
Doppler signal contains a broad frequency spectrum. In a normal internal carotid artery (ICA), 
the spectrum varies from 0.5 to 3.5 kHz, and n is less than 120 cm/s when an ultrasound beam of 
4 MHz is used.

1.1.2 Ultrasound Modes
The two main scanning modes are A- and B-modes. Other modes used are M-mode, duplex ul-
trasound, color-coded ultrasound, and power Doppler ultrasound, which will be briefly introduced 
below.

A-mode refers to amplitude mode scanning, which is mainly of historical interest. In this 
mode, the strength of the detected echo signal is measured and displayed as a continuous signal in 
one direction. A-mode is a line, with strong reflections being represented as an increase in the signal 
amplitude. This scanning technique has the limitation that the recorded signal is 1D with limited 
anatomical information. A-mode is no longer used, especially for the assessment of cardiovascular 
disease. Its use is restricted to very special uses such as in ophthalmology to perform very accurate 
measurements of distance.

B-mode refers to the brightness mode. In B-mode, echoes are displayed as a 2D grayscale 
image. The amplitude of the returning echoes is represented as dots (pixels) of an image with differ-
ent gray values, as illustrated in Figure 1.3b and 1.3c. The image is constructed by these pixels line 
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by line. Advances in B-mode ultrasound have resulted in improved anatomic definition, which has 
enabled plaque characterization [39, 88].

M-mode is used in cardiology, and it is actually an A-scan plotted against time. The result is 
the display of consecutive lines plotted against time. Using this mode, detailed information may be 
obtained about various cardiac dimensions and also the accurate timing of vascular motion.

Moving blood (see Figure 1.3b) generates a Doppler frequency shift in the reflected sound 
from insonated red blood cells, and this frequency shift can be used to calculate the velocity of the 
moving blood using the Doppler equation [89]. The invention of gated Doppler ultrasound in the 
late 1950s allowed velocity sampling at different depths and positions, and its subsequent combi-
nation with B-mode real-time ultrasonic imaging led to the development of duplex ultrasound. 
Stenosis in any vessel is characterized by an increase in systolic and diastolic velocities. Several types 
of Doppler systems are used in medical diagnosis: continuous wave (CW) Doppler, pulsed wave 
(PW) Doppler, duplex ultrasound, and color flow duplex (see also Figure 1.3b). In CW Doppler, 
the machine uses two piezoelectric elements serving as transmitters and receivers. They continu-
ously transmit ultrasound beams. Because of the continuous way that ultrasound is being transmit-
ted, no specific information about depth can be obtained. PW Doppler is used to detect blood flow 
at a specific depth. Sequences of pulses are transmitted to the human body, which are gated for a 
short period of time to receive the echoes. By selecting the time interval between the transmitted 
and received pulses, it is possible to examine vessels at a specific depth.

In color-coded ultrasound, every pixel is tested for Doppler shift. Using this technique, the 
movement of the red blood cells is finally depicted through color. The final image results by super-
imposing the color-coded image on the B-mode image.

Power Doppler is the depiction of flow based on the integrated power of the Doppler spec-
trum rather than on the mean Doppler frequency. This modality results in an angle, which is in-
dependent of the resulting enhanced sensitivity in flow detection as compared to the color-coded 
Doppler, and, therefore, the detection of low flow is better viewed.

1.1.3 Image Quality and resolution
The quality of the produced ultrasound image depends on image resolution, axial and lateral. Reso-
lution is defined as the smallest distance between two points at which they can be represented as 
distinct. Axial resolution refers to the ability of representing two points that lie along the direc-
tion of ultrasound propagation. It depends on the wavelength of the beam. In B-mode, ultrasound 
pulses consist of one to two sinusoidal wavelengths, and the axial resolution is dependent on the 
wavelength of the waveforms and lies in the range of the ultrasound wavelength l (l = 0.21 mm). 
Resolution depends on the frequency of the beam waveforms. Since this value is reciprocal to the 
ultrasound frequency (l = n / f ), the axial resolution improves with increasing frequency.
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Lateral resolution refers to the ability to represent two points that lie at a right angle to the 
direction of ultrasound propagation. This is dependent on the width of the ultrasound wave (beam). 
To be able to resolve points that lie close together, the width of the ultrasound beam has to be kept 
reasonably small, and the diameter of the transducer is kept as large as possible (i.e., small phase- 
array transducers have worse lateral resolution than large linear or curved-array transducers). 

To achieve the best results in vascular ultrasound imaging, the transmission frequencies are in 
the range of 1–10 MHz. The selected frequency depends on the application domain. For arteries that 
are located close to the human skin, frequencies greater than 7.5 MHz are used, whereas for arteries 
that are located deeper in the human body, frequencies from 3 to 5 MHz are used. For transcranial 
applications, frequencies less than 2 MHz are used. However, when selecting a frequency, the user has 
to keep in mind that the axial resolution is proportional to the ultrasound wavelength, whereas the 
intensity of the signal depends on the attenuation of the signal transmitted through the body, with 
the higher the frequency, the higher the attenuation. Therefore, there is a tradeoff between higher 
resolution ultrasound images at smaller depths and lower resolution images at higher depths.

1.1.4 Limitations of Ultrasound Imaging
Variability in B-mode images (even when using the same ultrasonic equipment with fixed settings) 
does exist [75]. Sources of variability are outlined below.

Geometrical and diffraction effects, where spatial compound imaging may be employed to 
correct the image [39, 89].
Interpatient variation due to depth dependence and inhomogeneous intervening tissue, 
where normalization techniques may be applied to standardize the image [54, 55, 59, 60].
Speckle noise affecting the quality of ultrasound B-mode imaging. It is described as an 
ultrasound textural pattern that varies depending on the type of the biological tissue. The 
presence of speckle, which is difficult to suppress [5–28], may obscure small structures, thus 
degrading the spatial resolution of an ultrasonic image [59]. Despeckle filtering may be ap-
plied to improve the quality of the image.
Low contrast of the intima media complex or plaque borders [24, 53] and a small thin size 
[54, 60], making the image interpretation a difficult task.
Falsely low echogenicity due to shadowing effects, hindering the observation in B-mode 
images, of plaques or the intima media complex or other structures [53].
Low signal-to-noise ratio (SNR) in anechoic components and difficulty in outlining the 
carotid plaque, or other tissue under investigation, where the difficulty may be overcome by 
employing the use of color-coded images [54, 55].
Intraobserver variability where the ultrasound images inspected by the same expert at dif-
ferent occasions might be differently evaluated [59, 60].

1.

2.

3.

4.

5.

6.

7.
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Interobserver variability where the ultrasound images inspected by two or more experts 
might be differently evaluated [59].

It is noted that entries 7 and 8 are applicable in any medical imaging modality. To overcome 
intraobserver and interobserver variability, it is generally recommended that multiple observers 
should perform the image evaluation.

1.2 SPeCKLe NoISe
In this section, we introduce speckle noise as a major factor limiting visual perception and processing 
of ultrasound [and synthetic aperture radar (SAR) images] [2–4, 9]. A mathematical speckle model 
for ultrasound images is introduced, where the statistics of speckle noise are presented, taking into 
consideration the log compression of the ultrasound image, which is performed to match the image 
into the display device (see Section 1.2.2). Based on this speckle model, a number of despeckling 
techniques are derived and explained in detail in Chapter 2. Specifically, the following categories of 
despeckle filtering techniques are presented: linear filtering (local statistics filtering, homogeneity 
filtering), nonlinear filtering (median filtering, linear scaling filtering, geometric filtering, logarith-
mic filtering, homomorphic filtering), anisotropic diffusion filtering (anisotropic diffusion, speckle-
reducing anisotropic diffusion, coherent nonlinear anisotropic diffusion), and wavelet filtering.

Noise and artifacts can cause signal and image degradation for many medical image modali-
ties. Different image modalities exhibit distinct types of degradation. Images formed with coherent 
energy, such as ultrasound, suffer from speckle noise. Image degradation can have a significant im-
pact on image quality and, thus, affect human interpretation and the accuracy of computer-assisted 
methods. Poor image quality often makes feature extraction, analysis, recognition, and quantitative 
measurements problematic and unreliable. Therefore, image despeckling is a very important task, 
which motivated a significant number of studies in medical imaging [14, 22–24, 26, 28, 31].

The use of ultrasound in the diagnosis and the assessment of arterial disease is well established 
because of its noninvasive nature, its low cost, and the continuing improvements in image quality 
[1]. Speckle is a form of locally correlated multiplicative noise that corrupts medical ultrasound 
imaging making visual observation difficult [2, 3]. The presence of speckle noise in ultrasound im-
ages has been documented since the early 1970s, where researchers such as Burckhardt [2], Wagner 
et al. [3], and Goodman [4] described the fundamentals and the statistical properties of the speckle 
noise. Speckle is not truly noise in the typical engineering sense since its texture often carries useful 
information about the image being viewed [2–4].

Speckle noise is the primary factor that limits the contrast resolution in diagnostic ultra-
sound imaging, thereby limiting the detectability of small low-contrast lesions and making the 
ultrasound images generally difficult for the nonspecialist to interpret [2, 3, 5, 6]. Because of the 

8.
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speckle presence, ultrasound experts with sufficient experience may not often draw useful conclu-
sions from the images [6]. Speckle also limits the effective application (e.g., edge detection) of auto-
mated computer-aided analysis (e.g., volume rendering, 3D display) algorithms. It is caused by the 
interference between ultrasound waves reflected from microscopic scattering through the tissue.

Therefore, speckle is most often considered a dominant source of noise in ultrasound imaging 
and should be filtered out [2, 5, 6] without affecting important features of the image. In this book, 
we carry out a comparative evaluation of despeckle filtering techniques based on texture analysis, 
image quality evaluation metrics, as well as visual assessment by experts on 440 ultrasound images 
of the carotid artery bifurcation. Results of this study were also published in Ref. [7]. Moreover, a 
comparative evaluation framework for the selection of the most appropriate despeckle filter for the 
problem under investigation is proposed.

1.2.1 Physical Properties and the Pattern of Speckle Noise
The speckle pattern, which is visible as the typical light and dark spots the image is composed of, 
results from destructive interference of ultrasound waves scattered from different sites. The nature 
of speckle has been a major subject of investigation [2–4, 12, 31]. When a fixed rigid object is 
scanned twice under exactly the same conditions, one obtains identical speckle patterns. Although 
of random appearance, speckle is not random in the same sense as electrical noise. However, if the 
same object is scanned under slightly different conditions, say, with a different transducer aperture, 
pulse length, or transducer angulation, the speckle patterns change.

The most popular model adopted in the literature to explain the effects that occur when a 
tissue is insonated is illustrated in Figure 1.4, where a tissue may be modeled as a sound absorbing 
medium containing scatterers, which scatter the sound waves [56, 83]. These scatterers arise from 
inhomogeneity and structures approximately equal to or smaller in size than the wavelength of the 
ultrasound, such as tissue parenchyma, where there are changes in acoustic impedance over a micro-
scopic level within the tissue. Tissue particles that are relatively small in relation to the wavelength 
(i.e., blood cells), and particles with differing impedance that lie very close to one another, cause 
scattering or speckling. Absorption of the ultrasound tissue is an additional factor to scattering and 
refraction, responsible for pulse energy loss. The process of energy loss involving absorption, reflec-
tion, and scattering is referred to as attenuation, which increases with depth and frequency. Because 
a higher frequency of ultrasound results in increased absorption, the consequence is a decrease in 
the depth of visualization.

Figure 1.5 illustrates the entire scattering procedure [56]. Consider a transducer insonating 
a homogeneous medium containing four point-like scatterers, as depicted in Figure 1.5a. These 
scatterers yield spherical waves that will arrive at the transducer at slightly different times after 
the transmission of the ultrasound pulse. Usually, the pulse envelope is approximately Gaussian, 
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as shown in Figure 1.5b. If the pulse has a Gaussian shape, then so is its spectrum. One chooses a 
Gaussian shape because for a medium with a linear attenuation coefficient, this Gaussian shape of 
the spectrum is maintained while the pulse travels through the medium (although a shift of this 
Gaussian spectrum to lower frequencies occurs while the pulse travels through the medium because 
the attenuation increases with the frequency).

Upon reception of the reflected signal, the transducer produces an electrical signal [radio 
frequency (RF)] that is the algebraic sum of the instantaneous sound pressures originating from the 
backscattered waves (four waves in Figure 1.5a). The depth differences of the scatterers are smaller 
than the axial size of the resolution volume of the transducer (i.e., the pulse length). This is, in fact, 

FIgUre 1.4: The usual tissue model in ultrasound imaging (modified from Ref. [56]).

FIgUre 1.5: (a) The scattering in the sound beam. (b) One pulse in the time and frequency domains 
(from Ref. [56]).
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the basic cause for the generation of tissue texture. The formed pattern is the so-called speckle 
pattern. Note, in particular, that the tissue texture resulting from this speckle pattern is, in general, 
not a true image of the histological structure of the tissue, but rather an interference pattern that 
is mainly determined by the beam characteristics. Speckle is described as one of the more complex 
image noise models [3, 4, 31, 56]; it is signal dependent, non-Gaussian, and spatially dependent.

In homogeneous tissue, the distribution of the scatterers throughout the 3D space is assumed 
to be isotropic. As displayed in Figure 1.4, one distinguishes random (or diffuse) scatterers and 
structural (or specular) scatterers. The diffuse scatterers are assumed to be uniformly distributed 
over space. Diffuse scattering arises when there are a number of scatterers with a random phase 
within the resolution cell of the ultrasound beam. This random nature of the location of the scatter-
ers causes the statistical nature of the echo signals and, hence, the resulting speckle pattern. Conse-
quently, a statistical approach to its analysis seems obvious.

Other properties of the tissue that affect the ultrasound as it propagates through it are the 
propagation speed, the attenuation, and the backscattering. The absorption of ultrasound is caused 
by relaxation phenomena of biological macromolecules [58] that transfer mechanical energy into 
heat. Another source of attenuation is the scattering, i.e., omnidirectional reflections by small inho-
mogeneity in the tissue. The overall attenuation is, therefore, the result of absorption and scattering 
(as illustrated in Figure 1.4), which are both frequency dependent in such a way that the attenuation 
increases with frequency.

In analyzing speckle, an important point to bear in mind is to make a clear distinction be-
tween the speckle as it appears in the image and the speckle in the received RF signal. The block 
diagram in Figure 1.6 explains the entire track of the RF signal from the transducer to the screen in-
side the ultrasound imaging system. As set forth, the signal is subject to several transformations that 
severely affect its statistics. The most important of these is the log compression of the signal, which 
is employed to reduce the dynamic range of the input signal to match the lower dynamic range of 
the display device. The input signal could have a dynamic range of the order of 50–70 dB, whereas 
a typical display could have a dynamic range of the order of 20–30 dB. Such a relation is normally 
affected through an amplifier, which has a reducing amplification for a larger input signal.

In addition, the expert has the possibility to manually adjust several machine settings. In Fig-
ure 1.6, these are indicated as the slide contact overall gain and the time gain compensation (TGC). 
These machine settings control the amplification of the signal—the overall gain controls the overall 
amplification, and the TGC is a time-dependent amplification—and serve as tools for the expert 
to adjust the image for an optimal visual diagnosis. The TGC is adjusted by several (usually seven) 
slide contacts, each of which controls the gain in part of the image. For instance, if the slide contacts 
are placed in a vertical row, the top slide contact controls the gain in the top of the image, the bot-
tom slide contact controls the gain in the bottom of the image, etc. This position-specific gain in 
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the image is realized by making the amplification of the signal dependent on the exact time that the 
sound reflection is received. Since the position where a pixel is displayed on the screen is dependent 
on this time instant, the time-dependent amplification of the received signal converts to a position-
dependent change in the gray value of the pixels on the screen.

1.2.2 Speckle Noise Modeling
To be able to derive an efficient despeckle filter, a speckle noise model is needed. The speckle noise 
model for both ultrasound and SAR images may be approximated as multiplicative [31]. The signal 
at the output of the receiver demodulation module of the ultrasound imaging system [see Figure 
1.6a(ii)] may be defined as

 yi, j = xi, jni, j + ai, j , (1.1)

where yi, j represents the noisy pixel in the middle of the moving window, xi, j represents the noise-
free pixel, ni, j and ai, j represent the multiplicative and additive noise, respectively, and i, j are the 
indices of the spatial locations that belong in the 2D space of real numbers, i, j Î R2

. 

Despeckling is based on estimating the true intensity xi, j as a function of the intensity of the 
pixel yi, j and some local statistics calculated on a neighborhood of this pixel.

Wagner et al. [3] showed that the histogram of amplitudes within the resolution cells of the 
envelope-detected RF signal backscattered from a uniform area with a sufficiently high scatterer 

FIgUre 1.6: The processing steps of the RF signal inside the ultrasound scanner (modified from Ref. 
[57]).
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density has a Rayleigh distribution with mean m proportional to the standard deviation s (with m/s 
= 1.91). This implies that speckle could be modeled as multiplicative noise.

However, the signal processing stages inside the scanner modify the statistics of the original 
signal, i.e., the logarithmic compression [see Figure 1.6a(iii)]. The logarithmic compression is used 
to adjust the large echo dynamic range (50–70 dB) to the number of bits (usually 8) of the digiti-
zation module in the scan converter (see Figure 1.6b). More specifically, logarithmic compression 
affects the high-intensity tail of the Rayleigh and Rician probability density functions more than 
the low-intensity part. As a result, the speckle noise becomes very close to the white Gaussian 
noise corresponding to the uncompressed Rayleigh signal [31]. In particular, it should be noted 
that speckle is no longer multiplicative in the sense that, on homogeneous regions, where xi,  j can 
be assumed constant, the mean is proportional to the variance (m » s 2) rather than the standard 
deviation (m » s) [24, 26, 28, 31]. In this respect, the speckle index C will be for the log-compressed 
ultrasound images, i.e., C = s 2/m.

Referring back to Eq. (1.1), since the effect of the additive noise is considerably smaller com-
pared with that of the multiplicative noise, it may be written as

 yi, j » xi, j ni, j . (1.2)

Thus, the logarithmic compression transforms the model in Eq. (1.2) into the classical signal in the 
additive noise form as

 log( yi, j) = log(xi, j) + log(ni, j) (1.3)

and

 
gi, j = fi, j  + nli,  j . (1.4)

For the rest of the book, the term log(yi, j), which is the observed pixel on the ultrasound image dis-
play after logarithmic compression, is denoted as gi, j, and the terms log(xi, j) and log(ni, j), which are 
the noise-free pixel and the noise component after logarithmic compression, are denoted as fi, j and 
nli, j , respectively [see Eq. (1.4)].

1.2.3  early Attempts of Despeckle Filtering in Different Modalities and  
Ultrasound Imaging

The widespread of ultrasound imaging equipment, including mobile and portable telemedicine 
ultrasound scanning instruments and computer-aided systems, necessitates the need for better im-
age processing techniques to offer a clearer image to the medical practitioner. This makes the use 
of efficient despeckle filtering a very important task. Early attempts to suppress speckle noise were 



INtroDUCtIoN to ULtrASoUND IMAgINg AND SPeCKLe NoISe 15

implemented by averaging of uncorrelated images of the same tissue recorded under different spa-
tial positions [5, 9, 10]. Although these methods are effective for speckle reduction, they require 
multiple images of the same object to be obtained [11]. Speckle-reducing filters originated from 
the SAR community [9]. These filters then have later been applied to ultrasound imaging since the 
early 1980s [12]. Filters that are widely used in both SAR and ultrasound imaging were originally 
proposed by Lee [9, 14, 15], Kuan et al. [11], Frost et al. [13], and Kuan and Sawchuk [16]. 

Some researchers have tried in the past to despeckle SAR images by averaging of uncorrelated 
images obtained from different spatial positions [46]. These temporal averaging and multiframe 
methods aimed to increase the SNR by generating multiple uncorrelated images that are incoher-
ently summed to reduce speckle [82]. Despite being simple and fast, these approaches suffer from 
two limitations. First, to produce uncorrelated ultrasound images, the transducer has to be trans-
lated at least by about half its element width for each of the generated frames [2]. Second, temporal 
averaging based on transducer movement causes the loss of small details such as small vessels and 
texture patterns because of blurring. For the above reasons, this procedure has been proven to be not 
suitable for despeckle filtering. It is most suitable for additive noise reduction [46, 82]. Another dis-
advantage of this method is that multiple images from the same object are required [10, 15]. Other 
researchers applied their techniques on the ultrasound images of the kidney [26], echocardiograms 
[27], heart [24], abdomen [24], pig heart [28], and liver [63], on SAR images [17, 34, 77, 78], and 
on real-world [16, 28] and artificial images [10, 66]. They used statistical measures, like the mean, 
the variance, the median, the speckle index (C), the mean-square error (MSE), the image contrast, 
and the visual perception evaluation made by experts, to evaluate their techniques. They compared 
their despeckling techniques with the Lee filter [9], homomorphic filtering [17, 18], the median 
filter [33], and diffusion filtering [5, 20–23]. Despeckle filtering can also be used as a preprocessing 
step for image segmentation [7, 54, 59, 60] or image registration [46] techniques. By suppressing 
the speckle, the performance of these techniques can be improved.

Many authors have shown a reduction of lesion detectability of approximately a factor of 8 
due to the presence of speckle noise in the image [2, 4, 13]. This radical reduction in contrast reso-
lution is responsible for the poorer effective resolution of ultrasound compared to X-ray and MRI 
[46]. Despeckle filtering is, therefore, a critical preprocessing step in medical ultrasound images 
provided that the features of interest for the diagnosis are not lost.

1.3 AN oVerVIew oF DeSPeCKLe FILterINg teChNIQUeS
Table 1.1 summarizes the despeckle filtering techniques for ultrasound imaging that are presented 
in this book, grouped under the following categories: linear filtering (local statistics filtering, homo-
geneity filtering), nonlinear filtering (median filtering, linear scaling filtering, geometric filtering, 
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tAbLe 1.1: An overview of despeckle filtering techniques

SPeCKLe 
reDUCtIoN 
teChNIQUe

MethoD INVeStIgAtor FILter NAMe

Linear  
filtering 

Moving window utilizing local 
statistics

1. Mean (m) and variance (s 2) [9–14] and [13–16] dsflsmv

2.  Mean, variance, third and  
fourth moments (higher  
statistical moments) and entropy

[9–14] dsflsmvsk1d  
dsflsmvsk2d

3. Homogeneous mask area filters [32] dsflsminsc

4. Wiener filtering [2–15] dsfwiener

Nonlinear  
filtering

Median filtering [33] dsfmedian

Linear scaling of the gray-level 
values

[46] dsfls
dsfca 
dsflecasort

Based on the most homogeneous 
neighborhood around each pixel

[8] dsfhomog

Nonlinear iterative algorithm 
(geometric filtering)

[10] dsfgf4d

The image is logarithmically 
transformed, the FFT is 
computed and denoised, and 
the inverse FFT is computed 
and finally exponentially 
transformed back

[2, 17, 18] dsfhomo

Diffusion  
filtering

Nonlinear filtering technique 
for simultaneously performing 
contrast enhancement and noise 
reduction

[2, 5, 12, 13, 19–23] dsfad

Exponential damp kernel 
filters utilizing diffusion

[5]
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logarithmic filtering, homomorphic filtering), anisotropic diffusion filtering (anisotropic diffusion, 
speckle-reducing anisotropic diffusion, coherent nonlinear anisotropic diffusion), and wavelet filter-
ing. Furthermore, in Table 1.1, the methodology used, the main investigators, and the correspond-
ing filter names are given. These filters are briefly introduced in this chapter and presented in detail 
in Chapter 2.

Some of the linear filters are Lee [9, 14, 15], Frost [13], and Kuan [11, 16]. The Lee and 
Frost filters have the same structure, whereas the Kuan filter is a generalization of the Lee filter. 
Both filters form the output image by computing the central pixel intensity inside a filter-moving 
window, which is calculated from the average intensity values of the pixels and a coefficient of varia-
tion inside the moving window. Kuan considered a multiplicative speckle model and designed a 
linear filter based on the minimum-mean-square error criterion that has optimal performance when 
the histogram of the image intensity is Gaussian distributed. The Lee filter [9] is a particular case 
of the Kuan filter based on a linear approximation made for the multiplicative noise model. The 
Frost filter [13] makes a balance between the averaging and the all-pass filters. It was designed as an 
adaptive Wiener filter that assumed an autoregressive exponential model for the image.

In the nonlinear filtering group, the gray-level values are linearly scaled to despeckle the im-
age [61]. Some of the nonlinear filters are based on the most homogeneous neighborhood around 
each image pixel [8]. Geometric filters [10] are based on nonlinear iterative algorithms, which in-
crement or decrement the pixel values in a neighborhood based on their relative values. The method 
of homomorphic filtering [17, 18] is similar to the logarithmic point operations used in histogram 
enhancement, where dominant bright pixels are de-emphasized. In the homomorphic filtering, the 
fast Fourier transform (FFT) of the image is calculated and then denoised, and then the inverse 
FFT is calculated.

tAbLe 1.1: (continued )

SPeCKLe 
reDUCtIoN 
teChNIQUe

MethoD INVeStIgAtor FILter NAMe

Speckle-reducing anisotropic 
diffusion based on the 
coefficient of variation

[24] dsfsrad

Coherence enhancing diffusion [24] dsfnldif

Wavelet  
filtering

Only the useful wavelet 
coefficients are utilized

[15, 25–29, 35] dsfwaveltc
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The diffusion filtering category includes filters based on anisotropic diffusion [2, 19, 20–23], 
coherence anisotropic diffusion [24], and speckle-reducing anisotropic diffusion [5]. These filters 
have been recently presented in the literature and are nonlinear filtering techniques. They simulta-
neously perform contrast enhancement and noise reduction by utilizing the coefficient of variation 
[5]. Furthermore, in the wavelet category, filters for suppressing the speckle noise were documented. 
These filters are making use of a realistic distribution of the wavelet coefficients [2, 15, 25–30], 
where only the useful wavelet coefficients are utilized. Different wavelet shrinkage approaches were 
extensively investigated based on Donoho’s work [29].

Figure 1.7 illustrates original longitudinal asymptomatic (see Figure 1.7a) and symptomatic 
images (see Figure 1.7e) and their despeckled images (see Figure 1.7b and 1.7f ). Asymptomatic 
images were recorded from patients at risk of atherosclerosis in the absence of clinical symptoms, 
whereas symptomatic images were recorded from patients at risk of atherosclerosis, which have 
already developed clinical symptoms, such as a stroke episode. Figure 1.7c–1.7h shows an enlarged 
window from the original and despeckled images (shown in a rectangle in Figure 1.7b and 1.7f ).

1.4 LIMItAtIoNS oF DeSPeCKLe FILterINg teChNIQUeS
Despeckling is always a tradeoff between noise suppression and loss of information, which is some-
thing that experts are very concerned about. It is, therefore, desirable to keep as much important 
information as possible. The majority of speckle reduction techniques have certain limitations that 
can be briefly summarized as follows.

They are sensitive to the size and the shape of the window. The use of different window 
sizes greatly affects the quality of the processed images. If the window is too large, over-
smoothing will occur, subtle details of the image will be lost in the filtering process, and 
edges will be blurred. On the other hand, a small window will decrease the smoothing 
capability of the filter and will not reduce the speckle noise, thus making the filter not ef-
fective. In homogenous areas, the larger the window size, the more efficient the filter in 
reducing the speckle noise. In heterogeneous areas, the smaller the window size, the more 
it is possible to keep subtle image details unchanged. Our experiments showed that a [7 ´ 7] 
window size is a fairly good choice.
Some of the despeckle methods based on window approaches require thresholds to be 

1.

2.

FIgUre 1.7: Results of despeckle filtering based on linear filtering (first-order local statistics, dsflsmv). 
Asymptomatic case: (a) original, (b) despeckled, (c) enlarged region marked in (b) of the original, and (d) 
enlarged region marked in (b) of the despeckled image. Symptomatic case: (e) original, (f ) despeckled, 
(g) enlarged region marked in (f ) of the original, (h) enlarged region marked in (f ) of the despeckled 
image. Regions were enlarged by a factor of 3.
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used in the filtering process, which have to be empirically estimated. There are a number 
of thresholds introduced in the literature, which include gradient thresholding [5], soft or 
hard thresholds [29], nonlinear thresholds [28], and wavelet thresholds [25, 28, 37]. The 
inappropriate choice of a threshold may lead to average filtering and noisy boundaries, thus 
leaving the sharp features unfiltered [7, 10, 14].
Most of the existing despeckle filters do not enhance the edges, but they only inhibit 
smoothing near the edges. When an edge is contained in the filtering window, the coef-
ficient of variation will be high, and smoothing will be inhibited. Therefore, speckle in the 
neighborhood of an edge will remain after filtering. They are not directional in the sense 
that in the presence of an edge, all smoothing is precluded. Instead of inhibiting smooth-
ing in directions perpendicular to the edge, smoothing in directions parallel to the edge is 
allowed.
Different evaluation criteria for evaluating the performance of despeckle filtering are used 
by different studies. Although most of the studies use quantitative criteria like the MSE 
and the speckle index (C), there are additional quantitative criteria like texture analysis and 
classification, image quality evaluation metrics, and visual assessment by experts that could 
be investigated.

1.5 gUIDe to booK CoNteNtS
In the following chapter, the theoretical background (equations), the algorithmic steps, and the 
MATLAB™ code of despeckle filters given in Table 1.1 are presented. Chapter 3 covers the evalu-
ation methodology, the material and recording of ultrasound images, the texture and statistical 
analysis, the statistical k-nearest-neighbor classifier, the image quality evaluation metrics, and the 
experiments carried out for visual evaluation. Chapter 4 presents the applications of despeckle filter-
ing techniques in ultrasound images of the carotid artery and in cardiac ultrasound images. Chapter 
5 discusses, compares, and evaluates the proposed despeckle filtering techniques, where the strong 
and weak points for each filtering technique are presented. Reference is also made to video despeck-
ling, where a video despeckling protocol is presented. Chapter 6 presents the summary and future 
directions, where a despeckling filtering and evaluation protocol is also proposed.

Finally, at the end of this book, an appendix provides additional information of all the func-
tions used in this book, as these will be introduced in Chapter 2 and Chapter 3, together with the 
MATLAB™ code. Section A.2 of the appendix illustrates examples in MATLAB code for running 
the despeckle filtering toolbox functions.

•  •  •  •

3.

4.



 
ai, j Additive noise component on pixel i, j
acomp, bcomp

Logarithmic compression parameters
b(s) Snake stiffness of the energy functional
bGVF

GVF snake rigidity parameter
C Speckle index
CV% Coefficient of variation
cd(½Ñg½½), ci, j

Diffusion coefficient
cadsr Speckle reducing anisotropic diffusion coefficient
c Constant controlling the magnitude of the potential
cs sin_1, cs sin_2 Constants used to calculate the SSIN
c2 Positive weighting factor
G Number of directions, which diffusion is computed
g Signal-to-noise radio (SNR)

d Î Â2x2
Symmetric positive semi-definite diffusion tensor representing the 
required diffusion in both gradient and contour directions

df Fractal dimension
d Matrix used to calculated the image energy of the snake, Eimage(n)
dviewing Viewing distance
DR Dynamic range of input ultrasound signal
d(k) Wavelet coefficient for the wavelet filtering
D f Frequency shift (Doppler frequency shift)
D r Distance between two pixels
Ñg The gradient magnitude of image g(x,y)(gradient)
Ñgi, j

Directional derivative (simple difference) at location i, j
f1... f13 SGLDM texture measures from Haralick
fx(x,y) First-order differential of the edge magnitude along the x-axis 

fi, j

Noise-free signal ultrasound signal in discrete form (the new image) 
on pixel i, j

f Frequency of ultrasound wave
f0 Transmitted frequency of ultrasound signal

List of Symbols

147
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feat_disi Percentage distance 

gi, j

Observed ultrasound signal in discrete formulation after logarithmic 
compression

g(x,y)
Observed ultrasound signal after logarithmic compression, 
representing image intensity at location (x, y)

G Linear gain of the amplifier 
gs * gi, j

Image convolved with Gaussian smoothing filter
gs Gaussian smoothing filter
g
_

i, f
_

i Mean gravity of the searching pixel region in image g or f

gmax and gmin

Maximum and minimum gray-level values in a pixel neighborhood, 
respectively

Ha, kHz, and MHz Hertz, kilohertz, and megahertz, respectively
HX, HY Entropies of px and  py

H(k) Hurst coefficients

H(x,y) Array of points of the same size for the HT

HD Hausdorff distance

hs
Spatial neighborhood of pixel i,  j

|hs| Number of neighbors (usually four except at the image boundaries)

qi
Phase shift relative to the insonated ultrasound wave 

q
Angle between the direction of movement of the moving object and 
the ultrasound beam

I Identity matrix
I0(x) Modified Bessel function of the first kind of order 0
I1 - I7

Echo boundaries describing the regions in carotid artery
IMTmean Mean value of the IMT
IMTmin IMT minimum value 
IMTmax IMT maximum value
IMTmedian IMT median value
k Coefficient of variation for speckle filtering 
l Wavelength of ultrasound wave
lp Lai and Chin snake energy regularization parameter, Esnake(n)
ld Î Â+ Rate of diffusion for the anisotropic diffusion filter

mi1 and mi2

Mean values of two classes (asymptomatic and symptomatic, 
respectively)
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m/s and cm/s Meters per second and centimeters per second, respectively
m Mean 
N Number of scatterers within a resolution cell
Nfeat Number of features in the feature set

ni, j

Multiplicative noise component (independent of gi, j , with mean 0) 
on pixel i,  j

nli, j

Multiplicative noise component after logarithmic compression on 
pixel i,  j

n(s) Normal force tensor
xi

Amount of ultrasound signal backscattered by scatterer i

px(i )
ith entry in the marginal probability matrix obtained by summing 
the rows of p(i, j)

Q Mathematically defined universal quality index
R = 1 -     1              

1 + s2
Smoothness of an image

Score_dis Score distance between two classes (asymptomatic, symptomatic)

se = sImT /Ö2
_

Inter-observer error
smax Maximum pixel value in the image
s2 Structural energy
sIMT

IMT standard deviation
sfg

Covariance between two images f and g
s Standard deviation
s 2 Variance
s 3 Skewness
s 4 Kurtosis

si1 and si2

Standard deviations of two classes (asymptomatic and symptomatic, 
respectively)

2s 2 Diffuse energy
sn

Standard deviation of the noise
s 2w Variance of the gray values in a pixel window
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ACSRS Asymptomatic carotid stenosis
dsfad Perona and Malik anisotropic diffusion filter
dsfadsr Speckle reducing anisotropic diffusion filter 
ASM Angular second moment
ATL HDI-3000 ATL 3000 ultrasound scanner
ATL HDI-5000 ATL 5000 ultrasound scanner
dsfca Linear scaling of the gray-level despeckle filter
CAT Computer-assisted tomography 
CCA Common carotid artery
CSR Contrast-to-speckle radio
CT Computer tomography
CW Continuous wave
DR Dynamic range
DS Despeckled
DSCQS Double stimulus continuous quality scale
DSIS Double stimulus impairment scale 
DVD Digital video
DWT Discrete wavelet transform
E Effectiveness measure 
ECA External carotid artery
ECST European carotid surgery trial
DsQEErr Error summation in the form of the Minkowski metric
FDTA Fractal dimension texture analysis
FFT Fast Fourier transform
FPS Fourier power spectrum
GAE Geometric average error
GF Geometric filtering
dsfgf4d Geometric despeckle filter
dsfgfminmax Geometric despeckle filter utilizing minimum maximum values
GGVF Generalized gradient vector flow

List of Abbreviations
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GLDS Gray-level difference statistics
GVF Gradient vector flow
HD Hausdorff distance
HF Maximum homogeneity
HM Homomorphic
dsfhomo Homomorphic despeckle filter
dsfhomog Most homogeneous neighbourhood despeckle filter
HVS Human visual system
ICA Internal carotid artery
IDM Inverse difference moment
IDV Intensity difference vector
IMC Intima–media complex
IMT Intima–media thickness
IVUS Intravascular ultrasound
kNN The statistical k-nearest-neighbor classifier
dsflecasort Linear scaling and sorting despeckle filter
LS Linear scaling
dsfls Linear scaling of the gray-level values despeckle filter
dsflsmedcd Lee diffusion despeckle filter 
dsflsminsc Minimum speckle index homogeneous mask despeckle filter
dsflsminv1d Minimum variance homogeneous 1D mask despeckle filter
dsflsmv Mean and variance local statistics despeckle filter
dsflsmvsk2d Mean variance, higher moments local statistics despeckle filter
dsflsmvske1d Mean, variance, skewness, kurtosis 1D local statistics despeckle filter
M Manual
dsfmedian Median despeckle filter
MF Multi-resolution fractal
MMSE Minimum mean-square error
MN Manual normalized
MRI Magnetic resonance imaging
MSE Mean square error
N Normalized
ND Normalized despeckled
NE North–east
NF No filtering
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NGTDM Neighborhood gray-tone difference matrix
NIE Normalized image energy
dsfnldif Nonlinear coherent diffusion despeckle filter 
NS Not significant difference
NST North–south
NTSE Normalized total snake energy
P Precision
PDE Partial differential equation 
PDF Probability density function
PET Positron emission tomography
DsQEPSNR Peak signal-to-noise radio
PW Pulsed wave
R Sensitivity (or recall)
RF Radio frequency
DsQERMSE Root mean square error
ROC Receiver operating characteristic
S Significant difference 
Sp Specificity
SAR Synthetic aperture radar
SD Standard deviation 
SE South–east
SFM Statistical feature matrix 
SGLDM Spatial gray-level dependence matrices
SGLDMm Spatial gray-level dependence matrix mean values
SGLDMr Spatial gray-level dependence matrix range of values 
DsQESNR Signal-to-noise radio
SPECT Single photon emission computer tomography
SSIN Structural similarity index
TEM Laws texture energy measures
TGC Time gain compensation
TIA Transient ischemic attacks
TV Television
dsfwaveltc Wavelet despeckle filter
WE West–east
wiener Wiener despeckle filter
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WN West–north
WS West–south
WT Wavelet transform

berr
Minkowski error coefficient

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
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