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Overexpression of membrane proteins in mammalian cells
for structural studies
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Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of
innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect
that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian
genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are
expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some
membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian
cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and
represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss
examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible
expression systems.
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Introduction

Heterologousoverexpressionof integralmembranepro-
teins in bacteria, yeasts and insect cells (Grisshammer
andTate1995,Midgett andMadden2007)has allowed
the structure determination of over 300 integral mem-
brane proteins from diverse families and from a wide
variety of organisms from archaebacteria to man
(Vinothkumar and Henderson 2010). However, only
about 10% of the unique membrane protein structures
determined are derived from vertebrates. There are two
reasons for this. Firstly, many eukaryotic membrane
proteins are unstable during detergent solubilization
and purification (Tate 2010), although generic strate-
gies have recently been devised to tackle this problem
(Bill et al. 2011).Secondly,overexpressionofeukaryotic
membrane proteins can beproblematic, oftenwith poor
expression of functional protein in the most commonly
used expression systems (bacteria, yeasts, insect cells)
(Tate 2001). Recently, structures of mammalian mem-
brane proteins have been determined after overexpres-
sion in mammalian cells (Table I); both bovine
rhodopsin (Standfuss et al. 2007, Standfuss et al.
2011, Deupi et al. 2012) and the human ammonia

transporter RhCG (Gruswitz et al. 2010) were most
effectively produced in a fully folded state in these cells.
This shows it is possible to produce milligrams of a
membrane protein in mammalian cells suitable for
crystallization.
The reasons why somemembrane proteins are over-

expressed easily whilst others are expressed poorly are
not fully understood (Grisshammer and Tate 1995,
Grisshammer 2006).However, what is clear is that this
problem is not proportional to the number of trans-
membrane a-helices or the size of the protein, but is
related to the ‘complexity’ of the membrane protein,
i.e., howdifficult it is to fold intoa functional state (Tate
2001). It is likely that the level of functional membrane
protein expression is dictated by a complex interplay of
factors that probably include the following: The
amount of mRNA synthesized and its stability,
the secondary structure of themRNAand the presence
of translational pause sites, folding of the nascent
polypeptide chain in the ribosome and translocon,
the efficiency of insertion into the membrane,
the role of post-translational modifications, e.g.
N-glycosylation, in the foldingprocess and the require-
ment for molecular chaperones to facilitate folding.
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These factors vary considerably between different
expression systems. It is not possible to predict which
expression system will be the best for any particular
membraneprotein, but it has been found that it is easier
to overexpress functional mammalian membrane
proteins in insect cells rather than in Escherchia coli,
presumablybecause the insect cellshaveevolved to fold
membrane proteins similar to their mammalian coun-
terparts. Evenwithin a single expression system it is not
possible to predict the expression levels of amembrane
protein just by analyzing its amino acid sequence, but it
has been found that even single point mutations can
significantly improve the expression of membrane
proteins (Magnani et al. 2008, Serrano-Vega et al.
2008, Warne et al. 2009).
The inability to predict expression levels of a mem-

brane protein from its amino acid sequence has meant
that the most pragmatic strategy to overexpress mem-
brane proteins is based on prior experience, i.e., if the
baculovirus expression system has worked for one
particular membrane protein, it may be a good choice
for other similar proteins. To overcome the disparities
in expression levels due to different amino acid
sequences and/or mRNA structure, the expression of
a variety of homologues from different species are
tested and the highest expressers are then chosen for
further characterization (Mancia and Love 2010,
2011). Expression can be improved further either
through co-expression of molecular chaperones
(Tate et al. 1999, Higgins et al. 2003, Zhang et al.
2003) or through the introduction of specific point
mutations that increase expression levels (Magnani
et al. 2008, Shibata et al. 2009). This review will focus
specificallyonmammalianexpression systemsandwhy
theymayhave significant advantagesover other expres-
sion systems for the overexpression of some eukaryotic
membrane proteins.

Why use a mammalian expression system?

The choice of which expression system to use for a
new target is usually dictated initially by which

expression systems are already in use in the laboratory
or in adjacent laboratories. This increases the speed at
which results are obtained, because user-knowledge
can greatly improve the yield from a particular expres-
sion system, especially when using insect cells or
mammalian cells where the health of the cells before
production is vital to obtain good yields. However, in
a few instances it may be essential to use mammalian
cells because of the characteristics of a particular
membrane protein. The most detailed comparison
between different expression systems performed on
a single membrane protein is for the serotonin trans-
porter (SERT) (Tate et al. 2003), which has a number
of properties that make it particularly challenging for
overexpression. Firstly, there are two N-glycosylation
sites in extracellular loop 2 that are essential for
efficient folding of the protein (Tate and Blakely
1994). Mutation of both the N-linked Asn to Gln
reduced functional expression in the baculovirus
expression system by 20-fold, although the Km for
transport and the KD for inhibitor binding were
unaffected (Tate and Blakely 1994). All mammalian
homologues of SERT are N-glycosylated in this
region and, of those tested, all show similar results
to SERT (Melikian et al. 1996, Straumann et al.
2006). Secondly, SERT appears to require the
molecular chaperone calnexin for efficient folding
(Tate et al. 1999). This is probably related to the
requirement for N-glycosylation, because calnexin
binds specifically to glucosylated forms of N-glycans
as part of the quality control system in the endo-
plasmic reticulum (Ellgaard and Helenius 2003,
Helenius and Aebi 2004). Thirdly, SERT has a strict
requirement for cholesterol (Scanlon et al. 2001),
presumably for stabilising the folding state of the
transporter. Removal of cholesterol from the mem-
brane abolished transport activity and inhibitor
binding, which could be recovered upon addition
of exogenous cholesterol, but not with cholesterol
analogues. Finally, SERT is oligomeric (Kilic and
Rudnick 2000), although how this impacts upon
expression levels is unknown.

Table I. Structures of mammalian membrane proteins determined from protein overexpressed in mammalian cells.

Membrane protein Source Cells used for protein production Resolution of structure* Reference

Ammonia transporter RhCG Human HEK293S(TetR)-GnTI- 2.1 Å (Gruswitz et al. 2010)
Rhodopsin N2C/D282C/D113Q Bovine HEK293S(TetR)-GnTI- 3.0 Å (Standfuss et al. 2011)
Rhodopsin N2C/D282C/M257Y Bovine HEK293S(TetR)-GnTI- 3.3 Å (Deupi et al. 2012)
Rhodopsin N2C/D282C Bovine COS-7 3.4 Å (Standfuss et al. 2007)
Connexin a1 (gap junction) Human BHK 7.5 Å (Unger et al. 1999)

*Structures were determined by X-ray diffraction except for the structure of connexin, which was determined by electron cryo-microscopy of
2-dimensional crystals that formed in BHK cells upon overexpression. There are numerous examples of low resolution structures determined
by electron microscopy of membrane proteins isolated after expression in mammalian cells, but only examples of structures at better than 8 Å
resolution are shown. Details of the expression systems and amounts of protein expressed are shown in Tables II and III.
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In the comparison of expression systems for SERT,
clearly E. coli and yeasts were inappropriate given
the requirement of cholesterol for activity (absent in
both organisms) and for N-glycosylation for efficient
folding (absent in E. coli). Insect cells contain
cholesterol, they can N-glycosylate proteins and
they contain calnexin, so, based on the effectiveness
of the system for producing many mammalian mem-
brane proteins it would be expected that it would also
be suitable for SERT. Indeed, functional SERT was
detected using both transport assays and inhibitor
binding, but it was apparent from comparative
western blotting that all the unglycosylated SERT
produced (over 99% of the total SERT, depending
on the cell type) was inactive (Tate and Blakely 1994)
and also over 90% of the glycosylated SERT was also
inactive (Tate et al. 1999). Co-expression of calnexin
did improve the overall expression levels of functional
SERT by 3-fold, but did not prevent the formation
of inactive transporter (Tate et al. 1999). It was at this
juncture that mammalian expression systems were
tried (Tate et al. 2003) and it was found that a
tetracycline-inducible system was the most effective
for producing fully functional SERT for structural
studies (see below).
The choice of whether to use a mammalian expres-

sion system or whether to use the baculovirus expres-
sion system (or indeed yeasts) can only be made in the
presenceofbiochemical dataoronexpressiondata.We
would certainly recommend trying mammalian cells if
the baculovirus expression system yields low levels of
functional protein and/or large quantities ofmisfolded,
inactive protein. The near-native environment will
virtually guarantee functional expression (except
if the target is a hetero-oligomer or requires cell-
specific folding factors) since it can provide correct
N-glycosylation, post-translational machinery and
molecular chaperones and a suitable lipid environment
containing cholesterol. In addition, wewould consider
making stable cell lines as a matter of course for
any mammalian membrane protein, because they
provide an excellent resource as a positive control in
biochemical assays and for comparison with other
expression systems.

Choice of mammalian expression system

When choosing a mammalian expression system to
overexpress membrane proteins there are a number
of decisions required. The first choice is whether to
express the membrane protein using a transient
system or whether to make stable cell lines. The
use of transient expression systems allows protein
production within a few days after the expression
plasmid has been constructed, whereas stable cell

lines take months to develop. Transient expression
systems may rely on using either cationic compounds
to facilitate the uptake of plasmid DNA into the cell or
recombinant non-replicative viruses that have evolved
to efficiently enter mammalian cells. For both tran-
sient expression and the construction of stable cell
lines there is the choice of whether to use an inducible
promoter or whether to use a constitutive promoter.
Finally, the cell line to be used for the expression
studies needs to be determined. Although this implies
that there is a considerable diversity of choice, in
actual fact only a limited selection of expression
systems have been systematically studied and there
are very few examples in the literature of large-scale
expression of vertebrate membrane proteins (Tables
II and III). We have therefore included in this section
the most commonly used systems, with only passing
mention of other systems that could be used; for a
more exhaustive analysis of mammalian expression
systems, see (Fussenegger 2001).

Transient transfection using recombinant viruses

The attraction of expressing proteins using recombi-
nant viruses is that generally the viruses are very
efficient at entering a cell and they usually have
very strong promoters from which proteins can be
expressed. Therefore, once the recombinant virus has
been constructed, membrane protein expression is a
reproducible, efficient process even on a large scale;
the success and popularity of the baculovirus expres-
sion system is an excellent example (Jarvis 2009).
However, the safety of handling recombinant viruses
is an important consideration. Recombinant baculo-
viruses can infect mammalian cells (Hofmann et al.
1995, Boyce and Bucher 1996), but they cannot
replicate in them and the polyhedrin promoter does
not express the membrane protein of interest. How-
ever, if the polyhedrin promoter is replaced by a CMV
promoter that is functional in mammalian cells, then
the membrane protein will be expressed (Kost et al.
2005, Dukkipati et al. 2008). Baculovirus-mediated
expression using a mammalian promoter is generally
considered safe, because the recombinant baculovirus
cannot replicate in mammalian cells. However,
viruses that have evolved naturally to infect mamma-
lian cells can obviously replicate, causing infections
and disease. Therefore viruses that are used in the
laboratory to infect mammalian cells are usually
extensively disabled to make them safer to work
with. For example, some expression systems use
virus-like particles (VLPs) that are produced in a
packaging cell line so that they contain only the
essential requirements for expressing the gene of
interest and they are thus incapable of replication.

Overexpression of eukaryotic membrane proteins 55
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Although many such systems have been developed
based on, for example, lentiviruses (Cockrell and
Kafri 2007, Matrai et al. 2010) and adenovirus
(Russell 2000), they have been used predominantly
for gene therapy and cell biological experiments, and
they have not been tested for the overexpression of
membrane proteins in mammalian cells. However,
the Semliki Forest Virus (SFV) expression system
(Liljestrom and Garoff 1991, Berglund et al. 1993)
has been used extensively to overexpress integral
membrane proteins, in particular G protein-coupled
receptors (Hassaine et al. 2006) and this will be the
focus for the remainder of this section.
Recombinant SFV is generated in BHK-21 cells

by co-electroporating recombinant RNA (generated
in vitro by transcription from a SFV expression vector
that contains the SFV 26S promoter, target gene and
SFV non-structural genes) with helper RNA carrying
the SFV capsid and envelope genes. Since the helper
RNA lacks a packaging signal, VLPs generated will
only carry the recombinant RNA (Liljestrom and
Garoff 1991); hence the VLPs are replication-
incompetent as they lack the genes coding for the
structural components of the virus. Recombinant
SFV is harvested from the BHK-21 cells and activated
by a-chymotrypsin prior to infecting host cells, e.g.,
BHK-21 or HEK293 cells grown adherently or
in suspension.Optimumrecombinant proteinproduc-
tion occurs in 24–72 hours, before the cytotoxic effects
of the SFV infection kill the host cells (Liljestrom
and Garoff 1991).
The SFV expression system has been used to express

successfully a wide variety of vertebrate membrane
proteins. In one study, 100 GPCRs were expressed
and, where binding assays were available, many of
the GPCRs were shown to be functional (Hassaine
et al. 2006). In another example, the rat glutamate
transporter GLT1 was expressed at ~ 0.3 mg/l, which
allowed its purification and the determination of a low
resolution structure by single-particle electron micros-
copy (Raunser et al. 2005). However, although expres-
sionofmembraneproteins is invariably successful, there
appears to be a significant problem due to the retention
of a large proportion of the expressed polypeptide in the
ER, which often correlates with this population of the
protein being misfolded. Indeed, where experiments
have been performed to look at the functionality of
the expressed membrane protein, often only a small
percentage of the protein is functional. For example,
high levels of intracellular retention were observed for
SFV-expresseda2 adrenergic receptor (Senet al. 2003),
the bradykinin B2 receptor (Shukla et al. 2006a) and
the angiotensin II receptor (Shukla et al. 2006b). Only
0.5% and 7% of the ion channels P2X2 and HCN2,
respectively, were located in the plasmamembrane after

expression using SFV (Eifler et al. 2007). This problem
was also observed for GPCRs; the SFV-expressed
vasopressin receptor, V2R, was virtually entirely intra-
cellular when expressed in BHK-21 cells, with only
0.005% of the total recombinant protein being active
as defined by ligand-binding assays (Eifler et al. 2007).
However, expressing V2R in HEK293 cells increased
the proportion of active protein to 20% with higher
expression observed at the plasma membrane (Eifler
et al. 2007). It was noticeable in the comparison of
expression of 101 GPCRs using the SFV expression
system that there was no correlation between the
western blot signal for the GPCR and its functionality
as assessed by ligand binding (Lundstrom et al. 2006).
This suggests that therewasconsiderablevariation inthe
percentage of each receptor that was actually expressed
in a functional form. To date, no GPCR structures
have been determined from receptors expressed using
the SFV system.
The SFV expression system has a number of serious

drawbacks. It is expensive and technically challenging to
make large amounts of RNA to make sufficient recom-
binant virus for large-scale expression studies, although
it is fast and efficient for small-scale pilot studies. In
addition, although recombinant SFV is highly disabled,
many countries consider it should be used at biosafety
level 2, which makes large-scale cultures more onerous
to produce. Results fromnumerous studies have shown
that a considerable proportion of the expressed mem-
brane protein is misfolded. In combination, these
factors have meant that currently the SFV expression
system is not widely used.

Transient transfection using chemical reagents

Transient transfection of plasmid DNA into mam-
malian cells is an efficient and cost-effective method
for expressing membrane proteins, even on a large
scale (Geisse 2009, Geisse and Fux 2009). The
method is often used on an analytical scale to assess
the effect of mutations and truncations on membrane
proteins prior to scale-up for purification in either
mammalian or insect cell expression systems. How-
ever, it has also been developed to express sufficient
protein for purification, crystallization and structure
determination (Aricescu et al. 2006). Essentially any
mammalian expression plasmid optimized for protein
expression can be used in combination with any cell
line. However, the efficiency of transfection decreases
with very large plasmids and some cell lines may be
refractory to transfection. Improvements in transfec-
tion efficiency may be obtained using commercial
preparations of cationic lipids and/or using electro-
poration, but these systems are often too expensive or
not amenable to scale-up.
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Factors that affect the level of expression obtained
for a membrane protein in transiently transfected cells
include the plasmid size, the amount of plasmid used
per transfection, the strength of the promoter, the cell
type, the efficiency of the transfection and potentially
the toxicity of the transfection reagent. GFP is a
convenient marker protein to allow rapid optimization
of transfection conditions. Membrane protein expres-
sion can be conveniently followed either by using
GFP fusions, western blotting or ligand binding
assays. It is worth mentioning that the ratio of plasmid
DNA added per reaction may be an important factor
in obtaining functional expression of a membrane
protein in the plasma membrane, particularly if a
strong CMV promoter is being used. If too much
plasmid is used, all the expressed protein may reside
intracellularly and could be misfolded. In these
instances, we have found that using a weaker pro-
moter or an inducible promoter (see below) may be
beneficial.
The most successful example of using transient

transfection for the expression of membrane proteins
is the production of a thermostable rhodopsin mutant
for structure determination (Standfuss et al. 2007).
Bovine rhodopsin was expressed in COS-7 cells from
a constitutive adenovirus promoter after transient
transfection using DEAE dextran that resulted in a
total of 2.5 mg rhodopsin from 50 transfected 15 cm
plates, which yielded ~ 0.6 mg of pure protein for
crystallization trials. The protein was subsequently
crystallized and the structure determined to 3.4 Å
resolution (Standfuss et al. 2007).
The major advantage of transient protein expres-

sion is that it is quick, because it takes only a few days
to go from purified plasmid DNA to expressed pro-
tein. This can be a considerable asset in structural
biology where a number of different mutations may
need to be tried to improve the diffraction quality of
crystals. However, when scaling up transient transfec-
tions to litre volumes there is often batch-to-batch
variability in the amount of protein expressed. This
may not be an issue if the normal levels of expression
are high, as is the case for bovine rhodopsin.

Construction of stable cell lines

In contrast to transient expression, making stably
transfected cell lines is a lengthy process that usually
requires the stable integration of the recombinant
DNA into the host cell genome. Since the expression
vector carries an antibiotic resistance gene, stable
integrants can be identified by an antibiotic selection,
which typically takes several weeks. Integration of the
transgene into the host cell genome may either be
random or the host cell may be engineered to contain

a specific sequence recognized by a recombinase that
allows targeted integration. If random integration is
used, then the expression levels obtained are strongly
dependent on where the transgene integrates. Selec-
tion of clonal cells is then required to identify highly
expressing cell lines that are stable under prolonged
culture. Clonal selection is typically made through
limited dilution where recently transfected cells are
serially diluted and seeded on tissue culture plates
with antibiotic-containing media. Colonies of cells
appear in 3–6 weeks, at which point they are indivi-
dually transferred to 24-well plates and scaled up.
Expression levels from each cell line may then be
assessed by western blotting and/or radioligand
binding assays. Another approach to select for highly
expressing cells is to use fluorescence-activated cell
sorting (FACS), usually through the use of GFP. For
example, Mancia et al. (2004) linked the expression of
the 5HT2c serotonin receptor to the expression of
eGFP by inserting an internal ribosomal entry site
(IRES) in between the two genes. Hence high levels of
fluorescence were indicative of high levels of expres-
sion of the 5HT2c serotonin receptor. FACS was
used to sort the highly fluorescent cells iteratively
to produce cell lines expressing 5HT2c serotonin
receptor at 3 million copies/cell (Mancia et al. 2004).
The major decision to be made before making a

stable cell line is whether to use a constitutive pro-
moter or an inducible promoter to express the mem-
brane protein of interest. From the limited data we
currently have, it appears that there are significant
problems associated with using strong constitutive
promoters for the production of membrane proteins
due to the loss of expression upon prolonged cell
growth, which is of course essential when they need
to be grown on a litre scale. For example, stable cell
lines that constitutively expressed SERT grew very
slowly and only about 25% of the cells actually
expressed the transporter, which precluded large-
scale culture (Tate et al. 2003). In another example,
expression levels of the bradykinin B2 receptor
decreased with each passage, until expression levels
reached half its original value, after which no further
reduction was observed (Camponova et al. 2007).
Similarly, high-level expression of the serotonin
5HT2c receptor was only maintained by routine
FACS sorting of the most highly expressing cells
(Mancia et al. 2004). The slow growth rate, loss
of expression over multiple cell passages and the
relatively low expression levels all indicate that
the cells are severely stressed. This is likely due to
the high metabolic demands placed on the cells when
overexpressing a membrane protein and/or on the
adverse biological activity of the membrane protein
on the cells.
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In order to circumvent the negative effects of con-
stitutive membrane protein overexpression on cell
growth, an inducible system can be used. In an indu-
cible system the expression can be switched on or off by
changing an external factor, such as temperature or the
addition of a chemical, which is analogous to many
bacterial expression systems. Hence protein expression
is limited during large-scale cell growth, allowing
mammalian cell cultures to reach the desired high
cell density. At this point, expression is switched on
for a short period of time, typically 24–72 h prior to
harvesting of the cells. Comparative studies between
constitutive and inducible expression of various mem-
brane proteins such as rhodopsin (Reeves et al. 1996,
2002b), SERT (Tate et al. 2003), the b2-adrenergic
receptor (Chelikani et al. 2006) and the bradykinin B2

receptor (Camponova et al. 2007) have shown that
a tetracycline inducible expression system can produce
4- to 12-fold more membrane protein than the con-
stitutive counterpart (Table III) and, more impor-
tantly, the cells grow robustly and are capable of
large scale culture.

Inducible mammalian cell expression systems

Development of inducible mammalian expression
systems has been driven predominantly by the
requirements of cell biologists who want to study
the effects of specific gene products in living systems.
In these experiments, it is ideal to have no expressed
protein in the uninduced state and, upon induction,
physiological levels of the desired protein are synthe-
sized. Hence the expression systems are generally
characterized as having very weak promoters that
are reasonably tightly regulated, such as the tetracy-
cline on/off (tTA and rtTA) systems developed by
Bujard and colleagues (Gossen and Bujard 1992,
Kistner et al. 1996, Baron and Bujard 2000). Other
tightly controlled systems have also been developed,
including systems induced either by ecdysone
(No et al. 1996), cumate (Mullick et al. 2006), tem-
perature (Boorsma et al. 2000) or DMSO (Needham
et al. 1995). In addition, an alternative tetracycline-
inducible system was also developed (Yao et al. 1998)
that uses the strong CMV promoter, which is
repressed by having tandem tetracycline operator
sites (TetO) between the promoter and the start of
the gene of interest and using cell lines that consti-
tutively express the tetracycline repressor protein
TetR. Of these expression systems, only three have
been directly compared for membrane protein pro-
duction: Namely the tetracycline-inducible system
(Yao et al. 1998), the cold-inducible system (pCytTS;
Cytos (Boorsma et al. 2000) and the DMSO-
inducible system (induction of differentiation of

mouse erythroleukaemic cells (Needham et al.
1995). In this comparative study of SERT expression
(Tate et al. 2003), the tetracycline-inducible system
was the most successful in terms of the amount of
transporter expressed and the lack of unglycosylated,
misfolded material in the endoplasmic reticulum,
which is the characteristic problem observed for
this transporter using the baculovirus expression
system. Interestingly, the most efficient cell line
for producing polypeptide was the cold-inducible
pCytTS system, but in the case of SERT, the majority
of this polypeptide was unglycosylated and misfolded;
other membrane proteins may be expressed in a fully
functional state to high levels using this system. As the
tetracycline-inducible system was the most successful
of the expression systems tested and it has also now
been used for multiple different membrane proteins
(Table III), it will be discussed in more detail below.
In the tetracycline-inducible expression system

(Yao et al. 1998) the expression vector includes
tandem Tet operator sites (TetO2) located close to
and downstream from the promoter region. The
repressor protein TetR binds to TetO, thus sterically
preventing transcription from occurring. Addition of
tetracycline to the media inactivates TetR, which
releases it from binding the operator sequences and
allows transcription from the CMV promoter to pro-
ceed. The tetracycline-inducible expression system
can be used as a transient expression system, where
TetR and the gene of interest are transiently trans-
fected into cells from purified plasmids (Yao et al.
1998). Alternatively, stable cell lines can be developed
based on mammalian cells engineered to constitu-
tively expresses TetR, which initially included Vero
and U2OS cell lines (Yao et al. 1998). This latter
system was popularized by the development of a
HEK293S-TetR cell line (Reeves et al. 2002b), which
was used to overexpress a mutant of rhodopsin that
failed to express in a constitutive expression system,
presumably due to its toxicity to the cells (Reeves et al.
2002b). The tetracycline-inducible system of Yao et al.
(1998), commercialized as the T-Rex system (Invitro-
gen), was shown to be the most effective system for
the production of SERT (Tate et al. 2003) and it has
now been used on many other membrane proteins
(Table III). In the case of the ammonia transporter
RhCG (Chaudhary et al. 2012), the tetracycline-
inducible system allowed its purification, crystallization
and structure determination (Gruswitz et al. 2010).
Expression using the tetracycline-inducible system is
characterized by predominantly cell surface expression,
which is indicative of correctly folded membrane
protein (Ellgaard and Helenius 2003). The ability
to grow the cells in the uninduced state means
that the cell lines grow with a similar rate to the
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parental cell line, allowing large-scale preparations.
The advantage of having a stable cell line is that
expression levels between cell batches is very similar.
The major disadvantage is the time required to make
good stable cell lines, especially if multiple constructs
have too be made to facilitate the production of
well-diffracting crystals.

Cell line selection

All mammalian cell lines are anticipated to provide a
near-native environment for overexpressed mamma-
lianmembrane proteins, with correct post-translational
modifications and lipid environment. Cell lines
predominantly used in the context of mammalian
membrane protein expression (Tables II and III) are
human embryonic kidney cells (HEK293), baby
hamster kidney cells (BHK-21), monkey kidney fibro-
blast cells (COS-7) and Chinese hamster ovary cells
(CHO). If choosing a tetracycline-inducible system the
cell line needs to stably and constitutively express TetR
at appropriate levels, such as found in the HEK293S-
TetR (Reeves et al. 2002b) or T-Rex 293 (Invitrogen)
cell lines.
Expression levels of recombinant mammalian

membrane proteins in mammalian cells are typically
modest (Tables II and III), but sometimes this can
been improved by the inclusion of sodium butyrate, a
histone deacetylase inhibitor, which was essential to
achieve very high levels of rhodopsin overexpression
(Reeves et al. 2002a, 2002b). It is also important to
consider how to scale-up cell production to get
sufficient starting material for purification and crystal-
lisation. Most laboratories will be able to produce 10 l
of suspension culture using a wave bioreactor system
(Singh 1999), as this does not require large capital
investment or technological know-how, unlike tradi-
tional large bioreactors. Wave bioreactors were used
to produce sufficient material for the crystallization of
rhodopsin mutants (Standfuss et al. 2011, Deupi et al.
2012) and RhCG (Chaudhary et al. 2012), whereas a
specialized bioreactor was used for labeling rhodopsin
for NMR studies (see, for example, Ahuja et al. 2009).
Oneother importantfactortoconsiderwhenchoosing

a mammalian cell line is the homogeniety of the final
purified protein. In some instances, N-glycosylation
may be required for efficient mammalian membrane
protein expression, but this produces an extremely
heterogeneous protein population, often containing
10–20kDaofflexible sugar chains.This isusually highly
detrimental to successful crystallisation. In order to
circumvent this problem, N-glycosylation defective
mutants of cell lines are available, both for CHO
(Stanley et al. 1975) and HEK293 (Reeves et al.
2002a) cells. A mutant HEK293S cell line lacking the

N-acetylglucosaminetransferase I (GnTI) enzyme was
developed, which resulted in proteins homogeneously
N-glycosylated with a GlcNAc2Man5 sugar unit
(Reeves et al. 2002a). The use of this HEK293S-
GnTI--TetR cell line, which is tetracycline-inducible
and suspension adaptable, has become increasingly
popular with regards to membrane protein production
for structural studies purposes (Table III). This popu-
larity is likely to continue considering that in the recent
structureofarhodopsinmutant,producedfrommaterial
generated in the HEK293S-GnTI- cell line, the
GlcNAc2Man1 part of the sugar unit was not only
ordered but also formed crystal contacts (Deupi et al.
2012), showing that well-diffracting crystals of mem-
brane proteins may be obtained even if truncated
N-glycans are present.

Conclusions and future perspectives

The tetracycline inducible system originally developed
by Yao et al. (1998) has proven to be themost effective
methodology to express mammalian membrane pro-
teins inmammalian cells, both in termsof functionality
and expression levels. This has resulted in structures
of rhodopsin mutants (Standfuss et al. 2011,
Deupi et al. 2012)and thehumanammonia transporter
(Gruswitz et al. 2010).This systemhas proved to be the
most effective system for the production of even
extremely complex membrane proteins like SERT
that has a known dependence of cholesterol for activity
and forN-glycosylation for efficient folding (Tate et al.
2003). It is likely that many more membrane proteins
that are difficult to express in a homogeneous state in
the baculovirus system will be expressed effectively
using this tetracycline-inducible system.
The major issue of using tetracycline-inducible

mammalian cells to produce membrane proteins is
that expression levels aremodest, requiring the routine
growth of 10 l of cells, which is both costly and time
consuming. In our lab, it costs about £1100 per 10 l of
suspension-adapted HEK293 cells, compared to
£600 for CHO or Sf9 cells (all prices using commer-
cially prepared liquid media) and usually takes about
two weeks per wave bioreactor. The development of
TetR-expressing cell lines that grow routinely to
greater than 107 cells/ml without perfusion or feeding
regimes would be a great benefit, particularly for N-
glycosylation deficient mutant cells. In this regard,
there has been no systematic study of which cell lines
are the most efficient for producing membrane pro-
teins, although HEK293 cells are the most frequently
used at the moment. However, it is clear that most
membrane proteins have not evolved to be highly over-
expressed as only a few thousand copies per cellmay be
sufficient for their biological role and to confer the
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desired phenotype on the organism. Engineering
membrane proteins to improve either their stability
and/or expression (Magnani et al. 2008, Serrano-
Vega et al. 2008, Shibata et al. 2009) is therefore a
way forward to allow structural studies on virtually any
membrane protein.
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