Christopher Shingledecker

Christopher Shingledecker
Virginia Military Institute

Doctor of Philosophy

About

91
Publications
6,926
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,747
Citations
Introduction
Assistant Professor of Physics and Astronomy
Education
August 2013 - May 2018
University of Virginia
Field of study
  • Theoretical/Computational Astrochemistry

Publications

Publications (91)
Article
Polycyclic aromatic hydrocarbons (PAHs) are organic molecules containing adjacent aromatic rings. Infrared emission bands show that PAHs are abundant in space, but only a few specific PAHs have been detected in the interstellar medium. We detect 1-cyanopyrene, a cyano-substituted derivative of the related four-ring PAH pyrene, in radio observations...
Preprint
Polycyclic aromatic hydrocarbons (PAHs) are thought to be the most abundant class of molecules in space, yet their interstellar lifecycle is poorly understood due to difficulties detecting individual PAHs. Here, we present the discovery of 1-cyanopyrene, a 4-ring PAH, in the dense cloud TMC-1 using the 100-m Green Bank Telescope. We derive an abund...
Preprint
Polycyclic aromatic hydrocarbons (PAHs) are among the most ubiquitous compounds in the universe, accounting for up to ~25% of all interstellar carbon. Since most unsubstituted PAHs do not possess permanent dipole moments, they are invisible to radio astronomy. Constraining their abundances relies on the detection of polar chemical proxies, such as...
Preprint
We used new high spectral resolution observations of propynal (HCCCHO) towards TMC-1 and in the laboratory to update the spectral line catalog available for transitions of HCCCHO - specifically at frequencies lower than 30 GHz which were previously discrepant in a publicly available catalog. The observed astronomical frequencies provided high enoug...
Article
Full-text available
We demonstrate for the first time that Galactic cosmic rays with energies as high as ∼10¹⁰ eV can trigger a cascade of low-energy (<20 eV) secondary electrons that could be a significant contributor to the interstellar synthesis of prebiotic molecules whose delivery by comets, meteorites, and interplanetary dust particles may have kick-started life...
Article
Full-text available
Using data from the Green Bank Telescope (GBT) Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey, we report the first astronomical detection of the C 10 H ⁻ anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C 10 H ⁻ . From the velocity stacked data and the matched fil...
Article
Full-text available
Reactive open-shell species, such as radicals and biradicals, are key intermediates in the formation of (poly)cyclic hydrocarbon species in a variety of interstellar environments, ranging from cold molecular clouds to the outflows of carbon-rich stars. In this work, we identify the products of the o-benzyne + methyl radical reaction isomer-selectiv...
Preprint
Using data from the GOTHAM (GBT Observations of TMC-1: Hunting for Aromatic Molecules) survey, we report the first astronomical detection of the C10H- anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C10H-. From the velocity stacked data and the matched filter response, C10H- is detecte...
Article
Full-text available
The origin of complex organic molecules (COMs) in young Class 0 protostars has been one of the major questions in astrochemistry and star formation. While COMs are thought to form on icy dust grains via gas-grain chemistry, observational constraints on their formation pathways have been limited to gas-phase detection. Sensitive mid-infrared spectro...
Article
Full-text available
We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2- C 9 H 7 CN ) in GOTHAM line survey observations o...
Preprint
We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier-transform microwave spectrometer operating between 6-40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2-C$_9$H$_7$CN) in GOTHAM line survey observations of th...
Preprint
The origin of complex organic molecules (COMs) in young Class 0 protostars has been one of the major questions in astrochemistry and star formation. While COMs are thought to form on icy dust grains via gas-grain chemistry, observational constraints on their formation pathways have been limited to gas-phase detection. Sensitive mid-infrared spectro...
Article
Recently, searches were made for H2CCS and HCCSH in a variety of interstellar environments─all of them resulted in nondetections of these two species. Recent findings have indicated the importance of destruction pathways, e.g., with atomic hydrogen, in explaining the consistent nondetection of other species, such as the H2C3O family of isomers. We...
Article
Full-text available
Molecular emission was imaged with ALMA from numerous components near and within bright H 2 -emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The f...
Preprint
Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The fou...
Article
Context. The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long suspected of being carriers of the ubiquitous unidentified infrared emission bands remain unclear. Aims. To investigate whether the formation of mono- and polycyclic molecules observed in cold cores...
Article
jats:title>Abstract Polycyclic aromatic hydrocarbons (PAHs) have long been invoked in the study of interstellar and protostellar sources, but the unambiguous identification of any individual PAH has proven elusive until very recently. As a result, the formation mechanisms for this important class of molecules remain poorly constrained. Here we repo...
Preprint
The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long-suspected to be carriers of the ubiquitous unidentified infrared emission bands remain unclear. To investigate whether the formation of mono- and poly-cyclic molecules observed in cold cores could form via t...
Preprint
Polycyclic Aromatic Hydrocarbons (PAHs) have long been invoked in the study of interstellar and protostellar sources, but the unambiguous identification of any individual PAH has proven elusive until very recently. As a result, the formation mechanisms for this important class of molecules remain poorly constrained. Here we report the first interst...
Article
While gas-phase astrochemical reaction networks nicely replicate the abundance of hydrogen-deficient organics like linear cyanopolyynes, pathways to complex organic molecules (COMs)—organic molecules with six or more atoms—have not been completely understood, with gas-phase models often significantly underestimating fractional abundances of the ast...
Article
Identifying PAHs in space Midinfrared spectroscopy has shown that polycyclic aromatic hydrocarbons (PAHs) are abundant in many astronomical objects, but this technique cannot determine which specific PAH molecules are present. Radio astronomy could provide individual identifications if the molecule is sufficiently abundant and has a large dipole mo...
Preprint
Ubiquitous unidentified infrared emission bands are seen in many astronomical sources. Although these bands are widely, if not unanimously, attributed to the collective emission from polycyclic aromatic hydrocarbons, no single species from this class has been detected in space. We present the discovery of two -CN functionalized polycyclic aromatic...
Article
We propose a new model for treating solid-phase photoprocesses in interstellar ice analogs. In this approach, photoionization and photoexcitation are included in more detail, and the production of electronically excited (suprathermal) species is explicitly considered. In addition, we have included nonthermal, nondiffusive chemistry to account for t...
Article
We report the discovery of two unsaturated organic species, trans-(E)-cyanovinylacetylene and vinylcyanoacetylene, using the second data release of the GOTHAM deep survey toward TMC-1 with the 100m Green Bank Telescope. For both detections, we performed velocity stacking and matched filter analyses using Markov Chain Monte Carlo simulations, and fo...
Article
Full-text available
Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we repo...
Article
Full-text available
Benzonitrile (c-C6H5CN, where ‘c’ indicates a cyclic structure), a polar proxy for benzene (c-C6H6), has the potential to serve as a highly convenient radio probe for aromatic chemistry, provided that this ring can be found in other astronomical sources beyond the molecule-rich prestellar cloud TMC-1. Here we present radio astronomical evidence of...
Article
Full-text available
As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons best studied in bulk via infrared and optical observations, is slowly being bridged. Understanding the connection between thes...
Preprint
Full-text available
We report the discovery of two unsaturated organic species, trans-(E)-cyanovinylacetylene and vinylcyanoacetylene, using the second data release of the GOTHAM deep survey towards TMC-1 with the 100 m Green Bank Telescope. For both detections, we performed velocity stacking and matched filter analyses using Markov chain Monte Carlo simulations, and...
Preprint
Full-text available
We propose a new model for treating solid-phase photoprocesses in interstellar ice analogues. In this approach, photoionization and photoexcitation are included in more detail, and the production of electronically-excited (suprathermal) species is explicitly considered. In addition, we have included non-thermal, non-diffusive chemistry to account f...
Article
Full-text available
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings—the essential building block of nonplanar PAHs—is still in its infancy. Ex...
Article
Full-text available
Cosmic rays are ubiquitous in interstellar environments, and their bombardment of dust-grain ice mantles is a possible driver for the formation of complex, even prebiotic molecules. Yet, critical data that are essential for accurate modeling of this phenomenon, such as the average radii of cosmic-ray tracks in amorphous solid water (ASW) remain unc...
Article
Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and u...
Preprint
Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and u...
Preprint
Full-text available
Cosmic rays are ubiquitous in interstellar environments, and their bombardment of dust-grain ice mantles is a possible driver for the formation of complex, even prebiotic molecules. Yet, critical data that are essential for accurate modeling of this phenomenon, such as the average radii of cosmic-ray tracks in amorphous solid water (ASW) remain unc...
Preprint
Full-text available
Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we repo...
Preprint
Benzonitrile ($c$-C$_6$H$_5$CN), a polar proxy for benzene ($c$-C$_6$H$_6$}), has the potential to serve as a highly convenient radio probe for aromatic chemistry, provided this ring can be found in other astronomical sources beyond the molecule-rich prestellar cloud TMC-1 where it was first reported by McGuire et al. in 2018. Here we present radio...
Preprint
As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons (PAHs) best studied in bulk via infrared and optical observations, is slowly being bridged. Understanding the connection betwe...
Article
We report a search for the diatomic hydrides SiH, PH, and FeH along the line of sight toward the chemically rich circumstellar envelopes of IRC+10216 and VY Canis Majoris. These molecules are thought to form in high-temperature regions near the photospheres of those stars, and may then further react via gas-phase and dust-grain interactions leading...
Article
We present an overview of the GBT Observations of TMC-1: Hunting Aromatic Molecules Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile ( c -C 6 H...
Article
We report an astronomical detection of HC 4 NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of 10.5 σ . The total column density and excitation temperature of HC 4 NC are determined to be cm ⁻² and , respectively, using Markov chain Monte Carlo analysis. In...
Preprint
We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 \sigma$. The total column density and excitation temperature of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}\times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}...
Preprint
Full-text available
We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile (...
Preprint
We report a search for the diatomic hydrides SiH, PH, and FeH along the line of sight toward the chemically rich circumstellar envelopes of IRC+10216 and VY Canis Majoris. These molecules are thought to form in high temperature regions near the photospheres of these stars, and may then further react via gas-phase and dust-grain interactions leading...
Article
In this work, we present the results of our investigation into the chemistry of Z- and E-cyanomethanimine (HNCHCN), both of which are possible precursors to the nucleobase adenine. Ab initio quantum chemical calculations for a number of reactions with atomic hydrogen were carried out. We find that the reaction H + Z/E-HNCHCN leading both to H-addit...
Preprint
In this work, we present the results of our investigation into the chemistry of Z- and E-cyanomethanimine (HNCHCN), both of which are possible precursors to the nucleobase adenine. Ab initio quantum chemical calculations for a number of reactions with atomic hydrogen were carried out. We find that the reaction H + Z/E-HNCHCN leading both to H-addit...
Article
In this work, we reexamine sulfur chemistry occurring on and in the ice mantles of interstellar dust grains, and report the effects of two new modifications to standard astrochemical models: namely, (a) the incorporation of cosmic-ray-driven radiation chemistry and (b) the assumption of fast, nondiffusive reactions for key radicals in the bulk. Res...
Preprint
In this work, we reexamine sulfur chemistry occurring on and in the ice mantles of interstellar dust grains, and report the effects of two new modifications to standard astrochemical models; namely, (a) the incorporation of cosmic ray-driven radiation chemistry and (b) the assumption of fast, non-diffusive reactions for key radicals in the bulk. Re...
Article
Full-text available
In this work, we reexamine sulfur chemistry occurring on and in the ice mantles of interstellar dust grains, and report the effects of two new modifications to standard astrochemical models; namely, (a) the incorporation of cosmic ray-driven radiation chemistry and (b) the assumption of fast, non-diffusive reactions for key radicals in the bulk. Re...
Article
Full-text available
A longstanding problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laborat...
Article
Full-text available
A longstanding problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laborat...
Preprint
Full-text available
A long standing problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new labora...
Article
Full-text available
Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains, where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into the gas phase through nonthermal desorption processes such as sputtering. Here we present results fr...
Preprint
Full-text available
Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into the gas phase through non-thermal desorption processes such as sputtering. Here, we present results f...
Article
Full-text available
To date, two isomers of H 2 C 3 O have been detected, namely, propynal (HCCCHO) and cylclopropenone (c-H 2 C 3 O). A third, propadienone (CH 2 CCO), has thus far eluded observers despite the fact that it is the lowest in energy of the three. This previously noted result is in contradiction to the minimum energy principle, which posits that the abun...
Article
Full-text available
Many current astrochemical models explicitly consider the species that comprise the bulk of interstellar dust grain ice mantles separately from those in the top few monolayers. Bombardment of these ices by ionizing radiation—whether in the form of cosmic rays, stellar winds, or radionuclide emission—represents an astrochemically viable means of dri...
Preprint
Full-text available
To date, two isomers of H$_2$C$_3$O have been detected, namely, propynal (HCCCHO) and cylclopropenone (c-H$_2$C$_3$O). A third, propadienone (CH$_2$CCO), has thus far eluded observers despite the fact that it is the lowest in energy of the three. This previously noted result is in contradiction of the minimum energy principle, which posits that the...
Preprint
Full-text available
Many astrochemical models today explicitly consider the species that comprise the bulk of interstellar dust grain ice-mantles separately from those in the top few monolayers. Bombardment of these ices by ionizing radiation - whether in the form of cosmic rays, stellar winds, or radionuclide emission - represents an astrochemically viable means of d...
Article
Most interstellar and planetary environments are suffused by a continuous flux of several types of ionizing radiation, including cosmic rays, stellar winds, x-rays, and gamma-rays from radionuclide decay. There is now a large body of experimental work showing that these kinds of radiation can trigger significant physicochemical changes in ices, inc...
Preprint
Full-text available
One of the primary mechanisms for inferring the dynamical history of planets in our Solar System and in exoplanetary systems is through observation of elemental ratios (i.e. C/O). The ability to effectively use these observations relies critically on a robust understanding of the chemistry and evolutionary history of the observed abundances. Signif...
Article
One of the primary mechanisms for inferring the dynamical history of planets in our Solar System and in exoplanetary systems is through observation of elemental ratios (i.e. C/O). The ability to effectively use these observations relies critically on a robust understanding of the chemistry and evolutionary history of the observed abundances. Signif...
Article
Full-text available
We present the first results of a pilot program to conduct an Atacama Large Millimeter Array (ALMA) band 10 spectral line survey of the high-mass star-forming region NGC 6334I. The observations were taken in exceptional weather conditions (0.19 mm precipitable water) with typical system temperatures T_(sys) < 950 K at ~890 GHz. A bright, bipolar no...
Preprint
Full-text available
We present the first results of a pilot program to conduct an ALMA Band 10 spectral line survey of the high-mass star-forming region NGC 6334I. The observations were taken in exceptional weather conditions (0.19 mm precipitable water) with typical system temperatures $T_{\rm{sys}}$ $<$950 K at $\sim$890 GHz. A bright, bipolar north-south outflow is...
Article
Full-text available
In this paper, we present preliminary results illustrating the effect of cosmic rays on solid-phase chemistry in models of both TMC-1 and several sources with physical conditions identical to TMC-1 except for hypothetically enhanced ionization rates. Using a recent theory for the addition of cosmic-ray-induced reactions to astrochemical models, we...
Article
This work reveals via a combined experimental, computational, and astrochemical modeling study that racemic propylene oxide (c-C3H6O) - the first chiral molecule detected outside Earth toward the high-mass star-forming region Sagittarius B2(N) - can be synthesized by non-equilibrium reactions initiated by the effects of secondary electrons generate...
Preprint
Full-text available
In this paper, we present preliminary results illustrating the effect of cosmic rays on solid-phase chemistry in models of both TMC-1 and several sources with physical conditions identical to TMC-1 except for hypothetically enhanced ionization rates. Using a recent theory for the addition of cosmic ray-induced reactions to astrochemical models, we...
Article
Full-text available
A specific interstellar aromatic molecule Aromatic molecules such as polycyclic aromatic hydrocarbons (PAHs) are known to exist in the interstellar medium owing to their characteristic infrared emission features. However, the infrared emission only indicates the general class of molecule, and identifying which specific molecular species are present...
Article
Full-text available
We report the detection of interstellar methoxymethanol (CH$_3$OCH$_2$OH) in ALMA Bands 6 and 7 toward the MM1 core in the high-mass star-forming region NGC 6334I at ~0.1" - 1" spatial resolution. A column density of 4(2) x $10^{18}$ cm$^{-2}$ at $T_{ex}$ = 200 K is derived toward MM1, ~34 times less abundant than methanol (CH$_3$OH), and significa...
Article
In this paper, we propose a general formalism that allows for the estimation of radiolysis decomposition pathways and rate coefficients suitable for use in astrochemical models, with a focus on solid phase chemistry. Such a theory can help increase the connection between laboratory astrophysics experiments and astrochemical models by providing a me...