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Abstract

The vast majority of robots in industrial environments is designed and modeled as stiff multi-
body systems. Striving for position accuracy and repeatability, any elasticity is regarded
as parasitic effects that poses a source of unwanted oscillatory behavior. The compliance is
typically realized via impedance control requiring force/torque sensors in each joint, so-called
active compliance. Although robots are often praised to outperform humans, this is only
true to a very small extent. In general, mammals are capable of outstanding performances
with respect to a large variety of different tasks and have been optimized for them over large
periods of time through evolutionary processes. Presumably, the feature to store and release
energy enables humans to be superior to robots in terms of highly dynamic motions with high
peak velocity outputs. Over the recent years, the concept of intrinsically compliant robots
has drawn significant attention in the robotics community. The basic idea is to transfer the
biological features inherent in the musculoskeletal system to robotics by introducing elastic
transmission elements on joint level. These passively compliant systems are not only ex-
pected to be more robust against external shock impacts, but also to come closer to human
capabilities in terms of robustness and performance. So-called variable stiffness actuators
can not only adjust positioning, but also the joint stiffness in order to emulate mammalian
muscle (pre-)tension. Although several mechanical systems are being developed right now,
only limited work on controlling these novel devices on a fundamental theoretical basis has
been considered. This thesis aims to investigate robotic systems with elastic transmission
elements between the motor and link under the objective of maximizing the velocity of the
final link. In particular, the exploitation of joint elasticity as a temporary energy storage
mechanism is to be inverstigated. Since the constraint on the maximum allowable spring
deflection is vital to the systems health and any violation would lead to a permanent dam-
age of the system, this constraint plays an important role throughout the thesis. Moreover,
the benefits of elastic/variable stiffness robots versus their rigid counterparts are examined.
The aforementioned aspects are investigated using mass spring systems to retrieve (as much
as possible) analytical solutions and for the nonlinear counterparts, numerical methods are
employed in order to unveil similarities or show the limitations of simplified models.
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Chapter 1

Introduction

Over the recent years, a paradigm shift has taken place in the field of anthropomorphic
robotics, which marks a transition from rigid robots to robots with elastic transmission ele-
ments. Until recently, robots have been designed to be mechanically as rigid as possible to
meet the demands of tasks, predominantly from the industrial sector. There, typical appli-
cations involve welding parts in an assembly line or accurate pick and place operations. The
high stiffness of the mechanical structure is beneficial for such tasks, where precision and short
execution times are important. Any elasticity in the structure is considered detrimental to
the performance, since it may cause oscillatory behavior, or degrade position accuracy. Also,
describing rigid dynamics is simpler and therefore avoids complex control architectures.

Furthermore, since these industrial robotic systems were constructed without any regard to
potential human-robot interaction, they need to be fenced off for safety reasons. However,
in order to make such direct interaction feasible, corresponding features need to be designed
into the robots. For safety reasons, the mechanical architecture of a robot should also be
constructed to be as intrinsically safe as possible instead of solely relying on active control.
Nowadays, compliance in mechanically rigid robots is achieved by impedance control using the
information of force-torque sensors in the corresponding joints. For shock impacts, however,
the control loop cannot react sufficiently fast to avoid damage in the system. This makes these
type of robotic systems prone to external force impacts, which may harm them significantly.

Another aspect of rigid robots is that the stiff coupling between motor and link will not allow
the link velocity to exceed the motor velocity considerably. In the strive for performance in
terms of speed, one seeks to find mechanisms without this restriction. Nature may serve as
leading archetype for the design. Biomechanical investigations have come to the consensus
that muscles interact in sophisticated patterns to optimize certain motion sequences [86]. For
example, increasing the tension is realized by simultaneously contracting the muscles in the
associated muscle pair [103]. Moreover, observations show that energy is stored and released
in the muscles while running [92]. For tasks with high peak velocity outputs, such as throwing,
a sequenced actuation of muscles occurs to transfer the energy internally from the proximal
to the distal parts of the arm [5, 44, 87]. This leads to the consideration of a bio-inspired
robot design.

So-called intrinsically compliant robots are in the focus of current robotics research [3, 61,
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94, 105, 108] in order to address the issues mentioned before. The basic idea is to introduce
elastic elements on joint level and therefore realizing passive compliance that can also be
combined with active compliance schemes. The long-term objective is not necessarily to
mimic the human characteristics as exact as possible, but to be inspired by characteristics
of the mammalian musculoskeletal system and find new ways to improve robot design and
control.

In summary, the overall expected benefits of passively elastic systems are

• Efficiency from an energetic perspective

• Robustness to external forces or (shock) impacts due to intrinsic elasticity/passive com-
pliance

• Task-specific adaptability and force accuracy

• Safety aspects and compliance in human-robot interaction

The latest research focuses on a particular noteworthy subset of intrinsically compliant ac-
tuators which comprises joint mechanisms that are capable of adjusting their stiffness via
additional motors (so-called variable stiffness actuators). Roughly speaking, a distinction can
be made between antagonistic joint designs, following a close imitation of the mammalian
muscle structure and quasi-antagonistic joint designs that reduce the mechanical complexity,
while trying to retain the advantages of variable stiffness actuation. Although an increase of
actuators may gain a potential advantage performance-wise and increase the controllability
of a robot, it also poses a challenge to handle the highly nonlinear and complex dynamics
that inevitably come along with it.

Related work and state of the art

This new and uprising branch in robotics is still in its infancy and no unified joint concept has
been clearly found yet. A large variety of different concept methodologies has been proposed
over the years, ranging from pneumatic [29, 98, 104] to chemical [27] or (mostly) spring-based
actuators [39, 75, 94, 107, 109].

In the recent past, some research has already been addressed towards the aforementioned
potential benefits. Optimal control approaches exploiting the natural dynamics for highly
dynamic tasks, such as explosive movements, were considered in [18, 42, 52, 73]. Complex
limit cycle movements for a biped walking robot with antagonistic driven joints in the lower
limbs have been achieved in [109, 110]. The robustness of a robotic system with intrinsically
compliant joint mechanisms is shown in [50], leaving the system intact after it has been
smashed with a baseball bat. Safety analysis regarding human-robot interaction based on
different metrics, while simultaneously trying to meet the competing requirements for safety
and performance, can be found in [17, 51, 98, 112].

A prototype of a fully articulated intrinsically compliant robot has recently been developed at
the Institute of Robotics and Mechatronics of the Deutsches Zentrum für Luft- und Raumfahrt
e.V. (DLR). The so-called Hand Arm System (HASy) [50] has anthropomorphic kinematics
that closely match its biological counterpart, the human arm. Furthermore, it incorporates
various variable stiffness actuation principles. Per joint, the system is equipped with a spring
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element as well as two motors. While one of the motors controls the link position, the other is
able to alter the joint stiffness. This is done by a mechanism that displaces nonlinearly shaped
cam disks, which directly influence the joint stiffness as well as its progressive characteristics.

Figure 1.1: The DLR Hand Arm System

Contributions of the thesis

Despite the large variety of different concepts, only few basic properties for these novel devices
are well understood from a theoretical point of view. This thesis aims at pursuing such efforts
to further understand how elastic multi-limbed structures can be exploited by suitable energy
shifts in the system. Throughout this thesis, the goal will in particular to be how to maximize
the velocity of the last mass/link in a serial robotic structure. The overall goal of the analysis
is to obtain basic insight into these elastic systems.

To retrieve analytical results for unveiling the inherent characteristics of these systems, a
simplified model, consisting of concatenated masses interconnected by linear springs is used
and thoroughly analyzed. The absence of gravitational or parasitic effects such as friction or
damping facilitates these initial analytical considerations. Additionally, the system is varied
in terms of the number of masses and springs, or the property to directly adjust the stiffness
via an external control, i.e. treat bounded joint stiffness as an additional input.

For highly nonlinear systems, such as the double pendulum, where it is known that a closed-
form solution does not exists, numerical analysis is applied. Therefore, a full set of constraints
is taken into account to obtain reasonable results that stand real-world requirements. This
includes spring deflection constraints, bounded motor velocities and motor/link positions.

As opposed to earlier works, where a simplified motor model (a velocity input, explained
later on) was assumed and analyzed analytically [82] as well as numerically [59], here a
force/torque input will be considered, which represents the physical reality more accurately.
As a direct consequence, the motor dynamics are described by twice the number of generalized
coordinates as opposed to the simplified case, which results in demanding calculations, both
analytically and numerically.
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Structure of the thesis

The thesis is organized as follows:

• Chapter 2 gives a short introduction to robot mechanics and dynamics from a multibody
perspective. The difference between rigid, elastic, and intrinsically compliant robots is
elaborated and the basic idea for the derivation of the dynamics is demonstrated.

• Chapter 3 introduces the theory of optimal control, which provides the main mathemat-
ical framework in this thesis. To grasp the background of the necessary conditions for a
local minima in optimal control, the theory of calculus of variations is briefly described.
Since (almost) all optimal control problems considered in this thesis belong to the class
of singular optimal control problems, this particular type is described in more detail.
Finally, numerical treatment of optimal control problems is delineated with a particular
spotlight on pseudospectral methods. These will serve as method of choice throughout
the numerical analysis in this thesis.

• Chapter 4 investigates properties of different mass spring systems where the goal is to
maximize the velocity of the final mass. A force input serves as control acting on the
first mass. As mentioned earlier, the systems are varied in terms of the number of
masses or the property to additionally adjust the stiffness of the corresponding springs
via external controls. Moreover, for the case of constant stiffness with two masses, a
deflection constraint is analyzed.

• Chapter 5 discusses the single and double elastic pendulum as examples for (fully)
nonlinear dynamics. For the elastic single pendulum, a deflection constraint is imposed
to show similarities to the mass spring system with two masses and deflection constraint
in the previous chapter. Furthermore, the effects of constant or variable stiffness are
examined in the elastic double pendulum with respect to maximizing its end-effector
velocity.

• Chapter 6 finalizes the thesis with concluding remarks about the key results and an
outlook about future work.



Chapter 2

Robot Mechanics

2.1 Introduction to Multibody Systems

A multibody system can be defined as a finite number of rigid and flexible (deformable) bod-
ies with distributed masses. These bodies are interconnected by elements that are assumed
to be massless, such as springs, dampers, joints and actuators [28]. The joints are constraint
elements that decrease the mobility of the system. A great number of structural and mechan-
ical systems are modeled as a multibody system, e.g. vehicles and heavy machinery, aircraft
and space structures, gearboxes and robotic systems.

In this thesis, only rigid multibody system are considered. For a thorough description of
flexible multibody systems, please refer to [45, 95].

O

x2

x1x3

Oi

xi2
xi1

xi3

ri

body i

b

Figure 2.1: As opposed to flexible multibody systems, the particles of the body i are fixed
w.r.t. the corresponding body coordinate frame Oi.

A rigid body in three dimensional space has six degrees of freedom (DoF). Three independent
coordinates are needed to describe the body translation and three independent coordinates are
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necessary for the description of the orientation q̃i = [ri1, r
i
2, r

i
3, ϑ

i
1, ϑ

i
2, ϑ

i
3] w.r.t. a distinguished

reference frame Oi, see Figure 2.1.

The user is free to choose a representation, e.g. for the rotation, such as Euler parameter,
Euler angles or Rodrigues parameter. However, some representations may be redundant,
i.e. the rotation is described by more than three parameter that are interrelated. This is
particularly useful for the avoidance of singularities that are inherent in a three parameter
representation [95].

A multibody system consisting of nb rigid bodies may therefore have 6 ·nb DoF. Nevertheless,
due to the aforementioned constraint elements the bodies may not be able to move indepen-
dently. This is mathematically described by algebraic constraints that are imposed on the
system. A distinction is made between

• holonomic constraints

C(q̃1, ..., q̃n) = 0, (2.1)

• nonholonomic constraints

C(q̃1, ..., q̃n, ˙̃q1, ..., ˙̃qn) = 0 (2.2)

that are imposed on the motion and that are not integrable, i.e. the constraints cannot
be written as time derivatives of some function of the coordinates [111],

• rheonomic constraints that depend on the time explicitly C(q̃, t) = 0 and

• scleronomic constraints that do not depend on the time explicitly C(q̃) = 0.

Examples for nonholonomic systems are e.g. a car without the consideration of sliding in
the (horizontal) plane or the Foucault pendulum. The integrability of the nonholonomic
constraints needs to be tested if they are not indeed holonomic constraints only disguised as
nonholonomic constraints. These constraints occur more sporadically and are more difficult
to treat.

The DoF of a multibody system in a three dimensional Cartesian space are defined as

n := 6 · nb − nc, (2.3)

where nc is the number of (linearly independent) constraint equations with nc ≤ n. (2.3) is
known as Kutzbach criterion [97]. The dynamics of a multibody system together with the
constraints can be written in the subsequent, so-called descriptor form [20]

M̃(q̃)¨̃q + Q̃(q̃, ˙̃q) + C̃q̃(q̃)
T · λ = 0 (2.4a)

C̃(q̃) = 0, (2.4b)

where M̃ ∈ R
nq̃×nq̃ is the mass matrix, Q̃ ∈ R

nq̃ a vector comprising weight- and external

forces (actuators, friction etc.) and C̃q̃ :=
∂C̃
∂q̃ ∈ R

nc×nq̃ the constraint Jacobian matrix which
is adjoined by Lagrangian parameter λ ∈ R

nc. (2.4) is a differential-algebraic equation (DAE)
where the algebraic equation (2.4b) forces the solution of the ordinary differential equation
(ODE) (2.4a) to lie on a (sub-)manifold. In multibody systems the manifold is spanned by
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mechanical linking elements or geometric restrictions. By bringing (2.4a) into a first-order
ODE with x =

[
q̃, ˙̃q
]
, the DAE is transformed into so-called semi-explicit form

ẋ = f(x(t), t)

0 = g(x(t), t)
(2.5)

as opposed to an (fully) implicit DAE

Fimp( ˙̃q(t), q̃(t), t) = 0. (2.6)

If the Jacobian Fimp, ˙̃q is regular, then the function (2.6) can be solved locally w.r.t. ˙̃q and
an explicit ODE is obtained. Otherwise the system decomposes into an ODE and additional
algebraic equations. Two types of indices are mentioned in the literature of DAEs, the
differentiation index and the perturbation index (the latter is not relevant for this thesis). The
differentiation index of a DAE is defined as the minimal number of differentiations such that
the equations allow to extract an explicit ODE system, using only algebraic manipulations.

Because of the constraints, the coordinates q̃ are not fully independent from each other and
therefore redundant. A minimal set of coordinates that fully describes the system are so-
called generalized coordinates1 q ∈ R

n with n := 6nb − nc. Expressing the dynamics with
these coordinates yields the minimal form for holonomic multibody systems [16, 95].

M(q)q̈ = h(q, q̇, t). (2.7)

The descriptor form (2.4) and the minimal form (2.7) have both their advantages and disad-
vantages [78, 96]

• The descriptor form is readily formalized and the modeling is more intuitive. There-
fore, it is easier to understand because the kinetic and kinematic information is readily
available. The drawback is that for an increasing number of bodies the dimension in-
creases dramatically compared to the minimal form. Typically, constrained mechanical
systems yield an index-3 DAE which is difficult to handle from a numerical viewpoint.
The descriptor form is preferred if one is interested in the constraining forces.

• The minimal form is often highly nonlinear and it is difficult to formalize and implement
a method for the calculations. For multibody systems with closed kinematic chains it is
often very difficult to even find a minimal set of coordinates, whereas for tree-structured
multibody systems it is always possible to find a global set of generalized coordinates
[93]. However, since it is an ODE without algebraic constraints, it is advantageous for
(closed-loop) control and simulation purposes.

Henceforth, the aim will be to obtain a minimal form for the systems.

2.2 Principles for the Derivation of the Dynamics

The dynamics (also: equations of motion) can be derived by a multitude of different ap-
proaches, to name a few

1Also: minimal coordinates
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• D’Alembert principle
Virtual2 displacements δri for each position coordinate introduce additional forces act-
ing on the body. In order to regain the equilibrial state (virtual) work is necessary.
The D’Alembert principle of virtual work states that the work done by external forces
corresponding to any set of virtual displacements is zero [101]:

δW =
∑

i

(F i −miai)δri = 0 (2.8)

From the D’Alembert principle the Lagrange equations of the second kind3 can be derived
[97] as

d

dt

(
∂T

∂q̇

)

−
∂T

∂q
+

∂U

∂q
= τ, (2.9)

where τ ∈ R
n is the generalized force with τi acting on the generalized coordinate qi

[76]. T and U denote the kinetic and potential energy of the system explained in more
detail subsequently.

• Hamilton principle
This is an elegant approach that derives the dynamics via energetic considerations. The
kinetic energy of a rigid body is composed of rotational and translational energy. For
a body i with inertia tensor Ii, mass mi, center of mass Ci, linear velocity v = ṙ and
angular velocity ωi it is given as

Ti =
1

2
miṙ

T
Ci
ṙCi

+
1

2
ωT
i Iiωi. (2.10)

The total kinetic energy of a multibody system is then the summation over all bodies

T =

nb∑

i=1

Ti (2.11)

The potential energy for the i-th body and the total multibody system is

Ui = −mig
T
vecrCi

+ Uref,i U =

nb∑

i=1

Ui, (2.12)

where gvec is the vector of gravitational force and the constant Uref,i is a reference po-
tential [30]. Expressing the position and velocity in terms of the generalized coordinates

r = r(q) ṙ =
d

dt
r(q) =

∂r

∂q
q̇ = ṙ(q, q̇) (2.13)

induces the dependencies T = T (q, q̇) and U = U(q). Defining the scalar function or
so-called Lagrangian as

L(q̇, q) = T (q̇, q)− U(q), (2.14)

2Virtual is meant in the sense of fictitious/thought.
3The first kind in terms of Cartesian coordinates is not of interest in this thesis.
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Hamilton’s Principle of Least Action [9] then states that a system between two times t0
and tf tries to minimize the integral (or “action”)

∫ tf

t0

L(q, q̇)dt. (2.15)

With the theory of Calculus of Variations (CoV) introduced later on, the Euler-Lagrange
equations can be derived

d

dt

∂L

∂q̇
−

∂L

∂q
= 0. (2.16)

In terms of the kinetic and potential energy this can be reformulated as

d

dt

(
∂T

∂q̇

)

−
∂T

∂q
+

∂U

∂q
= 0. (2.17)

(2.17) is in accordance with the Lagrange equations of the second kind (2.9) derived
from the principle of D’Alembert without the consideration of generalized forces, i.e. for
conservative systems.

This approach is sufficient for holonomic systems and yields a concise derivation for low-
dimensional problems. For practical purposes, however, this approach is not the most
efficient due to extensive computing time. The subsequent algorithm is more suited for
real-time implementations [65].

• Newton-Euler algorithm
This is a recursive algorithm based on the linear and angular momentum principles of
Newton and Euler. It is amenable to computer-aided calculations and therefore suited
for the automatic generation of the equations of motion for high-dimensional systems
with a computer algebra system.

• Projection equation
Although this approach is cumbersome for low-dimensional systems, the inherent mod-
ular architecture proves beneficial for larger systems with many identical structured
subsystems. Furthermore, a seamless integration of nonholonomic and flexible body
systems is possible [19].

Pendulum example

Figure 2.2 depicts a mathematical pendulum suspended at q̃ = [0, 0] with link length l >
0, mass m and gravitational constant g (friction will not be considered). The Cartesian
coordinates q̃ := [x, y] denote the position of the mass at the end of the pendulum. The
descriptor form results from the consideration of forces acting on the mass in the Cartesian
space:

[
m 0
0 m

](
ẍ
ÿ

)

+

(
0
mg

)

+

(
2x
2y

)

λ = M̃ ¨̃q + Q̃+ C̃T
q̃ λ = 0

x2 + y2 − l2 = C̃(q̃) = 0

(2.18)

The link is assumed to be rigid and therefore the mass can only move on a circle around
the origin of the reference frame q̃ = [x, y] with radius l. This is described by the holonomic
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q l

x

y

g

b

bc

m

Figure 2.2: Single unforced mathematical pendulum

constraint C̃(q̃) = 0, which needs to be differentiated three times in order for the derivative
of λ to appear explicitly

d

dt
C̃(q̃) = 2xẋ+ 2yẏ (2.19a)

d2

dt2
C̃(q̃) = ẋ2 + ẏ2 − yg (2.19b)

d3

dt3
C̃(q̃) =

2λ

m
xẋ+

2λ

m
yẏ + ẏg +

l2

m
λ̇ (2.19c)

With x̂ := [x, y, ẋ, ẏ] and (2.19c), the descriptor form (2.18) can be brought into the form of
an ODE and therefore (2.18) is an index-3 DAE.

For the derivation of the minimal form via the Hamilton principle the energetic quantities are
needed. The mass is assumed to be concentrated and not distributed (⇒ I ≡ 0). The center
of mass is located at

rC1
=

(
l sin(q)
−l cos(q)

)

(2.20)

so that the kinetic energy results in

T (q, q̇) =
1∑

i=1

Ti =
1

2
mṙTC1

ṙC1
+

1

2
ωT I
︸︷︷︸

=0

ω =
1

2
m
(
q̇2l2 cos2(q) + q̇2l2 sin2(q)

)
=

1

2
mq̇2l2.

(2.21)

The potential energy due to (2.12) is given as

U(q) = −m

(
0
−g

)T (
l sin(q)
−l cos(q)

)

= −mgl cos(q). (2.22)

With the Euler-Lagrange equation (2.17)

d

dt

(
∂T

∂q̇

)

−
∂T

∂q
+

∂U

∂q
= ml2q̈ +mgl sin(q)

!
= 0 (2.23)

the dynamics in minimal form Mq̈ + h(q) = 0 (cf. (2.7)) follow immediately as

mq̈ +
gm

l
sin(q) = 0. (2.24)
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2.3 Preliminaries of Rigid Robots

The word robot originates from the czech term “robota”, which roughly translates as forced
labor. While the average person understands a robot as a fully articulated, anthropomorphic
and sophisticated mechanical being as known from science fiction literature, the definition of
a robot among engineers is ambiguous and not unified. In [46] a definition is given as follows:

A robot is a machine capable of performing tasks with some level of autonomy and
flexibility, in some type of environment. To achieve this capability, a robot integrates
one or several sensory-motor functions together with communication and information
processing capabilities.

The incorporation of low-level and high-level features makes robotics an interdisciplinary
interweaved science. High-level features, such as perceiving and reacting to external stimuli
from the environment on an abstract level (planning and reasoning), are not topic of this
thesis. Here, it will be sufficient to understand a robot as an actuated system that can be
modeled as nonconservative multibody system whose control is of primary interest.

The robotics community differentiates between serial and parallel robots, where the differ-
entiation is based on the underlying kinematic structure. Consecutive coordinate systems
that can be articulated against each other yield a kinematic chain. The topology of robotic
systems can be subdivided into chain-like, tree-structured and closed-looped structures [65],
where the last two lead to the class of parallel robots.

A serial robot (or: manipulator) is modeled as an alternating chain of links (rigid bodies of
Chapter 2.1) and joints. The joints may be either revolute or prismatic joints. Some others
include cylindrical, planar, screw or spherical [30], but occur more rarely. In this thesis only
serial robots with revolute joints are considered.

Locating the position of the last coordinate frame in the Cartesian space (also: end-effector)
by a given set of joint angles is known as forward kinematics. Inverse kinematics is the
problem of finding the joint angles that would lead to a pre-specified Cartesian position of
the end-effector. For the calculation of the energies in in the previous chapter it was necessary
to locate the position of the center of masses in the bodies. A standardized convention widely
used in the robotic community is the Denavit-Hartenberg notation [30, 106]. However, the
kinematics in this thesis will be simple enough so that this convention is not necessary.

Dynamics of rigid robots

While kinematics only treats the motion of the system without regarding the forces which
cause it, dynamics also includes the study of forces. Since robots are modeled as multibody
systems, the dynamics take the form of (2.7), written in the typical form for robotics [76]:

M(q)q̈ + c(q, q̇) + g(q) = τF + τm = τ (2.25)

The mass matrix M(q) ∈ R
n×n is symmetric and positive definite, therefore always invertible

and M−1(q) exists [25, 76, 99]. c(q, q̇) ∈ R
n is the vector of centripetal/Coriolis force terms
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and g(q) ∈ R
n the gravitational vector. Nonconservative forces τ ∈ R

n typically appear on the
right-hand side. This includes external forces, such as the motor torques τm and dissipative
effects, such as friction τF . The kinetic energy can be conveniently expressed as

T =
1

2
q̇TM(q)q̇. (2.26)

2.4 Flexible Joint Robot Dynamics

The assumption that robotic systems consist only of rigid links and actuators is an idealized
assumption. For slow movements or when no (force) interaction with the environment occurs,
this might be close to the real system, but it is obvious that in general this is a simplifica-
tion. There is always mechanical flexibility inherent in the robotic structure, e.g. induced
by transmission elements, such as gears or by a lightweight architecture of the links. This
leads to deflections between the motor and link positions. These small uncertainties are not
considered in the model (2.25) and the error propagates throughout the serial structure of the
robot. This typically results in undesired effects that lead to deviations of the end-effector
from the calculated results or more generally to a degradation of the expected performance.
One of the most frequent application of robotics in the industry is the welding of parts in
an assembling line. As a direct consequence, the welding line is not tracked with the desired
accuracy.

To cope with these problems, a new dynamic model is necessary. Flexible link models would
lead to the already mentioned flexible multibody systems, which are difficult to calculate
(in real-time). Furthermore, the high-fidelity control of these devices is a rather unsolved
problem. Here, the joint is remodeled so that uncertainties are emulated by a small spring
with high stiffness constant. Joint and motor can take different positions now so that the
system needs twice the number of generalized coordinates of the rigid body robot to be fully
described

Θ =

(
q
θ

)

∈ R
2n, (2.27)

where θ ∈ R
n denotes the motor-side and q ∈ R

n the link-side positions. The deflection
ϕ = θ − q between link and motor is assumed to be small. Due to this fact, it is sufficient
here for the transmitted joint torque to assume a linear dependence on the deflection

τJ = K(θ − q), (2.28)

where K = diag{k1, ..., kn} is a positive definite stiffness matrix. Moreover, for the derivation
of the dynamics, [99] postulates the following assumptions

A1) Joint deflections are small, so that flexibility effects are limited to the domain of linear
elasticity.

A2) The actuators’ rotors are modeled as uniform bodies having their center of mass on the
rotation axis.

A3) Each motor is located on the robot arm in a position preceding the driven link.
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These assumptions are reasonable and most real-world robots fulfill them. For the derivation
of the dynamics for the new model via the Lagrangian approach (2.14), the energetic quantities
are needed. In addition to the kinetic energy of the link Tlink, the kinetic energy of the motor
Tmotor needs to be considered now as well, so that the total kinetic energy of the flexible joint
robot is T = Tlink + Tmotor. The kinetic energy of the link remains unchanged compared to
the kinetic energy of the rigid body robot (2.26)

Tlink(q, q̇) =
1

2
q̇TML(q)q̇, (2.29)

with ML(q) being the link mass matrix (former M(q)). The kinetic energy of the motor is
only contributed by the kinetic energy of the rotor so that it can be calculated from

Tmotor = Trotor =

n∑

i=1

Trotor,i =

n∑

i=1

1

2
mriv

T
rivri +

1

2
ωT
riIriωri , (2.30)

where mri , vri(q, q̇) and ωri(θ̇) denote the mass, linear velocity and angular velocity of the
i-th rotor body. The corresponding inertia tensor Ii = diag{Ixxri , Iyyri , Izzri} is of diagonal
form due to assumptions. The third assumption guarantees the form of

Trotor =
1

2
q̇T
[
MR(q) + S(q)B−1ST (q)

]
q̇ + q̇TS(q)θ̇ +

1

2
θ̇TBθ̇, (2.31)

where MR(q) is the rotor mass matrix, B the diagonal rotor inertia matrix and S(q) encodes
the inertial coupling between the links and motors. This can be written in a compact form
in terms of the new generalized coordinates as

T =
1

2
Θ̇TM(Θ)Θ̇ =

1

2

(
q̇T θ̇T

)
[
M(q) S(q)
ST (q) B

](
q̇

θ̇

)

, (2.32)

with M(q) := ML(q) +MR(q) + S(q)B−1ST (q). Similarly, the potential energy of the rigid
body robot needs to be extended appropriately. For the potential energy of the flexible joint
robot the gravitational energy Ugrav is supplemented by elastic energy Uelas stored in the
(virtual) spring

U = Ugrav(q) + Uelas(q, θ) = Ugrav,link(q) + Ugrav,motor(q) + Uelas(q, θ), (2.33)

with

Uelas(q, θ) =
1

2
(θ − q)TK(θ − q) =

1

2
ϕTKϕ. (2.34)

The gravitational energy by the motor is the same as the one given in (2.12). The full dynamic
model is then derived using the Lagrangian L(Θ, Θ̇) = T (Θ, Θ̇)− U(Θ) as

[
M(q) S(q)
ST (q) B

](
q̈

θ̈

)

+

(
c(q, q̇) + c1(q, q̇, θ̇)

c2(q, q̇)

)

+

(
g(q) +K(q − θ)

K(θ − q)

)

=

(
0
τm

)

(2.35)

or in the compact form (2.25) written in terms of the generalized coordinates Θ, τ ∈ R
2n:

M(Θ)Θ̈ + c(Θ, Θ̇) + g(Θ) = τ (2.36)
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Reduced flexible joint model

For robots with high gear reductions in the joints, the inertial coupling between links and
motors can be neglected. The equivalent assumption is that the angular velocity of the rotors
is only due to their own spinning. This simplifies the kinetic energy of the rotor from (2.31)
to Trotor = 1

2 θ̇
TBθ̇ and the coupling matrix vanishes S ≡ 0 [99]. The reduced model follows

immediately as4

M(q)q̈ + c(q, q̇) + g(q) +K(q − θ) = 0

Bθ̈ +K(θ − q) = τm.
(2.37)

The first n equations belong to the link-side dynamics and the last n equations to the motor-
side dynamics. It is beneficial that the dynamics appear in a decoupled manner and the
motor-side dynamics are even linear. This model is sufficient for most real-world robots and
successful implementations for control schemes have been implemented, see e.g. [4].

2.5 Intrinsically Compliant Robots

As mentioned earlier, the flexible joint model was necessary to cope with uncertainties that
arise in the control of a mechanically rigid robot. The deflections are an undesired byproduct
and the aim is to diminish these effects by appropriate vibration damping control.

This is fundamentally different for a new generation of robots currently being developed and
which is in the focus of current research. As in Chapter 1 already briefly mentioned, these
so-called intrinsically compliant robots (also: intrinsic elastic joint robots) are equipped with
mechanisms that permit inherent impedance behaviors on a joint level. The corresponding ac-
tuators are called variable stiffness actuators or variable impedance actuators if the stiffness
can be adjusted or just intrinsically compliant joints if the stiffness is constant through-
out. The recently completed EU project VIACTORS [2] was solely dedicated to variable
impedance actuators. Here, the deflections are a desired effect that one wishes to exploit with
regards to performance, e.g. by storing and releasing potential energy.

Design proposals

A number of different submissions for joint designs with variable stiffness have been proposed
over the last few years. An overview can be found in [53]. Generally, the designs can be roughly
grouped into the categories of preload variable design and transmission variable design, where
the former evolved from actuators with constant stiffness and the latter is human-inspired
[39]. Most of them incorporate mechanical springs to alter the impedance characteristics, but
there have also been experiments with other mechanism, such as electroactive polymer [27]
or pneumatic [29, 104] actuators, which will not be considered here.

4Coriolis and centrifugal terms c1 and c2 from (2.35) arise because of the presence of the coupling matrix
[99].
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Figure 2.3: (a) Antagonistic joint design with (b) human antetype [1]; (c) Quasi-antagonistic
design

The human-inspired actuators fall under the category of antagonistic and quasi-antagonistic
design. The antagonistic design tries to emulate the muscle-tendon-bone structure prevalent
in almost all vertebrates by two motors that are connected to the link via springs, see Figure
2.3(a). It bases on the principle that many muscle work in pairs with a so-called agonist
and antagonist muscle. The analogy to robotics is that actuators correspond to muscles,
tendons to springs and bones to links. Tendons (and also ligaments) are passive compliant
elements in the human musculoskeletal system that are not only very stiff, but also exhibit
nonlinear stiffness characteristics which enables the human to adjust its joint stiffness a-priori
by simultaneous contraction (or retraction) of both the agonist and antagonist muscle [50].
A quasi-antagonistic joint only uses one motor and spring, but in addition a mechanism that
can adjust the stiffness, see Figure 2.3(c).

Dynamics

As opposed to the previous chapter of flexible joint robots, the deflection here is not small,
i.e. ϕ = θ− q ≫ 0 and intentionally used to store and release potential energy. The dynamics
can be described by

M(q)q̈ + c(q, q̇) + g(q) − τJ = 0

Bθ̈ + τJ = τm

0 = fSA(σ̈, σ̇, σ, τSA).

(2.38)

The first two equations describe the motor and link dynamics already known from the Chapter
2.4. These remain unchanged except that τJ is not generated by a spring assumed to be in
the domain of linear elasticity. Assumptions A2) and A3) still hold and the requirements
can be met by mechanical design. The third equation describes implicitly the dynamics
of a mechanism that is able to influence the transmitted torque by some output σ and is
controlled by τSA. The transmitted joint torque τJ = τJ(q, θ, σ) then undergoes a nonlinear
transformation depending on q, θ and σ. The entire system is controlled by the motor and
stiffness actuator inputs u = (u1, u2)

T := (τm, τSA)
T , see Figure 2.4.

For example, the variable stiffness joint “Floating Spring Joint” (FSJ) developed at the DLR
has the capability of adjusting the impedance characteristics via cam disks [107]. The spring
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Figure 2.4: Schematic for a variable stiffness robot with quasi-antagonistic design.

Figure 2.5: The DLR FSJ: Schematic overview (taken from [107]) for different configurations:
(a),(b) show the cam disks in initial configuration and (c),(d) in displaced configuration.

is compressed from its initial state by lowering the distance σ between the two cam disks,
see Figure 2.5. The dynamics of σ can for example be described by a PT2 element. For
optimization purposes it is helpful to obtain an analytical expression of the first derivative
that can be passed to the optimization software in order to speed up the process. The
nonlinear transformation takes the form of a progressive spring characteristic induced by
design of the cam disks

τJ = c1

(

ec2((θ−q)−σ) − ec2(−(θ−q)−σ)
)

, (2.39)

where c1, c2 are positive parameters that can be found in the course of joint identification,
e.q. via least-square error approximations [59].

For theoretical considerations later on, the system needs to be simplified. Assuming the
torque behaves linearly in terms of the deflection and the stiffness can be controlled directly.
This results in

τJ(q, θ, σ) = σ(θ − q) = K(θ − q) = u2(θ − q), (2.40)

where u2 is the control corresponding to the stiffness. The stiffness actuator dynamics are
eliminated. Future work will consider elastic joint torques of more complex form, such as
(2.39).
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Velocity controlled variable stiffness actuator model

Another simplification can be made for the motor dynamics. The underlying assumption is
that the motor dynamics are much faster than the link dynamics for intrinsically elastic robots.
This is due to the fact that the motor torque is greater than the transmitted joint torque5.
Formally, this can be shown by bringing the dynamics into so-called singular perturbation
form. The basic idea is to decompose the system into subsystems with “fast” and “slow”
dynamics. For more on singular perturbation theory see e.g. [64]. Applying a pure P-control
results in [52]

Bθ̈ + τJ = τm
!
= KP (u− θ̇), (2.41)

where KP is the proportional control gain. Define ε := K−1
p so that (2.41) becomes

ε
(

Bθ̈ + τJ

)

= u− θ̇. (2.42)

For ε → 0 the first-order dynamics
u = θ̇ (2.43)

are obtained. As a result, the dynamics of a velocity controlled variable stiffness robot are

M(q)q̈ + c(q, q̇) + g(q) − τJ = 0

θ̇ = u.
(2.44)

This simplification enhances computational speed but is only truly valid if the deflection is
small enough so that the link inertia takes a negligible effect on the motor dynamics.

Constraints

Every real-world system is subject to certain constraints imposed by e.g. design, electric and
mechanical components or the environment. The actuators in every robotic system can only
generate a certain motor torque, so the input is bounded. Furthermore, joint angles are
limited so that no self-collisions occur. For intrinsically compliant robots the spring can only
expand to a certain degree. This constraint on the deflection is particularly important and
must not be violated at all cost because the robotic system will or might get damaged. From
a mathematical point of view, this leads to inequality constraints depending on the state
C(x) ≤ 0 and control C(u) ≤ 0 or potentially even in mixed form C(x, u) ≤ 0.

A robotic system that incorporates all the features mentioned before, is the DLR HASy,
which has been briefly mentioned in Chapter 1. It is equipped with four quasi-antagonistic
FSJ joints and additional three antagonistic (BAVS) joints. In total, the arm has 7 DoF
which corresponds to the degrees of freedom of the human arm [50]. The hand itself is highly
complex but not of interest in this thesis.

1 DoF intrinsically compliant robot (Pendulum example continued)

Returning to the example of Chapter 2.2, the dynamics of the single pendulum can be easily
extended to a 1 DoF intrinsically compliant robot. The pendulum is acted upon an external

5The assumption does not hold for flexible joint robots, where the range of K is at least an order of
magnitude larger.
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Figure 2.6: 1 DoF intrinsically compliant robot

torque τJ transmitted through the joint, so that (2.24) becomes

mq̈ +
mg

l
sin(q) = τJ . (2.45)

Let θ be the motor position, b the motor inertia and τm the torque generated by the motor,
then the motor dynamics take the form of (2.38)

bθ̈ + τJ = τm. (2.46)

Together with the assumption of a linear relation between joint torque and deflection as in
(2.37), where k is the stiffness constant, this yields the dynamics of the 1 DoF intrinsically
compliant robot:

mq̈ +
gm

l
sin(q) + k(q − θ) = 0

bθ̈ + k(θ − q) = τm

(2.47)



Chapter 3

Calculus of Variations and
Optimal Control Theory

Calculus of Variations (CoV) deals with minimizing functionals subject to either integral,
differential or algebraic constraints (and arbitrary combinations of those).
Among the first problems relating to CoV (and by far the most popular examples in textbooks)
were

• Isoperimetric Problem:
For example, find the plane curve of a given length encompassing the greatest area.
This problem reaches far back in time and the anecdote of Queen Dido of Carthage (ca.
850 BC) is often told, where she was promised as much land as might lie within the
boundaries of an oxhide (cut to fine strips and tied together) and the sea coast. Legend
has it that Carthage was founded this way.

• Brachistochrone Problem:
Find the shortest path in a vertical plane between two points such that a particle will
traverse it in shortest time (where the acceleration is only due to gravity). Originally
proposed by Johann Bernoulli (1667-1748) and published in the scientific journal Acta
Eruditorum in 1696 and addressed to the greatest mathematicians of that time.

Leonhard Euler (1707-1783) and Joseph-Louis Lagrange (1736-1813) systematically tackled
these problems with their variational approach and laid the fundamentals for further in-
vestigation of CoV. Since its inception, the theory has been applied to a large variety of
physical and mathematical problems and many famous mathematicians contributed to the
field over time, such as Isaac Newton (1643-1727), Gottfried Wilhelm Leibniz (1646-1716),
Adrien-Marie Legendre (1752-1833) in the 18th century, significantly extended by Carl Jacobi
(1804-1851), Karl Theodor Weierstrass (1815-1897), David Hilbert (1862-1943) in the 19th
century (for an in-depth look into the history of CoV see e.g. [49]).

Optimal control theory is a subset of CoV dealing with an differential equation and additional
constraints, such as algebraic equality and inequality constraints. The function in CoV is split
up into state and control variables with different demands on smoothness. Optimal control
problems arise in many diverse branches such as robotics [25], chemical engineering [66, 100],
economics [91] and aerospace applications [14, 62, 68] to only name a few.
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CoV preliminaries are given in the following to grasp the underlying nature of optimal control
theory, which is then introduced along with a few of its fundamental aspects as constraints,
singular optimal control problems, and the corresponding numerical treatment.

3.1 Calculus of Variations

The most basic CoV problem one can think of is to minimize

Ja(x(t)) =

∫ tf

t0

φ(x(t), ẋ(t), t)dt → min! (3.1)

subject to fixed initial and end points

x(t0) = x0, (3.2a)

x(tf ) = xf . (3.2b)

For now, it is assumed that x ∈ C1([t0, tf ],R) and φ ∈ C2([t0, tf ]× R
2n,R). The subsequent

lemma is crucial for the derivation of the necessary conditions:
Lemma 3.1.1 (Fundamental Lemma of CoV).
Let F ∈ C0([t0, tf ],R) and η ∈ C1([t0, tf ],R) with η(t0) = η(tf ) = 0 then:

∀η :

∫ tf

t0

F · ηdt = 0 ⇒ F ≡ 0 (3.3)

The proof is usually carried out by contradiction and uses test functions with small compact
support. It can be found in every well-assorted optimal control book, e.g. [67, 71].

First-order necessary condition

x

t

b

b

t0

x0

tf

xf

Figure 3.1: Optimal solution x∗ (solid) and comparison curves (dashed) for fixed initial time
and state, as well as final time and state.
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Assuming the existence of an optimal solution x∗, the procedure to derive the necessary
conditions is as follows:
x∗ is linearly embedded in a one-dimensional family of comparison curves (see Figure 3.1)

x∗ + εδx, (3.4)

with ε ∈ R and δx ∈ C1([t0, tf ],R). For small ε the perturbed curves are close in the sense
of the 1-norm and the obtained necessary conditions only hold for weak solutions (see Figure
3.2). However, if the strong solution is in C1 it is also a weak solution [71]. If no variations at
initial and endpoints are allowed then δx(t0) = δx(tf ) = 0 and so these points remain fixed.
Insertion of (3.4) into (3.1) leads to

x

t

b
b

Figure 3.2: Weak (dashed) and strong (solid) solution

Ja(x
∗ + εδx) =

∫ tf

t0

φ(x∗ + εδx, ẋ∗ + ε ˙δx, t)dt. (3.5)

TheGâteaux-Derivative [80] can be seen as generalization of the well-known directional deriva-
tive and is defined between locally convex topological vector spaces, e.g. Banach spaces, as

δJa(x
∗; δx) = lim

ε→0

Ja(x
∗ + εδx) − Ja(x

∗)

ε
=

d

dε
Ja(x

∗ + εδx)

∣
∣
∣
∣
ε=0

. (3.6)

In the context of CoV, equation (3.6) is called the first variation. In (unconstrained) static
optimization, an approach with the Taylor expansion around perturbations of the local mini-
mum leads to the first-order necessary condition f ′(x) = 0 (f : R → R, f sufficiently smooth).
An analogous ansatz can be made for dynamic optimization problems which yields that the
first variation needs to vanish in order to obtain a first-order necessary condition for a local
minimum [71]. Therefore,

d

dε
Ja(x

∗ + εδx)

∣
∣
∣
∣
ε=0

!
= 0 (3.7)

needs to hold. Now, the necessary condition can be derived for the problem (3.1)

dJa
dε

∣
∣
∣
∣
ε=0

=

∫ tf

t0

∂φ

∂x
︸︷︷︸

=:φx

(x∗, ẋ∗, t) · δx+
∂φ

∂ẋ
︸︷︷︸

=:φẋ

(x∗, ẋ∗, t) · ˙δxdt (3.8)
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Integrating by parts, the unknown ˙δx in the second integral term disappears

dJa
dε

∣
∣
∣
∣
ε=0

= φẋδx

∣
∣
∣
∣

tf

t0

+

∫ tf

t0

(φx −
d

dt
φẋ)δxdt (3.9)

The importance of the Fundamental Lemma of CoV now becomes evident, as it finalizes the
derivation by applying it to (3.9)

∂

∂x
φ(x∗, ẋ∗, t)−

d

dt

∂

∂ẋ
φ(x∗, ẋ∗, t) = 0. (3.10)

Note that this step implicitly demands that φ ∈ C2 ( ∂
∂ẋφ needs to be in C1). For less

smoothness such as φ ∈ C1, one has to resort to the Lemma of DuBois-Reymond. (3.10) is
the infamous Euler-Lagrange equation and all of its solutions are called extremals [71]. The
Euler-Lagrange equation is an explicit ODE of second order and describes together with the
boundary conditions (3.2) a two-point boundary value problem (TPBVP). For varying initial
and endpoints, the ODE (3.10) must suffice the so-called natural boundary conditions

φẋ

∣
∣
∣
∣
t0

= 0, φẋ

∣
∣
∣
∣
tf

= 0. (3.11)

Free end state and end time

x

tt0

x0 b

h(x(tf ), tf )

Figure 3.3: Optimal solution x∗ (solid) and comparison curves (dashed)

Assume that the end condition is not given as a boundary condition in the form (3.2b) but
rather implicitly as

h(x(tf ), tf ) = 0. (3.12)

In order to get admissible variations, the problem has to be transformed into an unconstrained
problem. This is achieved by adjoining (3.12) with a Lagrange parameter ν ∈ R

nν to the cost
functional (3.1) so that the reformulated cost functional reads as

J(x(t)) := ν · h(x(tf ), tf ) +

∫ tf

t0

φ(x(t), ẋ(t), t)dt. (3.13)
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In addition to variations of the function x along the trajectory, variations of the final time
and final state need to be considered now as well:

J(ε) = ν · h(x(tf ) + εδx(tf ), tf + εδtf ) +

∫ tf+εδtf

t0

φ(x(t) + εδx, ẋ(t) + ε ˙δx, t)dt (3.14)

Preceding as in (3.8)-(3.9)

dJ

dε

∣
∣
∣
∣
ε=0

= ν ·
∂h

∂xf
δxf+ν ·

∂h

∂tf
δtf+φ

∣
∣
∣
∣
tf

δtf+φẋ

∣
∣
∣
∣
tf

(δxf−ẋδtf )

∣
∣
∣
∣
tf

+

∫ tf

t0

[

φx −
d

dt
φẋ

]

δxdt (3.15)

and grouping terms with the help of the relation δxf = δx(tf )+ẋδtf [67, 88], the first variation
for free final time and state is obtained

δJ =+

(

ν ·
∂h

∂xf
+ φẋ

) ∣
∣
∣
∣
tf

δxf

+

(

ν ·
∂h

∂tf
+ φ− ẋφẋ

) ∣
∣
∣
∣
tf

δtf

+

∫ tf

t0

[

φx −
d

dt
φẋ

]

δxdt.

(3.16)

Together with the boundary conditions at initial time and the Fundamental Lemma, the
TPBVP can be formulated as

φx −
d

dt
φẋ = 0 (3.17)

subject to

t0 = 0,

x(t0) = x0,

ν ·
∂h

∂xf
+ φẋ

∣
∣
∣
∣
tf

= 0,

ν ·
∂h

∂tf
+ (φ− ẋφẋ)

∣
∣
∣
∣
tf

= 0,

h(x(tf ), tf ) = 0,

(3.18)

where h(x(tf ), tf ) = 0 are the so-called side conditions [22]. This can be carried out analo-
gously for free initial time and state, albeit uncommon in engineering applications.

General first variation

To further extend the problem formulation, a finite amount of discontinuities of the solution
is permitted. This means x ∈ C1

p([t0, tf ],R), the function space of piecewise continuously
differentiable functions. Without loss of generality only one jump at tJ is considered, the
extension to multiple jumps is straightforward. Again, the jump condition is adjoined in the
same manner as before as well as initial and terminal conditions by g := ν ·h(...), making the
functional

J(x(t)) = g(t0, tJ , tf , x(t0), x(t
−
J ), x(t

+
J ), x(tf )) +

∫ tf

t0

φ(x(t), ẋ(t), t)dt (3.19)
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The general first variation is derived as seen previously with the corresponding variations (cf.
[80])

δJ =+

[
∂g

∂t0
− (φ− ẋφẋ)

]∣
∣
∣
∣
t0

δt0

+

[
∂g

∂tJ
+ (φ− ẋφẋ)

− − (φ− ẋφẋ)
+

]∣
∣
∣
∣
tJ

δtJ

+

[
∂g

∂tf
+ (φ− ẋφẋ)

]∣
∣
∣
∣
tf

δtf

+

[
∂g

∂x0
− φẋ

]∣
∣
∣
∣
t0

δx0

+

[
∂g

∂x−J
+ φ−

ẋ

]∣
∣
∣
∣
tJ

δx−J +

[
∂g

∂x+J
− φ+

ẋ

]∣
∣
∣
∣
tJ

δx+J

+

[
∂g

∂xf
+ φẋ

]∣
∣
∣
∣
tf

δxf

+

∫ tf

t0

[

φx −
d

dt
φẋ

]

δxdt,

(3.20)

where x(t±J ) := lim
ε→0,ε>0

x(tJ ± ε).
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t

b

b

b

b

t0

x0

tf

xf

x+J

x−J

tJ
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b

t0

x0

tf

xJ
xf

tJ

Figure 3.4: Discontinuity (left) and corner (right) at tJ

Due to interior point conditions (terms 2, 5 and 6 of (3.20)) this is not a TPBVP anymore.
Now a multi-point boundary value problem (MPBVP) needs to be solved comprising the
Euler-Lagrange equation and corresponding point conditions.

Corner conditions

If a continuous solution is desired, x ∈ C1
c ([t0, tf ],R), then the condition at a jump is x−J −x+J =

0. Again, adjoining it with a Lagrange parameter ν to the term g (arguments of g dropped
for readability) g̃ := g + ν(x−J − x+J ) leads to the following partial derivatives

∂g̃

∂tJ
= 0,

∂g̃

∂x+J
= −ν,

∂g̃

∂x−J
= ν. (3.21)
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Summands 2,5 and 6 from the first variation (3.20) for varying tJ , x
+
J and x−J yield

[
∂g̃

∂tJ
︸︷︷︸

=0

+(φ− ẋφẋ)
− − (φ− ẋφẋ)

+

]∣
∣
∣
∣
tJ

= 0 (3.22)

[
∂g̃

∂x−J
︸︷︷︸

=ν

+φ−
ẋ

]∣
∣
∣
∣
tJ

= 0

[
∂g̃

∂x+J
︸︷︷︸

=−ν

−φ+
ẋ

]∣
∣
∣
∣
tJ

= 0 (3.23)

Solving (3.23) for ν together with (3.22) becomes

φ−
ẋ = φ+

ẋ (3.24a)

(φ− ẋφẋ)
− = (φ− ẋφẋ)

+ (3.24b)

(3.24a) and (3.24b) are called first and second Erdmann-Weierstrass corner condition, respec-
tively. The Hamiltonian (or Hamilton function) is defined as

H := φ(x, ẋ, t)− ẋφẋ(x, ẋ, t) (3.25)

The Beltrami identity (a special case of Noether’s (first) theorem) states that the Hamiltonian
is constant if the independent variable does not appear explicitly (time-invariant case)

Proof

d

dt
H = φt + φxẋ+ φẋẍ− ẍφẋ − ẋ

(
d

dt
φẋ

)

= φt + ẋ (φx − (
d

dt
φẋ))

︸ ︷︷ ︸

=0 (Euler-Lagrange eq.)

= φt (3.26)

If H is time-invariant, then φt = 0 ⇔ dH
dt = 0 ⇔ H = const. a.e.

�

Legendre-Clebsch condition and higher-order conditions

In static optimization, the well-known second-order necessary condition for a local minimum
is f ′′(x) ≥ 0. Similarly, for a second-order (or generally higher-order) necessary condition(s)
in dynamic optimization, one has to look at the second variation and demand it to be positive
semidefinite [71]

d2J

dǫ2

∣
∣
∣
∣
ǫ=0

=

∫ tf

t0

φxxδx
2 + φxẋ

˙δxδx+ φẋẋ
˙δx
2
dt

!
≥ 0 (3.27)

This leads (amongst others) to
φẋẋ ≥ 0. (3.28)

(3.28) was falsely proven by Legendre and correctly proven later on by Alfred Clebsch, therefore
coining the term Legendre-Clebsch condition. It is a second-order necessary condition and
can be simplified for optimal control. In general, higher-order necessary and/or sufficient
conditions are difficult to pose and verify for real-world problems. Hence, they will not be
considered in this thesis.
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3.2 General Optimal Control Problem Formulation in Banach
Spaces

Minimize

J =

∫ tf

t0

L(x(t), u(t), t)dt (3.29)

subject to

f(x(t), u(t), t) = ẋ, (3.30a)

req(t0, x(t0), tf , x(tf )) = 0, (3.30b)

rin(ti, x(ti), x(t
−
i ), x(t

+
i )) = 0, (3.30c)

C(x(t), u(t), t) ≤ 0. (3.30d)

(3.29) is the cost functional, (3.30a) a first-order ODE in explicit form (the dynamics),
(3.30b) the initial and terminal boundary manifold, (3.30c) the interior point conditions and
(3.30d) mixed inequality constraints (also: path constraints)1. The function x is called state
with x ∈ W1,∞([t0, tf ],R

nx) and the function u is called control with u ∈ L∞([t0, tf ],R
nu).

Endowing these spaces with the strong norm ‖x‖1,∞ = ‖x(t0)‖2 + ‖ẋ‖∞ and the norm2

‖u‖ := ess sup{‖u‖2|t ∈ [t0, tf ]} the following Banach spaces are obtained [25]:

• (W1,∞([t0, tf ],R
nx), ‖x‖1,∞), the Sobolev space of uniformly Lipschitz -continuous func-

tions and

• (L∞([t0, tf ],R
nu), ‖u‖), the Banach space of essentially bounded, measurable functions

Necessary conditions

For now, inequality constraints are neglected. In order to get admissible variations, the
problem has to be transformed into a free problem (unconstrained problem). Initial and
terminal conditions, as well as interior point conditions are adjoined as before such that they
are incorporated in a function g preceding the integral term. This leads to the reformulated
problem (for one interior point condition)

J(x(t), u(t), t) = g(t0, tJ , tf , x(t0), x(t
−
J ), x(t

+
J ), x(tf )) +

∫ tf

t0

L(x(t), u(t), t)dt → min! (3.31)

subject to
ẋ(t) = f(x(t), u(t), t). (3.32)

g is called Mayer term (also: terminal cost) and L Lagrange term (also: running cost).
Optimal control problems are classified by these terms as

• Mayer problem, if g 6= 0 and L = 0

1Note that this implies equality constraints on the entire domain by setting C(x(t), u(t), t) ≤ 0 and
−C(x(t), u(t), t) ≤ 0 ⇒ C(x(t), u(t), t) = 0.

2In a measure space (X,
∑

, µM ), the essential supremum is defined as ess sup f := inf{a ∈ R :
µM ({x : f(x) > a})}.
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• Lagrange problem, if g = 0 and L 6= 0

• Bolza problem, if g 6= 0 and L 6= 0

The problem classes are all equivalent and can be transformed into each other. The dynamics
ẋ(t) − f(x(t), u(t), t) = 0 are adjoined by piecewise continuously differentiable Lagrangian
functions3 λ called adjoints or costates in order to obtain the first variation

δJ =+

[
∂g

∂t0
−H

]∣
∣
∣
∣
t0

δt0

+

[
∂g

∂tJ
+H− −H+

]∣
∣
∣
∣
tJ

δtJ

+

[
∂g

∂tf
+H

]∣
∣
∣
∣
tf

δtf

+

[
∂g

∂x0
+ λ

]∣
∣
∣
∣
t0

δx0

+

[
∂g

∂x−J
− λ−

]∣
∣
∣
∣
tJ

δx−J +

[
∂g

∂x+J
+ λ+

]∣
∣
∣
∣
tJ

δx+J

+

[
∂g

∂xf
− λ

]∣
∣
∣
∣
tf

δxf

+

∫ tf

t0

[

Hx +
d

dt
λ

]

δλ+Huδu+

[

Hλ −
d

dt
x

]

δxdt.

(3.33)

With the Fundamental Lemma of CoV 3.1.1 (or the Lemma of DuBois-Reymond) the integral
terms become

ẋ = Hλ(x, u, λ) = f(x, u, λ) (3.34a)

λ̇ = −Hx(x, u, λ) (3.34b)

Hu = 0, (3.34c)

where H is the Hamiltonian, which is defined as H = L + λT f for optimal control. As in
CoV, it is constant if the time does not appear explicitly. Moreover, if the final time does not
appear explicitly in the Mayer term, then H ≡ 0. The equivalent to the Legendre-Clebsch
condition (3.28) for optimal control is Huu to be positive semidefinite.
(3.34a) is again the dynamics, (3.34b) the adjoint equations, and (3.34c) the optimality con-
dition. Invoking the implicit function theorem for the assumption Hu 6= 0 and Huu > 0
guarantees unique solvability w.r.t. the control u and so for some function g̃1 the following
holds: u = g̃1(x, λ). This function can be plugged into equations (3.34a) and (3.34b) to obtain

(
ẋ

λ̇

)

=

(
f(x, λ, g̃1(x, λ))

−Hx(x, λ, g̃1(x, λ))

)

=

(
f̃(x, λ)

−H̃x(x, λ)

)

. (3.35)

The corresponding boundary and interior point conditions are drawn from the first variation
(3.33) to complete the MPBVP. The case that it is not possible to extract a control this way
will be discussed in the sequel.

3These functions are often called Lagrange parameters due to the similar adjoining approach in nonlinear
optimization.
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3.3 Singular Optimal Control Problems

Optimal control problems are defined to be singular if

det(Huu) = 0, (3.36)

meaning that the Hessian of the Hamiltonian w.r.t. the control u is singular (hence the name,
cf. [41]). The most prominent and dominant subclass of singular optimal control problems
are those with a control-affine Hamiltonian (the control enters linearly into the Hamiltonian).
These problems often arise in industrial problems, such as robotics and aerospace applications.
In order to find candidates for the optimal control u∗ ∈ U , the domain U of admissible controls
has to be bounded, closed, convex and with non-empty interior [83]. For this class of problems
conditions (3.34c) and (3.28) are replaced with what is nowadays widely know as Pontryagin’s4

Minimum5 Principle [85]

H(x∗, u∗, λ∗, t∗) ≤ H(x∗, u, λ∗, t∗), (3.37)

meaning that the optimal control minimizes the Hamiltonian

u∗ = argmin
u∈U

H(x, u, λ, t). (3.38)

For umin ≤ u ≤ umax the control then takes the form of

u =







umin if s > 0

using if s ≡ 0

umax if s < 0,

(3.39)

where s is called switching function. It is defined as

s :=
∂

∂u
H(x, u, λ, t). (3.40)

If the switching function s exhibits only isolated zeros, then the control alternates purely
between the lower bound umin and the upper bound umax and the isolated zeros of s determine
the corresponding switching times. These type of controls are called bang-bang controls. If
the switching function equals zero on at least one interval t ∈ [ta, tb], so-called singular arcs
using occur. In this case the switching function is differentiated w.r.t. time until the control
appears explicitly in order to obtain an analytical expression for using. Let i ∈ N be the
smallest integer for which the control u appears explicitly

∂

∂u

(
di

dti
∂

∂u
H(x, λ, u)

)

6= 0 (3.41)

The order of the singular control is then defined as ns :=
i
2 and i is always an even number

(for a proof refer to [63]). For non-scalar controls the switching function (3.40) becomes a

4An in-depth look into contributions of other famous mathematicians can be found in the historical paper
in [84].

5Originally called Maximum Principle due to modeling differences.
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vector field and (3.39) and (3.41) are understood componentwise w.r.t. each control.
Until now, no general assumption about existence or number of singular arcs can be made.
Also, it is not guaranteed that ns is finite, that means for the case of ns = ∞ it is not possible
to extract the control by differentiation as proposed in (3.41).
In [7, 66] the existence of singular arcs is eliminated by evaluating further necessary conditions,
known as Goh-Legendre condition:
Let u ∈ R

l be a singular control on t ∈ [ta, tb] and ns,i denote the order of the singular control
ui, then for each finite ns,i

∂

∂ui

(
dk

dtk
∂

∂uj
H(x, λ, u)

)

= 0 (3.42)

holds for all k = 0, ..., (ns,i + ns,j), 1 ≤ i, j ≤ l on t ∈ [ta, tb] [48].
Furthermore, if ∀i ns,i < ∞ then

(−1)ns,j
∂

∂uns,i

(
dns,i+ns,j

dtns,i+ns,j

∂

∂uns,j

H(x, λ, u)

)

(3.43)

must be symmetric and positive semidefinite (1 ≤ i, j ≤ k) [70]. For the case of a scalar con-
trol, (3.43) corresponds to the (strict for positive definiteness) generalized Legendre-Clebsch
condition of singular optimal control problems (proven in [63]).
Since (3.42) and (3.43) are only necessary conditions, they can only be used to prove that
singular arcs are non-optimal if the conditions are violated, however, otherwise no assump-
tion can be made. A remedy can be found by introducing a regularization term or model the
problem differently to avoid occurrences of singular arcs with infinite order.

3.4 Inequality Constraints

In general, solving optimal control problems with inequality constraints is a cumbersome task.
To alleviate and structurize the handling of such constraints, the following classification is
made

• Mixed inequality constraints C(x(t), u(t), t) ≤ 0 (see (3.30d))

• (Pure) control inequality constraints C(u(t), t) ≤ 0 with ∂
∂xC ≡ 0

• (Pure) state inequality constraints C(x(t), t) ≤ 0 with ∂
∂uC ≡ 0

Without loss of generality it is always possible to transform time-variant optimal control prob-
lems into time-invariant ones by parameterizing the time as new additional state. Therefore,
state inequality constraints will be given in the form of C(x(t)) and control inequality con-
straints in the form of C(u(t)) for the next subsection to enhance readability. Subsequently,
state inequality constraints will be examined.

State inequality constraints

A boundary arc occurs if C(x) ≡ 0 holds for an interval t ∈ [tentry, texit], otherwise the
extremal is said to be free (C(x) < 0). If C(x) = 0 holds only at discrete points tc, then a
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tentry texit
(a) Boundary arc

tc
(b) Contact point

tc
(c) Touch point

Figure 3.5: Constraint is active on (a) t ∈ [tentry, texit] and (b)-(c) t = tc, i.e. C(x(t)) = 0
∀t ∈ [tentry, texit] ∪ tc, otherwise C(x(t)) < 0

contact point occurs, or a touch point if additionally d
dtC(x)

∣
∣
tc

= 0 holds (see Figure 3.5).
Let nq denote the order of the state inequality constraint, i.e. nq is the smallest integer i ∈ N

such that
∂

∂u
Ci(x(t)) :=

∂

∂u

di

dti
C(x(t)) 6= 0. (3.44)

In the sequel, only one state inequality constraint is considered. The basic idea, pioneered by
Pontryagin is to form the extended Lagrangian

Lex(x(t), u(t), µ(t), t) := L(x(t), u(t), t) + µ(t) · Cnq(x(t), u(t), t), (3.45)

with µ ∈ L∞([t0, tf ],R) and adjoin the lower derivatives to the Mayer term at the entry point
(tangency constraints) with ν ∈ R

nq

g̃ := g(...) + νTN(x(t))

∣
∣
∣
∣
tentry

N(x(t)) :=






C(x(t))
...

Cnq−1(x(t))




 (3.46)

so that the functional becomes

J(x(t), u(t), t) = g̃(...) +

∫ tf

t0

Lex(x(t), u(t), t)dt → min! (3.47)

With the extended Hamiltonian

Hex(x, u, λ, µ, t) := Lex + λT f = L+ µCnq + λT f (3.48)

and by applying the familiar apparatus of CoV, the following necessary conditions for an
optimal control problem with one state inequality constraint of order nq are obtained [21, 55,
81]

1. Adjoint equations and dynamics

λ̇ = −Hex,x(x, u, λ, µ, t) (3.49a)

ẋ = f(x, u) (3.49b)
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2. Minimum Principle

u∗ = argmin
u∈U

Hex(x, u, λ, µ, t) (3.50)

3. Jump conditions

λT (t+entry) = λT (t−entry)−

nq∑

i=1

νi
∂

∂x(tentry)
Ci(x)

∣
∣
∣
∣
tentry

(3.51a)

λT (t+exit) = λT (t−exit) (3.51b)

4. Switching conditions

N(x)

∣
∣
∣
∣
tentry

= 0 (3.52a)

Cnq(x, ub)

∣
∣
∣
∣
t+entry

= 0 (3.52b)

Hex

∣
∣
∣
∣
t+entry

= Hex

∣
∣
∣
∣
t−entry

+

nq∑

i=1

νi
∂

∂tentry
Ci(x)

∣
∣
∣
∣
tentry

(3.52c)

Hex

∣
∣
∣
∣
t+exit

= Hex

∣
∣
∣
∣
t−exit

(3.52d)

5. Sign conditions

∀i = 0...nq − 1 νi ≥ 0 (3.53a)

∀i = 0...nq − 1 (−1)i
di

dti
µ(t) ≥ 0 µC = 0 (3.53b)

The missing interior point, initial and end conditions are drawn from the first variation. The
sign conditions and Hamiltonian are used as test functions that are evaluated a-posteriori to
assess numerical discrepancies. Due to the fact that the inequality constraint is adjoined by
its derivative, this approach is known as indirect adjoining approach. Intuitively, if adjoined
directly without differentiating, it is called direct adjoining approach.
Similar conditions can be established for

• the direct adjoining approach (see [69] for a relation of the parameter between the two
approaches)

• touch and contact points

• boundary arcs where the adjoints are continuous across the entry point and exhibit
jumps at the exit points

• multiple state inequality constraints

An excellent survey covering these topics can be found in [55]. Inequality constraints that
involve the control can be treated as state inequality constraint of order zero.
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3.5 Numerical Treatment

Since optimal control problems are seldomly analytically solvable (mostly only if the prob-
lem at hand is linear, time-invariant and low-dimensional) the focus heavily relies on good
numerical algorithms. Three approaches exist and are introduced in the following.

Hamilton-Jacobi-Bellman equation

Around the same time as Lev Pontryagin (1908-1988) developed the Maximum Principle,
Richard Bellman (1920-1984) approached the optimal control problem via Dynamic Pro-
gramming, which led for infinitely small time steps to

−
∂J

∂t
(x, t) = min

u

(

L(x, u) +
∂J

∂x
(x, t) · f(x, u)

)

(3.54)

subject to a boundary condition relating to the Mayer term.
The partial differential equation (3.54) is called Hamilton-Jacobi-Bellman (HJB) equation and
is the continuous-time analogon to the discrete-time dynamic programming algorithm [12].
It might be enticing to favor this approach because evaluating (3.54) over the whole state-
space is not only a necessary but also sufficient condition (cf. [15]). Unfortunately, for higher
dimensions Bellman’s “curse of dimensionality” occurs, meaning that the computational effort
grows exponentially in the dimensions of the state and control [77].
If the problem exhibits an easy structure, such as the Linear Quadratic Regulator, where the
state and the control appear linearly in the dynamics and quadratic in the cost function,
solving the HJB equation leads to the Riccati differential/algebraic equation for a finite/an
infinite horizon [71].

Direct methods

Direct methods share the common principle of discretizing the control and/or the state in
order to transform the infinite-dimensional optimal control problem into a finite-dimensional
Nonlinear Programming (NLP) problem.

• Discrete Mechanics
A novel approach for mechanical structures is presented in [79] by discretizing Hamil-
ton’s principle prior to the evaluation of the Euler-Lagrange equations and optimizing
with the resulting discrete equations.

• Direct Single Shooting
The method relies on control discretization by substituting the control vector with an
approximation of linearly combined basis functions, such as constant, linear, cubic B-
splines followed by numerical integration of the dynamics (see [54]).

• Collocation
Discretizations of the controls and states with collocation techniques are used to satisfy
the dynamics, which leads to a large-scale, sparse NLP.
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• Direct Multiple Shooting
This is a combination of Direct Single Shooting and Collocation techniques. A control
discretization takes place as in Direct Single Shooting, together with a state discretiza-
tion.

• Pseudospectral Methods
Will be discussed shortly in more detail due to its usage in this thesis.

These methods benefit from recent advantages in NLP optimization and powerful state-of-
the-art sequential quadratic programming (SQP) (sparse if needed) or interior point (IP)
methods can be employed. Also, neither system knowledge (e.g. switching structure in singular
optimal control problems) nor theory of CoV is required a-priori. The burdensome task of
setting up a MPBVP in the presence of inequality constraints and multiple interior point
constraints is therefore avoided. This makes direct methods easily applicable even for highly
complex systems where the dynamic behavior cannot be estimated beforehand, so it is clear
that the overwhelming majority of optimal control problems was solved by these so-called
“first discretize, then optimize” methods lately. This comes at a price: Due to the early
discretization the solution is only suboptimal.

Excursus in spectral methods

Spectral methods originate from fluid dynamics and the problem of numerically solving partial
differential equations [26]. Similar to a local approach in finite element methods, where linear
combinations of non-smooth functions with small local support are chosen, spectral methods
linearly combine functions that are (generally) nonzero on the entire domain. Together with
an appropriate choice of support points this global collocation approach is beneficial for the
convergence property of smooth functions, so called spectral convergence/accuracy [60].
For the numerical integration, the Gauss Quadrature is defined as

∫ 1

−1
f(τ)dτ ≈

N∑

i=1

wif(τi), (3.55)

where N is the number of support points τi ∀i = 1, ..., N . The integration limits pose no loss
of generality since the domain can always be scaled via the affine-transformation

τ :=
2

tf − t0
t−

tf + t0
tf − t0

(3.56)

from t ∈ [t0, tf ] to τ ∈ [−1, 1]. A popular choice are Legendre-Gauss (LG) points where the
support points τi are roots of the (L2-orthogonal) Legendre polynomials

PN (x) =
1

2NN !

dN

dxN
(x2 − 1)N (3.57)

and the weights are determined by

wi =
2

(1− τ2i )(P
′
N (τi))2

(3.58)

so that polynomials of degree 2N−1 are integrated exactly. Other choices are Legendre-Gauss-
Radau (LGR) points and Legendre-Gauss-Lobatto (LGL) points where the main difference is
that
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(b) Relative error on a logarithmic scale, machine
accuracy achieved after 8 support points

Figure 3.6: (a) Distribution of 8 support points, (b) Spectral convergence of the Gauss
Quadrature for

∫ 1
−1 e

tdt using LG, LGL and LGR points

• LG collocation points lie in the open interval τ ∈ (−1, 1)

• LGR collocation points are roots of PN (x) + PN−1(x) and lie in the half-open interval
τ ∈ [−1, 1) or τ ∈ (−1, 1] (exact for polynomials of degree 2N − 2)

• LGL collocation points are roots of (1 − x2)P ′
N−1(x) and lie in the closed interval

τ ∈ [−1, 1] (exact for polynomials of degree 2N − 3)

The distribution of the support points is depicted in Figure 3.6(a) for polynomials of degree
8. All exhibit the spectral convergence property, i.e. after a relatively low number of support
points the machine accuracy is already achieved. Figure 3.6(b) shows an example, where the
integral

∫ 1
−1 e

tdt is solved numerically.

Pseudospectral methods in optimal control

The motivation behind pseudospectral methods in optimal control is to obtain a highly ac-
curate approximation of the cost functional by Gauss Quadrature with only a small number
of support points. The state and control functions are approximated by

y(τ) ≈ Y (τ) =
N∑

i=1

Li(τ)Y (τi), (3.59)

where Li denote Lagrange polynomials6 with the corresponding isolation property

Li(τ) =
N∏

i=1

τ − τj
τi − τj

Li(τj) =

{

1 for i = j

0 for i 6= j
(3.60)

6State and control discretization do not necesarily share the same polynomials or even support points.
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Due to occurences of the well-known Runge phenomenon, equidistant points are an unfortu-
nate choice for support points and so the support points mentioned previously are selected to
nullify this undesired effect. The choice of support points coines the names Gauss pseudospec-
tral method, Radau pseudospectral method and Lobatto pseudospectral method, respectively.
With (3.55) and (3.59) the optimal control problem can be transcribed to a nonlinear opti-
mization problem that needs to satisfy the first-order optimality conditions, so called Karush-
Kuhn-Tucker (KKT) conditions. Either SQP or IP methods are used to solve the NLP
numerically.

Obviously, non-smooth solutions arise in optimal control problems (e.g. a bang-bang control)
so that the spectral convergence property does not hold anymore. Multidomain techniques
address this problem and try to recover some of the advantages of the spectral methods
(hence pseudospectral). The basic idea is to divide the domain into smaller segments, so
called meshes, and scale these again to [−1, 1] in order to apply aforementioned techniques.
According to [88], Radau pseudospectral methods are superior in a multiple interval formu-
lation due to the fact that

• no overlapping/redundant points occur as in Lobatto pseudospectral methods (where
LGL collocation points are used) and

• the endpoint within a mesh is collocated as opposed to Gauss pseudospectral methods
(where LG points are used), see Figure 3.6(a). Since the LGR points are in τ ∈ [−1, 1),
the endpoint collocation is achieved by flipping the LGR points.

The multiple mesh formulation leads to a sparse differentiation matrix resulting from the
NLP discretization that should be exploited when choosing a nonlinear optimizer to enhance
computational speed. Moreover, the differentiation matrix is rectangular and has full rank
for LG and LGR points, whereas the differentiation matrix is singular for LGL points [43].

A particulary interesting property of Gauss and Radau pseudospectral methods is that the
resulting costates arising from the NLP optimality conditions are algebraically related to
the costates of the discretized BVP at the collocation points. Therefore, they yield a discrete
representation of the continuous-time first-order optimality conditions with a costate mapping
as long as the costates are continuous (see Figure 3.7). If the costates are discontinuous, then
the approximation of the costates depends on the location of the collocation points. By placing
the mesh points at discontinuities the approximation of the costates is improved significantly
[31].

A strategy to obtain better solutions (in the sense of accuracy and computational speed)
in pseudospectral methods is the hp-adaptive7 mesh refinement technique. An algorithm is
presented in [33] that decides in each iteration step whether it is better to further subdivide
the meshes or to increase the number of collocation points within a segment until a certain
tolerance is met. However, the drawback of

• an increasing number of meshes is that the NLP problem will become very large and
therefore difficult to compute a solution (although the sparsity will increase as well)

• increasing the polynomial degree is that the NLP problem will become more dense and
computationally intractable

7h stands for the number of meshes and p for the polynomial degree.
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Continuous-Time
Optimal Control Problem

Continuous BVP

Discrete NLP

Discrete BVP

KKT conditions

CoV optimality
conditions

Transcription
at LG/LGR points

Transcription
at LG/LGR points

Costate
mapping

NLP optimality
conditions

Figure 3.7: Direct and indirect methods in optimal control and how the costate mapping
comes into play in pseudospectral methods [60].

Efficient implementations should use as few mesh intervals as possible and the lowest possible
polynomial degree approximation in each mesh interval.

The underlying heuristic of the algorithm is that subdivions of the meshes are preferable if
the solution is discontinuous/rapidly changing in order to place the mesh points at locations
of nonsmoothness (exemplified in Figure 3.8), whereas a polynomial increase in a mesh is
preferable if the solution is smooth in order to exploit the spectral convergence. Since the

⊕ ⊕ ⊕ ⊕ ⊕

(a)

⊕ ⊕ ⊕ ⊕

(b)

Figure 3.8: Optimal solution (blue) with (a) initial mesh grid and (b) a mesh grid considered
“best fit”

structure of the solution is in general not clear a-priori, the algorithm initially starts with a
uniform (coarse) distribution of mesh points with low polynomial order. To asses smoothness
within each mesh interval the curvature

κ(k) =
|ẍ

(k)
m |

∣
∣
∣
∣

[

1 + (ẋ
(k)
m )2

]3/2
∣
∣
∣
∣

(3.61)

serves as a primary tool, where xm is the component of the state approximation that cor-
responds to the maximum (absolute) error of the discretized dynamic equation in the k-th
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mesh interval

e(k)max := max
i,j

∣
∣
∣
∣
ẋ
(k)
i (t̄

(k)
j )− f

(k)
i (X

(k)
j , U

(k)
j , t̄

(k)
j )

∣
∣
∣
∣
, (3.62)

where i ∈ 1, ..., n and t̄j with j ∈ 1, ..., L are L arbitrary chosen points within a mesh interval.
More precisely, the decision process is based on the ratio between maximum curvature and

average curvature rk := κ
(k)
max/κ

(k)
avg. Algorithm 1 outlines the concept where rmax > 0 is a

Algorithm 1 hp-adaptive mesh refinement

1: for k=1...K do

2: while e
(k)
max > TOL do

3: if r ≥ rmax or Nk > M then

4: Refine k-th mesh into nk subintervals and set degree of the polynomials on
5: each of the subintervals to be M
6: else

7: Set the degree of the polynomials on the k-th subinterval to be Nk

8: end if

9: end while

10: end for

user-specified parameter, Nk/nk the number of collocation points within each mesh inter-
val/subinterval with

Nk = M +

⌈

log10

(

e
(k)
max

TOL

)⌉

+ 1 nk =

⌈

2 log10

(

e
(k)
max

TOL

)⌉

(3.63)

for each iteration and M the (pre-specified) initial polynomial degree. A more detailed de-
scription is given in [33, 88], e.g. how to find the locations of the new mesh points using the
integral of a curvature density function. This is beyond the scope of this thesis. An alter-
native hp-adaptive mesh refinement method without the curvature approach is proposed in
[32].

Subsequently, the open-source MATLAB toolbox GPOPS will be used as indirect solver of
choice. It uses the Radau pseudospectral method8 and incorporates useful features as the
hp mesh refinement technique, the costate estimation and the option to pass the analytic
derivatives of the dynamics and cost function, which improves the speed of the calculations
considerably. Additionally, the user is able to define phases, where different dynamics or cost
functions can be specified within each phase. The corresponding interior point conditions
between the phases are then passed in a so called linkage file. GPOPS comes with a restricted
version of SNOPT [47], an NLP solver utilizing a sparse SQP Quasi-Newton method.
For more on pseudospectral methods refer to [13, 43, 60, 88]. Other software tools that employ
pseudospectral methods are e.g. DIDO [89], PROPT [90] and PSOPT [11].

8The first version employed the Gauss pseudospectral method and coined the name, the advantages of LQR
collocation points became apparent later.
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Indirect methods

Indirect methods are characterized by making explicit use of the optimality conditions arising
from the theory of CoV.

• Gradient Methods
The method relies on iterative optimization of the optimal control by maximizing the
Hamiltonian subject to the according MPBVP [34, 62, 67].

• Collocation
The MPBVP is solved using collocation techniques [8, 37].

• Shooting Methods
In single shooting the BVP problem is solved forward in time with initial guesses for
the states and the adjoints. A function that calculates the difference between the exact
end values and the values found by the forward integration (the so-called shooting) then
needs to be minimized. The algorithm of choice to find the roots of this function is often
Newton’s method, which is known to converge fast if the initial values are sufficiently
close to the optimal solution. This is the main drawback of shooting methods since the
adjoints cannot be estimated easily and convergence is not guaranteed. Multiple shooting
methods try to minimize this by dividing the domain into multiple smaller segments and
“shoot” in each of those and assemble a solution on the entire domain [23, 35, 81, 102].
Also, Homotopy techniques/Continuation methods are often employed to overcome the
difficulty of finding the switching structure (i.e. the sequence of boundary-, bang- or
singular arcs) and reasonable initial values [24, 36, 57, 83].

The main advantage of indirect methods is that the solution is highly accurate. This is due
to the control structure (e.g. number of switching points, boundary or singular control in a
certain interval) that has to be found in order to apply these methods and so the optimality
conditions are already satisfied to a certain degree. As already hinted previously, it may not
always be possible to find a closed-form expression for the optimal control, e.g. in singular
optimal control problems if the order is not finite, and so one cannot establish a MPBVP.
Solving the problem by these so-called “first optimize, then discretize” methods is nullified
in this case. For low dimensional and not too complex problems these methods are often a
good choice.

In conclusion to this chapter, so-called hybrid methods should be mentioned as well, where
the optimal control problem is first solved via a direct approach and the resulting information
about the switching structure and adjoints is fed to an indirect solver in order to obtain a
solution with high precision.



Chapter 4

Mass Spring Systems

Mass spring systems are simple multibody systems consisting, as the name already implies,
only of masses and springs, here concatenated in alternation and only free to move in one
dimension. The harmonic oscillator as a special case is by far the most popular example and
has been already analyzed in depth (e.g. see [6] for an energetic contemplation in the context
of optimal control). Their simplicity allows (to an extent) to retrieve analytical solutions and
understand basic properties, eventually providing heuristics for (highly) nonlinear cases, such
as the double pendulum, where a closed-form solution cannot be obtained.
The systems will subsequently be classified by the number of masses (indicated by n). This
is equivalent here to the DoF due to the fact that one translational coordinate is sufficient to
describe the configuration because the rotation is not considered and no kinematic constraints
are prevalent. The Kutzbach criterion (2.3) therefore yields

n = (1 + 0) · nb − nc = nb. (4.1)

Throughout this chapter the goal will be to maximize the velocity of the last mass, where the
system rests at initial time t0 = 0.
According to [56] the mass proportions of the “standard” human arm (see Table 4.1) are
usually arranged in a descending kinematic chain, i.e. m1 > m2 > ....

Body part % of total body mass % of total arm absolute weight [kg]

Upper arm 2.8 56 1.96

Forearm 1.6 32 1.12

Hand 0.6 12 0.42

Total arm 5 100 3.5

Table 4.1: Arm proportions of the “standard” human. The total body mass is 70 [kg] (taken
from [56]).

For numerical examples, the mass ratios are chosen to be similar to the human arm, i.e. for
examples involving

• two masses m1 = m2 = 2 kg (Upper arm : Forearm+Hand ≈ 0.5 : 0.5 )

• three masses m1 = 2 kg, m2 = 1.5 kg and m3 = 0.5 kg (Upper arm : Forearm : Hand
≈ 0.5 : 0.35 : 0.15)
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Retrieving the stiffness from the human body is still a matter of current research. Here,
the stiffness is assumed to be linear and mechanical reasonable values k ∈ [25, 80] [N/m] are
chosen that are of the same order of magnitude as the HASy after scaling appropriately. For
analytical calculations the stiffness values will always be assumed to be greater than zero
because this will turn out to be helpful for later assumptions. The boundaries for the input
force are chosen to be at umax = −umin = 4 [N] and nonzero for analytical calculations. These
values will be used for numerical examples if not explicitly specified otherwise.
For convenience, all values used in numerical evaluations are summarized in Table A.1 in
Appendix A.

4.1 Constant Stiffness

First, mass spring systems with constant stiffness are considered. They can be seen as the
equivalent to intrinsically elastic/compliant robots without stiffness actuation mentioned in
Chapter 2.5.

2 DoF mass spring system

Fext

q1, q̇1 q2, q̇2

k1
m1 m2

Figure 4.1: 2 DoF mass spring system

The most basic system with force input is a system with two masses, a constant spring
connecting them and an external force acting on the first mass, see Figure 4.1. By deriving
the equations of motion with Newton’s second law

m1q̈1 = k1(q2 − q1) + Fext

m2q̈2 = k1(q1 − q2)
(4.2)

and defining the states as x := (q1, q2, q̇1, q̇2) and the control as u := Fext the state-space
equation can be written as

ẋ =
d

dt







q1
q2
q̇1
q̇2







=







0 0 1 0
0 0 0 1

− k1
m1

k1
m1

0 0
k1
m2

− k1
m2

0 0






x+







0
0
1
m1

0







u =: Ax+ bu, (4.3)

where q1, q2 is the position and q̇1, q̇2 the velocity of the first and second mass respectively.
k1 > 0 denotes the stiffness constant. Additionally, the control is constrained by

umin ≤ u ≤ umax (4.4)
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with umin < 0 < umax. Aiming to maximize the velocity of the final mass, the cost function
reads as

J = −q̇2(tf ) = −x4(tf ) = g(x(tf )) → min! (4.5)

The necessary conditions for the optimal control problem (4.3)-(4.5) can be set up in accor-
dance with Chapter 3.2.
The final time is fixed at tf and the necessary conditions are drawn from (3.33) with δt0 = 0,
δx0 = 0 (fixed initial time and state), δtf = 0 (fixed end time) and δtJ = δx−J = δx+J = 0 (no
jumps considered). The system is resting at initial time, hence x0 = (0, 0, 0, 0)T . Since no La-
grange term is prevalent, the Hamiltonian results in H = λT f = λT (Ax+bu) = λTAx+uλT b
and due to the control-affine Hamiltonian, the problem belongs to the class of singular optimal
control problems. The costate differential equations are

λ̇ = −
∂H

∂x
= −fT

x λ = −ATλ, (4.6)

with the corresponding boundary (transversality) conditions

λ(tf ) =
∂g(x(tf ))

∂x(tf )
= (0, 0, 0,−1)T . (4.7)

The switching conditions for the control arise from the Minimum Principle (3.38)

s = Hu = λT b =
λ3

m1
⇒ u =







umax if λ3

m1
< 0

umin if λ3

m1
> 0

using if λ3

m1
≡ 0

(4.8)

For linear systems, the adjoint equations (4.6) neither depend on the control nor the state and
can be solved separately and backwards in time with the corresponding boundary conditions
(4.7). The switching function results in

s =
λ∗
3

m1
=

k1
ω2m1m2
︸ ︷︷ ︸

>0

(cos(ω2(t− tf ))− 1)
︸ ︷︷ ︸

≤0

≤ 0 (4.9)

and is only zero at isolated points, otherwise negative, therefore an optimal control is found by

u∗ = umax. The natural eigenfrequency is denoted by ω :=
√

k1
m1

+ k1
m2

. Now the state-space

equations (4.3) can be integrated forward in time together with the optimal control and initial
values x0. For a full solution of the states and costates, the reader is referred to Appendix
A.1 where the initial value problem for the dynamics (4.3) with initial values x0 = (0, 0, 0, 0)T

and the end value problem for the costates (4.6) with end values (4.7) are solved analytically.
The velocity of the second mass is then

x∗4 =
umax

m1 +m2

(

t−
1

ω
sin(ωt)

)

, (4.10)

where umax

m1+m2
is the total acceleration of the system. Local extrema can be located by calcu-

lating the first derivative of the velocity

ẋ∗4 =
umax

m1 +m2
(1− cos(ωt)) (4.11)
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and by evaluating the second derivative saddle points are found at t ∈ 2π
ω l ∀l ∈ N, i.e. integer

multiplicities of the period of the eigenfrequency. In this case, the deflection between the
masses is zero and no potential energy is prevalent.

If a desired velocity needs to be achieved at final time (now free to choose instead of fixed)
then [

umax

m1 +m2

(

t−
1

ω
sin(ωt)

)] ∣
∣
∣
∣
t=tf

!
= vd (4.12)

needs to hold. For integer multiplicities of π
ω this can be used to find a closed-form solution

for k1 by choosing the final time there as tf = πl
ω

−
1

ω
sin(ωtf ) + tf = −

1

ω
sin(2πl)
︸ ︷︷ ︸

=0

+
2πl

ω
=

vd(m1 +m2)

umax
⇒ ω =

2πumaxl

vd(m1 +m2)
(4.13)

and solving for k1

⇒ k1 =

(
2πlumax

vd(m1 +m2)
√

1
m1

+ 1
m2

)2

(4.14)

For more arbitrary final times a numerical solver will provide a solution. From now on, only
fixed final times will be considered for the rest of this chapter.

3 DoF mass spring system

Adding another spring and mass leads to the 3 DoF mass spring system, see Figure 4.2. The

Fext

q1, q̇1 q2, q̇2 q3, q̇3

k1 k2
m1 m2 m3

Figure 4.2: 3 DoF mass spring system

equations of motion can be derived as previously seen

m1q̈1 = k1(q2 − q1) + Fext

m2q̈2 = k1(q1 − q2) + k2(q3 − q2)

m3q̈3 = k2(q2 − q3)

(4.15)

and brought into the form of (2.25)

Mq̈ +Kq = F, (4.16)

with

M =





m1 0 0
0 m2 0
0 0 m3



 K =





k1 −k1 0
−k1 k1 + k2 −k2
0 −k2 k2



 F =





Fext

0
0



 =





u(t)
0
0



 (4.17)
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The necessary conditions are the same as before. Albeit innocent looking, straightforward
computation of the analytical solution with a computer algebra system leads to a large,
complex and unstructured solution. Modal analysis provides a helpful tool to unveil the
structure of the solution and gain more insight. The basic idea is to introduce a transformation
q = Qp that decouples the ODE (4.15) so that it decomposes into multiple second-order ODEs.
Q consists of eigenvectors1 (so-called eigenmodes) of M−1K so that

MQp̈+KQp = F / ·QT

QTMQ
︸ ︷︷ ︸

=:M̃

p̈+QTKQ
︸ ︷︷ ︸

=:K̃

p = QTF
︸ ︷︷ ︸

=:F̃

, (4.18)

where M̃, K̃ are diagonal matrices2 (for proofs and more on modal analysis see e.g. [72]). Let
ω2
i and ω̃2

i denote the eigenvalues of M−1K and M̃−1K̃ respectively, then the transformed
system m̃ip̈i + k̃ipi = f̃i(u(t)) ∀i ∈ {1, 2, 3} can be written as

p̈i +
k̃i
m̃i

pi =: p̈i + ω̃2
i pi = p̈i + ω2

i pi =
f̃i(u(t))

m̃i
. (4.19)

The equality ω̃2
i = ω2

i holds because M−1K and M̃−1K̃ share the same spectrum since the
matrices are similar to each other [58]

M̃−1K̃ = (Q−1MQ)−1(Q−1KQ) = Q−1M−1KQ (4.20)

There are two complex conjugated eigenvalue pairs corresponding to ω2
1/2 =

(
C2±C1

2m1m2m3

)2

where C1 and C2 are constants that can be found in Appendix A.2 and an eigenvalue at zero
with algebraic multiplicity two that corresponds to ω̃2

3 = ω2
3 = 0. From a mechanical point

of view it is reasonable that one eigenvalue will always be at zero since the system is free
to move in one dimension (in this case horizontally) [38] and that the constants C1 and C2

vanish only for pathological cases such as k1 = k2 = 0 and m1 = m2 = m3 = 0 because the
system can not oscillate anymore.

The initial conditions for (4.19) are given by p(t0) = Q−1q(t0) and ṗ(t0) = Q−1q̇(t0). The
solution of the new states p can now easily be calculated with the principle of superposition3

• for initial conditions q(t0) = ~0, q̇(t0) = ~0 ⇒ p(t0) = ~0, ṗ(t0) = ~0 (system rests at the
beginning) with

• ω2
i 6= 0 as pi(t) = −

f̃i(u)

k̃i
cos(ωit) +

f̃i(u)

k̃i

• ω2
i = 0 as pi(t) =

f̃i(u)

2m̃i
t2

(4.21)

1The columns of Q can be scaled and interchanged.
2However, F̃ is now fully occupied here.
3The subsequent step assumes that the control is constant a.e. so that the solution holds for each interval

between two control switches.
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• and for arbitrary initial conditions at t1: pi0 = Q−1q(t1) and ṗi0 =: pi1 = Q−1q̇(t1) with

• ω2
i 6= 0 as pi(t) =

(

pi0 −
f̃i(u)

k̃i

)

cos(ωit) +
pi1
ωi

sin(ωit) +
f̃i(u)

k̃i

• ω2
i = 0 as pi(t) = pi0 + pi1t+

f̃i(u)

2m̃i
t2

(4.22)

The solution for the initial states can now conveniently be expressed as

qi = qi1p1 + qi2p2 + qi3p3. (4.23)

The transformation matrix Q has been computed with the computer-algebra softwareMAPLE

Q =





q11 q12 1
q21 q22 1
1 1 1



 (4.24)

Due to large and complex entries, the interested reader is referred to the Appendix A.2 for a
detailed description of the matrix. Of major interest is the velocity of the final mass

x6 = q̇3 =
d

dt
{q31p1 + q32p2 + q33p3} q3i = 1∀i ∈ {1, 2, 3}

= ṗ1 + ṗ2 + ṗ3

= ω1
f̃1(u)

k̃1
sin(ω1t) + ω2

f̃2(u)

k̃2
sin(ω2t) +

f̃3(u)

m̃3
t

(4.25)

For arbitrary initial values the cosine terms are added accordingly.

A particularly interesting aspect arises when looking at the adjoint system

λ̇ =

[
0 M−1K
−1 0

]

λ (4.26)

and writing it as a second-order ODE by defining

λ̃1 := (λ1, λ2, λ3)
T λ̃2 := (λ4, λ5, λ6)

T (4.27)

to obtain
M

¨̃
λ2 +Kλ̃2 = 0. (4.28)

This system is equivalent to the unforced system (4.16) [82] and so the same transformation
can be applied with λ̃2 = Qp̃ and no recalculation of the matrix Q is necessary. The end
conditions expressed in the new modal coordinates are p̃(tf ) = Q−1λ̃2(tf ) = Q−1 · (0, 0,−1)T

and ˙̃p(tf ) = Q−1λ̃1(tf ) = Q−1 · (0, 0, 0)T = ~0 and the costates λi+3 i ∈ {1, 2, 3} can be derived
as follows

λi+3 = λ̃2i = p̃1(tf )q1i cos(ω1(t− tf )) + p̃2(tf )q2i cos(ω2(t− tf )) + q3i
︸︷︷︸

=1

p̃3(tf ) (4.29)

The switching function is then obtained as

s =
λ4

m1
=

λ̃21

m1
=

p̃1(tf )q11
m1

cos(ω1(t− tf )) +
p̃2(tf )q21

m1
cos(ω2(t− tf )) +

p̃3(tf )

m1
. (4.30)
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This makes evident that although a closed-form solution can be obtained, the zeros of the
switching function, in general, cannot be found analytically anymore. However, after finding
them numerically (e.g. Newton’s method), a solution can be assembled piecewise with (4.21)
and (4.22), and there is no need to use a full-blown (direct or indirect) optimal control solver.

Example
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Figure 4.3: High precision (quasi-analytical) solution of for the 3 DoF mass spring system
with constant stiffness calulated with MAPLE.

Figure 4.3 depicts an example with the values mentioned in the beginning of this chapter and
the stiffness set to k1 = 80 [N/m] for the first and k2 = 25 [N/m] for the second spring. The
final time is chosen in a similar manner as for the 2 DoF case as

tf =
2π

√
k1
m1

+ k1
m2+m3

+
2π

√
k2
m3

+ k2
m1+m2

=:
2π

ω1
+

2π

ω2
(4.31)

The zeros of the switching function have been found numerically using the solve command
implemented on MAPLE as t1 = 0.4891 and t2 = 0.7740. It is easy to find them with high
precision because they are nicely separated and reasonable initial values can be taken from the
plot of the switching functions, see Figure 4.3(a). Afterwards, the three initial value problems
are solved analytically and stitched together for a solution on the entire domain (see Figure
4.3(b) for the velocities). A switching of the control invokes a rapid change in the velocity
of the first mass and the corresponding trajectory exhibits edges at control switches, whereas
the other two masses are connected via springs and the solution is smoother.

It does not look like there is an obvious pattern that seems intuitive for the switchings of the
control. By choosing extremer values, here m1 = m2 = 2 [kg], m3 = 8 [kg], k1 = 40 [N/m]
and k2 = 10 [N/m], a pattern will become apparent. Figure 4.4 depicts the velocities of the
masses for this new problem and the background color indicates which control is active at
the time. It seems like the control tries to keep the first to masses inversely phased for as
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Figure 4.4: Velocities of the masses, the light purple background denotes u = umax and the
white one u = umin, the switchings occur between the color changes.

long as possible. Because there is a third mass attached, this will change after some time. A
switching is invoked as soon as these masses go out of phase and the control is switched to
guarantee that the two masses are in phase opposition again. A physical interpretation would
be that the maximal possible energy can be transferred to the third mass by this excitation
with eigenfrequency. For the 2 DoF case where only 2 masses are involved, this is always the
case. By attaching another mass via a spring this is not always guaranteed anymore, and
depending on spring stiffness and mass, the influence on the first two masses varies.

Controllability

Controllability plays an important role in the context of time-optimal control problems. In
this class, every linear system ẋ = Ax + Bu that is controllable does not exhibit singular
arcs, i.e. the optimal control will be of bang-bang type [67, 71]. The controllability condition
for linear system can be tested by evaluating if (B,AB,A2B, ..., An−1B) has full rank (also
known as Kalman’s criterion).

Hence, an n DoF mass spring system with only one external force acting on the first mass
is now examined with respect to the controllability property. It will be convenient here to
define the states as x := (q̇1, q1 − q2, q̇2, . . . , , qn−1 − qn, q̇n)

T , so that the state-space equation
takes the (reduced) form

ẋ =














q̈1
q̇1 − q̇2

q̈2
q̇2 − q̇3

...
q̇n−1 − q̇n

q̈n














=















0 − k1
m1

0 0 0 0 0

1 0 −1 0 0 0 0

0 k1
m2

0 − k2
m2

0 0 0

0 0 1 0 −1 0 0

0 0 0
. . . 0

. . . 0
0 0 0 0 1 0 −1

0 0 0 0 0 kn−1

mn
0















x+














1
m1

0
0
0
...
0
0














u, (4.32)

where A ∈ R
2n−1×2n−1 is a tridiagonal matrix with zeros in the main diagonal. The control-

lability matrix C = [b,Ab,A2b,A3b, . . . , A2n−2b] ∈ R
2n−1×2n−1 is then upper triangular and
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its diagonal elements are (proof see Appendix A.3):

diag(C) = {b1, b1 · a21, b1 · a21 · a32, . . . , b1 ·
2n−2∏

k=1

ak+1,k} (4.33)

The determinant of a triangular matrix is the product of its diagonal elements [58]:

det(C) =

(
1

m1

)

·

(
1

m1
· 1

)

·

(
1

m1
· 1 ·

k1
m2

)

· . . . ·

(

b1 ·
k1 · · · kn−1

m1 · · ·mn

)

(4.34)

If any ki, i ∈ {1, ..., n− 1} vanishes, then det(C) = 0 and the matrix is singular, the full rank
condition is violated and the system is not fully controllable anymore4. This is intuitively
clear, one or more vanishing springs decouple the mechanical system and the subsequent
masses cannot be influenced by a torque only acting on the first mass.
Consequences are twofold:

Every n DoF mass spring system with a torque acting on the first mass

• is fully controllable and every point in the state-space reachable by a continuous control
function

• can be brought to any configuration in state-space in minimum time by a bang-bang
control

Same properties hold for the simplification (2.43), i.e. instead of a torque acting on a mass, a
point whose velocity can be directly controlled is assumed (see Figure 4.5). Having found a
continuous function for the force input, the desired control function is immediately obtained
for a velocity input by integration of Newton’s second law (function will then be even in C1)
and the system is guaranteed to be controllable.

q̇1 = u q2, q̇2 qn, q̇n

k1 k2 kn−1
b m2 m3

Figure 4.5: n DoF mass spring system with velocity input

4.2 2 DoF Constant Stiffness Mass Spring System with De-
flection Constraint

As mentioned in Chapter 2 the deflection of the spring is of vital importance for the systems
health. Subsequently, this constraint is considered for the 2 DoF mass spring system with

4Same holds of course for multiple vanishing ki i ∈ {1, ..., n−1}, even more, the rankloss of the controllability
matrix increases the more proximal the springs to the torque input vanish (no proof, see diagonal elements of
C).
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constant stiffness. Assume the deflection is constrained by ϕ = q1− q2 = x1−x2 ≤ ϕmax with
ϕmax > 0 or written in the familiar form C(x) := x1 − x2 − ϕmax ≤ 0 from Chapter 3.4. To
gain more understanding of the problem at hand, it will be helpful here to reformulate the
cost functional with the help of (4.2) as

J = −q̇2(tf ) =

∫ tf

0
−q̈2dt = −

1

m2

∫ tf

0
m2q̈2dt

= −
1

m2

∫ tf

0
k1 (q1 − q2)
︸ ︷︷ ︸

=ϕ

dt =
k1
m2
︸︷︷︸

>0

∫ tf

0
−ϕ(t)dt → min

(4.35)

The implication is that, in order to maximize the velocity of the final mass, the deflection needs
to be maximized over time. Therefore, ideally, the deflection should be kept at ϕ = ϕmax.
However, at initial time the deflection is zero so the maximal deflection still has to be reached
as fast as possible. If ϕ = ϕmax = const., both masses move with the same velocity so that
q̇1 ≡ q̇2 ⇒ q̈1 ≡ q̈2 follows. The control ub that keeps the deflection at the boundary then can
be calculated with (4.2) and the aforementioned properties

m1q̈1 = k1(q2 − q1) + Fext = −k1ϕmax + ub

m2q̈2 = m2q̈1 = k1(q1 − q2) = k1ϕmax
(4.36)

by solving the equations above for q̈1 and subtracting them to be

ub = m1
k1
m2

ϕmax + k1ϕmax = m1ϕmax

(
k1
m1

+
k1
m2

)

= m1ω
2ϕmax. (4.37)

This is consistent with the optimal control theory from Chapter 3.4 and the boundary control
ub derived with tools of optimal control by solving equation (3.52b) for ub

d

dt
C(x) =

d

dt
(x1 − x2 − ϕmax) = x3 − x4

d2

dt2
C(x) =

d2

dt2
(x1 − x2 − ϕmax) = ẋ3 − ẋ4 =

(
k1
m1

+
k1
m2

)

︸ ︷︷ ︸

=ω2

(x2 − x1)
︸ ︷︷ ︸

−ϕ

+
u

m1

= −ω2ϕ+
u

m1

!
= 0 ⇒ ub = m1ϕmaxω

2

(4.38)

yields the same result. Due to the fact that the constraint needs to be differentiated twice
for u to appear explicitly, it is of second order. This makes the extended Hamiltonian

Hex(x, u, λ, µ) = λT f(x, u) + µ

(
d2

dt2
C(x)

)

= λT (Ax+ bu) + µ

(
d2

dt2
C(x)

)

, (4.39)

where d2

dt2
C(x) depends explicitly on u now and the derivative of the extended Hamiltonian

w.r.t. u is

Hex,u(x, u, λ, µ) = λT ∂

∂u
(Ax+ bu) + µ ·

∂

∂u

(
d2

dt2
C(x)

)

= λT b+ µ
1

m1
=

λ3

m1
+

µ

m1
. (4.40)

The Lagrangian function µ for the boundary arc µb = −λ3 can be obtained by solving
Hex,u = 0 for µ. If the state constraint is not active, i.e. x1 − x2 < 0, then µ ≡ 0 vanishes.
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For this case, no singular arcs occur as shown previously. The state and costate ODEs result
in the piecewise-defined ODEs

ẋ =

{

Ax+ bu for C < 0 with u = umax ∨ umin

Ax+ bub for C ≡ 0

λ̇ =







−ATλ for C < 0

−ATλ− µb

(
∂
∂x

d2

dt2C(x)
)
∣
∣
∣
∣
u=ub

= −ATλ+ λ3 ·
(
−ω2, ω2, 0, 0

)T
for C ≡ 0

(4.41)

All quantities for the MPBVP are now known except the switching structure that is necessary
to fully determine the interior point conditions. What further assumptions can be made? As
mentioned before, a state where the deflection is kept at ϕmax should be reached as fast
as possible. From this time on, the integral in the reformulated cost functional (4.35) is
maximized. Hence, the part with the boundary arc should occur in the last part of the
MPBVP and the switching times are independent from final time5. How many times does
the control need to switch in order to obtain a state with the deflection at the maximum value
and the masses moving with the same velocity? Is one switch already sufficient, i.e. going from
umax to ub? From the analytical solution of the 2 DoF case without state inequality constraints
that has u∗ = umax as optimal control, it is known that the velocities are identical at integer
multiplicities of π

ω , see for example Figure 4.16(a). However, at these points the deflection is
at 2umax

m1ω2 . If the constraint is below that value it is not possible without switching another
time to obtain a state with equal velocities of the masses without violating the constraint.
This makes already evident that the value of the deflection influences the switching structure
significantly. From the 2 DoF case without state inequality constraint it is known that the
deflection obtained from the analytical solution (see Appendix A.1) is bounded by

ϕ∗ = x∗1 − x∗2 = −
umax

m1ω2
(cos(ωt)− 1) =

umax

m1ω2
︸ ︷︷ ︸

>0

(1− cos(ωt))
︸ ︷︷ ︸

≤2

≤
2umax

m1ω2
. (4.42)

Hence, for ϕmax ≥ 2umax

m1ω2 the state inequality will not affect the system and the case without
state inequality constraint is obtained, which was already analyzed in Chapter 4.1.

Until now, the control constraint u ≤ umax was not taken into account. Of course the
boundary control should not violate this constraint, so that

ub = m1ω
2ϕmax

!
≤ umax (4.43)

needs to hold6. Solving for ϕmax makes evident that this is only valid for

ϕmax ≤
umax

m1ω2
. (4.44)

This means that if greater values are chosen for ϕmax, it is not possible to keep the deflection
constant and incurring oscillations are an immediate consequence. Therefore, the following
three cases arise

5As long as the final time is greater than the switching time required to bring the mass spring system into
the desired state.

6The constraint u ≥ umin needs to considered as well but ultimately leads to the same condition:
m1ω

2ϕmax ≥ umin ⇒ ϕmax ≥ umin

m1ω
2 = − umax

m1ω
2 ⇒ ϕmax ≤ umax

m1ω
2 .
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1. Case: ϕmax ≥ 2umax

m1ω2

This is case is equivalent to the system without inequality constraint analyzed in Chapter
4.1.

2. Case: umax

m1ω2 < ϕmax < 2umax

m1ω2

In this case, the deflection cannot be kept constant, hence oscillations occur.

3. Case: ϕmax ≤ umax

m1ω2

Here, keeping the deflection at the maximum possible value and achieving this state as
fast as possible is optimal from the considerations of the cost functional (4.35).

In the following, the third case will be discussed in detail to retrieve more analytical informa-
tion. The necessary conditions from Chapter 3.4 complete the piecewise-defined ODEs (4.41)
with the missing interior point conditions. As mentioned before, one switch is not sufficient.
Therefore, it will be assumed that it takes two control switches to bring the mass spring sys-
tem into the desired state of constant deflection starting with umax, i.e. the assumed control
structure is umax → umin → ub. Let t1 denote the switching time belonging to the transition
from umax to umin and the switching time t2 to the transition from umin to ub. States and
costates are continuous across t1 because the constraint has not been reached yet. Since the
state constraint is of second order, the multiplier ν is two dimensional ν ∈ R

2. Evaluating
the jump conditions (3.51) and switching conditions (3.52) at t2 leads to

λ1(t
+
2 ) = λ1(t

−
2 )− ν1

λ2(t
+
2 ) = λ2(t

−
2 ) + ν1

λ3(t
+
2 ) = λ3(t

−
2 )− ν2

λ4(t
+
2 ) = λ4(t

−
2 ) + ν2

x1(t2)− x2(t2) = ϕmax

x3(t2)− x4(t2) = 0

λ3(t
+
2 ) =

2k1ϕmax − umin

umin − ub
ν2

(4.45)

The MPBVP for the third case is comprised of (4.41) and (4.45) along with the trivial ODEs
ν̇1 = 0 and ν̇2 = 0. Even for this simple system, consisting of two masses and one spring,
adding only one constraint results in a ten-dimensional system of piecewise-defined differential
equations with four initial values, four end values, four jump conditions and three switching
conditions. Since there is no way to find reasonable initial values for the adjoint variables and
the MPBVP is already complex, convergence issues arise as mentioned in Chapter 3.5 using
indirect methods. An alternative approach via energy-based considerations is presented here
for the third case.

The performed work at t2 calculates from integration of the performance with umin = −umax

as

W (t2) =

∫ t1

0
umaxq̇1dt+

∫ t2

t1

uminq̇1dt

= umax(q1(t1)− q1(0)
︸ ︷︷ ︸

=0

) + umin(q1(t2)− q1(t1)) = umax(2q1(t1)− q1(t2))
(4.46)
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The total energy of the system at t2 is

E(t2) =
1

2
m1q̇

2
1(t2) +

1

2
m2q̇

2
2(t2) +

1

2
k1ϕ

2
max(t2) (4.47)

As a necessary condition E(t2)−W (t2) = 0 needs to hold. Additionally, the masses need to
move with same velocity from t2 on, so that

q̇1(t2)− q̇2(t2) = 0 (4.48)

is a further condition. The switching times t1 and t2 can be obtained by solving the nonlinear
system of equations

1

2
m1q̇

2
1(t2) +

1

2
m2q̇

2
2(t2) +

1

2
k1ϕ

2
max(t2)− umax(2q1(t1)− q1(t2)) = 0

q̇1(t2)− q̇2(t2) = 0
(4.49)

where q̇1(t1), q̇1(t2), q̇1(t2), q̇2(t2) can be found by analytically solving the state ODE for t ∈
[0, t1] with u = umax and for t ∈ [t1, t2] with u = umin. While this approach also leads to
a nonlinear system of equations as indirect methods, the dimensionality has been reduced
immensely and the remaining unknowns are t1 and t2 instead of t1, t2, ν1, ν2, λ1, λ2, λ3, λ4.

To get more information about the missing quantities, the Hamiltonian plays an important
role. Let the assumption be that the Hamiltonian is constant on the entire domain with
H ≡ − k1

m1
ϕmax, then following conditions have to be shown

(i) Continuity across a control switch if no state constraint is active.

(ii) Continuity across an entry point, i.e. the beginning of a state constrained arc.

(iii) Value − k1
m1

ϕmax at final time.

Proof

(i) Consider a general optimal control problem in Mayer form and control-affine dynamics.
Let u be one-dimensional for the sake of short notation. The extension is straightforward
but not of interest here. The Hamiltonian takes the form

H = λT f(x, u) = λT f1(x) + uλT f2(x). (4.50)

At a control switch the following holds

s = Hu = λT f2(x) = 0. (4.51)

With the continuity of the states and adjoints, a jump in the Hamiltonian calculates as

H

∣
∣
∣
∣
t−
1

−H

∣
∣
∣
∣
t+
1

= λT f1(x)

∣
∣
∣
∣
t−
1

+ u−λT f2(x)

∣
∣
∣
∣
t−
1

− λT f1(x)

∣
∣
∣
∣
t+
1

− u+λT f2(x)

∣
∣
∣
∣
t+
1

= (u− − u+) · λ(t1)
T f2(x(t1)),

(4.52)

where u± = lim
t→t±

1

u(t). Due to (4.51) the right-hand side is always zero at a control

switch, hence yielding continuity.
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(ii) Looking at (3.52c), this holds if the state constraint does not depend explicitly on time,
which is the case in the considered problem.

(iii) The Hamiltonian at final time is

H

∣
∣
∣
∣
tf

= λT f(x, u)

∣
∣
∣
∣
tf

= (0, 0, 0,−1) · (ẋ1(tf ), ẋ2(tf ), ẋ3(tf ), ẋ4(tf ))
T = −ẋ4(tf ). (4.53)

This corresponds to the acceleration of the second mass. As mentioned previously, the
last part in the MPBVP is the one with the active state constraint. Therefore, it is
possible to solve the second equation of (4.36) for q̈2. This yields q̈2 =

k1
m1

ϕmax, hence

H

∣
∣
∣
∣
tf

= −ẋ4(tf ) = −q̈2(tf ) = −
k1
m1

ϕmax (4.54)

�

Having found the value of the Hamiltonian it is possible to obtain the multiplier (jump
parameter) ν1 and ν2. For the first multiplier, the implicit equation

H

∣
∣
∣
∣
t−
1

(x, λ, u, ν1, ν2) = −
k1
m1

ϕmax (4.55)

needs to be solved for ν1. The analytical solution has been computed with MAPLE and is not
shown due to its length. Although it would be more obvious to solve H|t−

2

(x, λ, u, ν1, ν2) =

− k1
m1

ϕmax for ν1, this is not possible because a cancellation of the multiplier ν1 occurs. For
the second jump parameter, the last equation of (4.45) needs to be solved for ν2 yielding

ν2 =
umin − ub

2k1ϕmax − umin
λ3(t

+
2 ), (4.56)

where λ3(t
+
2 ) can be found by analytical integration with the adjoint ODE from (4.41) for

the case C ≡ 0 and the familiar end value λ(tf ) = (0, 0, 0,−1)T .

Quantity Method Value
Switching times t1,t2 numerical via energetic approach -

Hamiltonian H analytic − k1

m1

ϕmax

Jump parameter ν1 analytic H
∣
∣
t
−

1

(x, λ, u, ν1, ν2) = − k1

m1

ϕmax

Jump parameter ν2 analytic umin−ub

2k1ϕmax−umin

λ3(t
+
2 )

Lagrangian function µ analytic −λ3

Control u analytic/assumption umax → umin → ub

States x analytic Not displayed for readability
Costates λ analytic Not displayed for readability

Table 4.2: Overview over the different quantities and the method to obtain them.

Example

Figure 4.6 depicts a numerical solution obtained with GPOPS for m1 = m2 = 2, umax =
4, k1 = 25 and tf = 2. The deflection is constrained by ϕmax ∈ {0.18, 0.12, 0.05} in or-
der to display the three cases, since 2umax

m1ω2 = 0.16. The numerical results correspond nicely
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to the previously formulated statements, such as the boundary control ub = m1ω
2ϕmax =

2 ·
(
25
2 + 25

2

)
· 0.05 = 2.5 appearing in the third case. However, the control as calculated by
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Figure 4.6: Deflection (a)-(c), control (d)-(f) and mass velocities (g)-(i) for the three cases.

GPOPS deviates from its expected solution, especially near the switching times and the final
time, see Figure 4.6(f). As mentioned in Chapter 3.5, discontinuous solutions are problem-
atic in pseudospectral methods. It is a well-known phenomenon caused by the (automatic)
placement of collocation points in a mesh interval formulation. Since the locations of non-
smoothness are not known a-priori, in general, numerical artifacts occur at transitions of
constituent arcs. A possible explanation for the numerical discrepancies at final time could
be that the point at final time is uncollocated due to the usage of flipped LGR points.
To improve the solution, the aforementioned approach with the energetic considerations is
chosen.

First, the switching times need to be computed. Figure 4.7 depicts the nonlinear system
(4.49) for these values graphically. It should be noted that since t2 > t1, only one half space
is relevant. Numerical solver, such as MAPLE ’s solve or MATLAB ’s fsolve, both find the
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(a) (b)

Figure 4.7: Visualization of the nonlinear system of equations (4.49). Blue indicates E(t2)−
W (t2), green q̇1(t2) − q̇2(t2) and black g(t1, t2) = 0. Left: Top view with dashed lines that
show the intersection of the equations. Right: 3D view.

zeros at t1 = 0.1880 and t2 = 0.2920 with the additional assumptions t2 > t1 > 0. In the
subsequent step the jump parameters are calculated, yielding ν1 = 22.0151 and ν2 = 18.2329.
Finally, the states and costates can be found by integration which completes the solution
(depicted in Figure 4.8). The numerical chattering effects of the control are nullified. As
mentioned in Chapter 3.4 the sign conditions (3.53) and Hamiltonian serve as tool for a-
posteriori analysis. The non-negativity of both multiplier stated in (3.53a) is readily apparent:
ν1 = 22.0151 ≥ 0, ν2 = 18.2329 ≥ 0. The Lagrangian function also complies with (3.53b):

µ =

{

0 ≥ 0 for t ∈ [0, t2[ (C < 0)

−λ3 =
1
2

k1
m2

tf (
1
tf
t2 − 2t+ tf ) ≥ 0 for t ∈ [t2, tf ] (C ≡ 0)

(4.57a)

d

dt
µ =

{

0 ≤ 0 for t ∈ [0, t2[ (C < 0)

−λ̇3 = λ1 =
k1
m2

(t− tf ) ≤ 0 for t ∈ [t2, tf ] (C ≡ 0)
(4.57b)

Figure 4.9 depicts the deviation of the Hamiltonian from its expected value. As opposed to
the solution with the numerical solver GPOPS (cf. Figure 4.9(a)) it can be seen that the
energy approach is significantly closer to the exact solution. The reason is that the control
is already deviating from the optimal solution due to its discretization and the costates are
only approximated and not solved for explicitly. These inaccuracies are reflected in the
Hamiltonian.

Case 2 is even more complicated due to the fact that the deflection hits the constraint period-
ically and therefore touch point conditions need to be evaluated at the corresponding points.
The structure of the MPBVP also depends on the final time.
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Figure 4.8: Solution of the third case via energetic considerations arising in the 2 DoF mass
spring system with deflection constraint. While the switching points are found numerically,
the solution within each phase is found analytically here.
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Figure 4.9: △H := H −H∗ = H + k1
m1

ϕmax is the error of the computed Hamiltonian and its
optimal constant value. The reader should not overlook the different scaling of (a) and (b).

4.3 Variable Stiffness

For the variable stiffness case, in addition to the torque control u1 (former u) acting on the
first mass, it is assumed that additional controls can directly adjust the stiffness of the corre-
sponding springs, i.e. ui = ki−1 for i ∈ {2, ..., n}, see Figure 4.10. These systems correspond
to robots with variable stiffness/impedance actuators mentioned in Chapter 2.5. Without any

u1

q1, q̇1 q2, q̇2 qn, q̇n

u2 u3 un
m1 m2 m3

Figure 4.10: n DoF mass spring system with variable stiffness

effort, the state-space equations can be carried over for the 2 DoF case from (4.3) by simply
replacing k1 with u2

ẋ =
d

dt







q1
q2
q̇1
q̇2







=







0 0 1 0
0 0 0 1

− u2

m1

u2

m1
0 0

u2

m2
− u2

m2
0 0






x+







0
0
1
m1

0







u1 =: A(u2)x+ bu1. (4.58)

Since the system matrix A also incorporates the stiffness controls for higher-dimensional cases
(see (4.32)), the state-space equations obviously take the form

ẋ = A(u2, ..., un)x+ bu1. (4.59)
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These are not linear systems anymore, in fact, one has to deal with bilinear systems of the
form

ẋ = Ax+

n∑

j=1

Gjxuj +Bu. (4.60)

More precisely, following the notation of [40], (4.60) is a biaffine system. It reduces to a (pure)
bilinear7 system forB = 0. This makes the adjoint equations (in general) homogeneous, linear,
time-variant ODEs

λ̇ = −Hx =



−A−
n∑

j=1

Gjuj(t)





T

λ =: Ã(u(t))λ (4.61)

and the switching functions

si = Hui
= fT

ui
λ = (Gix+ bi)

Tλ = si(x, λ), (4.62)

where bi is the i-th column of B.
Adjoint equations and switching functions are now coupled in the sense that in order to solve
the adjoint equations, the optimal control has to be known, whereas in the linear case the
adjoint equations could be solved independently of the control.

Exclusion of singular arcs for the 2 DoF variable stiffness mass spring system

In order to make assumptions about the existence of singular arcs one has to look at the
switching function and (possibly) its higher derivatives. It turns out, that the Goh-Legendre
conditions (3.42) and (3.43) are satisfied and therefore not suited for the exclusion due to
reasons mentioned in Chapter 3.3 (this can be verified easily, omitted for brevity here). For
the 2 DoF case, the switching functions s1 and s2 for the controls u1 and u2 can be calculated
from (4.58), with

s1 = λT ∂

∂u1
(A(u2)x+ bu1) =

λ3

m1

s2 = λT ∂

∂u2
(A(u2)x+ bu1) = (x1 − x2)

(
λ4

m2
−

λ3

m1

) (4.63)

It is crucial to assume that u2 > 0 and u1,max 6= 0 6= u1,min as mentioned in the beginning of
this chapter. In order to show that no singular arcs exist, it needs to be proven that for both
switching functions (4.63) no intervals exist where they are zero. As a direct consequence, it
needs to be shown that each of the following terms

(i) λ3

(ii) λ4

m2
− λ3

m1

(iii) x1 − x2

7Terminology not consistent throughout literature.
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are only zero at discrete points. Recalling the dynamics for the states and adjoints from (4.58)
and (4.61) as

ẋ1 = x3

ẋ2 = x4

ẋ3 =
u2
m1

(x2 − x1) +
u1
m1

ẋ4 =
u2
m2

(x1 − x2)

λ̇1 = u2

(
λ3

m1
−

λ4

m2

)

λ̇2 = u2

(
λ4

m2
−

λ3

m1

)

λ̇3 = −λ1

λ̇4 = −λ2

(4.64)

Using these dynamic equations, it can be shown that singular arcs do not occur and the proof
is as follows

(i) Assume that s1 =
λ3

m1
≡ 0. It follows immediately

λ3 ≡ 0 ⇒ λ̇3 ≡ 0 ⇒ λ1 ≡ 0 ⇒ λ̇1 ≡ 0

⇒ u2
︸︷︷︸

>0

(
λ3

m1
︸︷︷︸

=0

−
λ4

m2

)

≡ 0 ⇒ λ4 ≡ 0 ⇒ λ̇4 ≡ 0 ⇒ λ2 ≡ 0 (4.65)

If λ ≡ 0 holds for some interval, then λ would remain at zero, and since the transversality
condition is λ(tf ) = (0, 0, 0,−1)T this is a contradiction. In other words, s1 can never
stay at zero and u∗1 = u1,min ∨ u1,max.

(ii) Assume that x1 − x2 ≡ 0. Then

d

dt
(x1 − x2) = x3 − x4 ≡ 0

d2

dt2
(x1 − x2) = ẋ3 − ẋ4 =

(
u2
m1

+
u2
m2

)

(x2 − x1)
︸ ︷︷ ︸

=0

+
u1
m1

=
u1
m1

6= 0
(4.66)

and u1 is never at zero due to (i). Consequently, x1 − x2 cannot stay at zero in a finite
time interval.

(iii) This leaves only the case of λ4

m2
− λ3

m1
≡ 0 that needs to be excluded.

d

dt

(
λ4

m2
−

λ3

m1

)

=
λ1

m1
−

λ2

m2

d2

dt2

(
λ4

m2
−

λ3

m1

)

=

(

λ̇1

m1
−

λ̇2

m2

)

=

(
u2
m1

+
u2
m2

)(
λ3

m1
−

λ4

m2

)

︸ ︷︷ ︸

=0

≡ 0
(4.67)

Due to the adjoint dynamics (4.64), λ̇1 and λ̇2 are zero and λ1 and λ2 are constants as a
consequence. The adjoints dynamics are not influenced by either control and will remain
at these constant values. With the transversality conditions the solution beginning at
a singular arc is ∀t ∈ [tentry, tf ] λ

∗ = (0, 0, 0,−1)T . The cost function can be rewritten
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as in [82] with tentry denoting the beginning of a singular arc as

J = −x4(tf ) = λ(tf )
Tx(tf ) =

∫ tf

0

d

dt
(λTx)dt =

∫ tf

0
λ̇Tx+ λT ẋdt

=

∫ tf

0
(−ATλ)Tx+ λT (Ax+ bu)dt =

∫ tf

0
−λTAx+ λTAx+ λT budt

=

∫ tf

0
λT budt =

∫ tf

0

λ3

m1
udt =

∫ tentry

0

λ3

m1
udt+

∫ tf

tentry

λ3

m1
︸︷︷︸

=0

udt =

∫ tentry

0

λ3

m1
udt

(4.68)

It can be seen that the cost cannot be minimized further if a singular arc occurs and is
therefore nonoptimal. If λ3 6= 0 the control can always be chosen accordingly so that
the integral is negative.

�

A physical interpretation for singular arcs would be for example that the deflection between
the two masses needs to vanish for a certain amount of time. This would make the masses
move with the same velocity and x3 −x4 would equal zero in that interval. By looking at the
first derivative

ṡ2 = (x1 − x2)

(
λ1

m1
−

λ2

m2

)

+ (x3 − x4)

(
λ4

m2
−

λ3

m1

)

(4.69)

it is confirmed in a mathematical sense that this is a further necessary condition for a singular
arc to occur. Physically speaking, a singular arc for the stiffness control only occurs if no
spring force is exerted due to a vanishing deflection and adjusting the stiffness leaves the
system unaffected. Mechanical reasoning suggests that the deflection between two masses is
never zero for an interval if the system is under permanent excitation, which it is, because
u1 ∈ {umin, umax} and umin 6= 0 6= umax.

This argumentation and the proof is readily formulated for different cost functions, such as
maximizing the kinetic energy J = 1

2m2q̇
2
2(tf ) or the deflection J = −ϕ(tf ) = −(q1(tf ) −

q2(tf )) at final time and both lead to bang-bang solutions. A counter-example would be an

energy-minimal criterion J =
∫ tf
0 u2dt that has a regular Hamiltonian. Intuitively, switchings

from umin to umax are not reasonable from an energetic perspective.

A peculiar, but pathological case is left for future work where the stiffness or the torque input
can be zero on its boundary. For the exclusion of singular arcs it was necessary to rule out
these cases. It is not evidently clear how the optimal solution will behave and if singular arcs
occur.

However, both controls are constant a.e. here and this can be used to make further assump-
tions about the control nearing the final time. Let ε > 0 be small enough so that in (tf −ε, tf ]
no control switch occurs. The solution of the constant stiffness (Appendix A.1) can be used
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now to evaluate the switching functions near final time

s1

∣
∣
∣
∣
t=tf−ε

=
λ∗
3

m1

∣
∣
∣
∣
t=tf−ε

=
1

m1 +m2
[cos(−ε)− 1] < 0 (4.70a)

s2

∣
∣
∣
∣
t=tf−ε

= (x∗1 − x∗2)

(
λ∗
4

m2
−

λ∗
3

m1

) ∣
∣
∣
∣
t=tf−ε

(4.70b)

=
umax

k1(m1 +m2)
cos(ωε) (cos(ω(ε− tf ))− 1) ≤ 0 (4.70c)

The equality sign in “≤” of (4.70c) holds only if a switching occurs which was excluded, so
that at final time, both controls are at their upper boundary.

Example

Due to (4.63) and the choice m1 = m2 for the 2 DoF case, the switching times for u2 only
occur when the deflection x1−x2 is zero or λ3−λ4 is zero. This is visualized in Figure 4.11 for
the (fixed) final time tf = 1.2. More interestingly, zeros of x1 − x2 correspond to a negative
edge and zeros of λ3 − λ4 to a positive edge. Taking a look at the dual system (4.28) that
describes the same undamped mass spring system but without external force and in terms of
the states λ3, λ4

[
m1 0
0 m2

](
λ̈3

λ̈4

)

+

[
u2 −u2
−u2 u2

]

︸ ︷︷ ︸

=K(u2)

(
λ3

λ4

)

= 0, (4.71)

then λ3 − λ4 is the deflection of the dual system. Since it is undamped, unforced and the
end condition is not identical zero, it must be always in motion and the same argument
for the deflection is applicable. In conclusion, for u2 to switch, either the deflection of the
mechanical or the dual system is zero. If both are compressed or pushed apart simultaneously
at a specific time, then the control is at its upper boundary umax, else at its lower boundary
umin (cf. 4.11(b) and 4.11(d)). Moreover, both controls are at the upper boundary near final
time as shown previously, see Figures 4.11(a) and 4.11(b).

Assumptions for the n DoF case

The system dynamics of an n DoF mass spring system with varying stiffness is as follows:

ẋ =


















xn+1
...

x2n
u1

m1
+ u2

m1
(x2 − x1)

u2

m2
(x1 − x2) +

u3

m2
(x3 − x2)

...
un−1

mn−1
(xn−2 − xn−1) +

un

mn−1
(xn − xn−1)

un

mn
(xn−1 − xn)


















(4.72)
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Figure 4.11: Top row: Controls u1 and u2. Bottom row: Functions that cause a switching.
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Figure 4.12: Dual system with equal masses (unforced)
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The switching functions therefore are:

s1 =
λn+1

m1

si = (xi−1 − xi)

(
λn+i

mi
−

λn+i−1

mi−1

)

i ∈ {2, ..., n}

(4.73)

A closer look at (4.73) reveals, if all masses are equal, the assumption from the 2 DoF system
is even valid for n DoF systems:
Switchings of the stiffness controls occur as soon as the deflection of the (real) mechanical
system is zero or the one of the dual system (see Figure 4.12) for the corresponding spring.
By introducing a transform λ̂ = M−1λ̃, the difference of λ̂i− λ̂i−1 corresponds to a switching
for arbitrary masses even if they are not equal. The system becomes

MM
¨̂
λ+KMλ̂ = 0. (4.74)

However, this is a virtual system and not a mechanical system anymore due to fact that the
units are transformed as well. A zero deflection λ̂i − λ̂i−1 of the virtual system or a zero
deflection in xi−1 − xi then causes a switching in the stiffness control ui.

4.4 Comparison

Fext

q1, q̇1 q2, q̇2

m1 m2 Fext

q1, q̇1 q2, q̇2

k1
m1 m2 Fext

q1, q̇1 q2, q̇2

k1
m1 m2

Figure 4.13: From left to right: Rigid, constant stiffness and variable stiffness mass spring
systems with 2 masses.

After discussing some properties of mass spring systems with constant and variable stiffness,
they will subsequently be compared to each other. In addition to the two mentioned systems,
a rigid robot is emulated by directly connecting the masses (or motor and link so to say)
without any spring at all (see Figure 4.13). For the rigid case, the velocity is readily found
by integration of Newton’s second law

Fext = m · a ⇒ a =
Fext

m
⇒ vrigid =

∫ t

t0

Fext

m
dξ + v0

︸︷︷︸

=0

=
Fext

m
t (4.75)

The maximal deviation between the velocity of the last mass of the rigid system and the
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Figure 4.14: Comparing the velocity of the three cases for a fixed end time.

constant system can then be calculated with (4.10) and (4.75)

dmax = |vconstant − vrigid| = | −
umax

ω(m1 +m2)
sin(ωt) +

umax

m1 +m2
t−

umax

m1 +m2
t|

= | −
umax

ω(m1 +m2)
sin(ωt)| = | − 1|

︸ ︷︷ ︸

=1

|
umax

ω(m1 +m2)
︸ ︷︷ ︸

>0

| · | sin(ωt)
︸ ︷︷ ︸

≤1

| ≤
umax

ω(m1 +m2)

= const.

(4.76)

In the constant stiffness, case the eigenfrequeny ω is constant as well and so the maximal
deviation is bounded. This means the velocity of the final mass in the constant stiffness case
is oscillating around the one of the rigid case

vrigid − dmax ≤ vconstant ≤ vrigid + dmax. (4.77)

The deviation decreases with increasing eigenfrequency but higher oscillations occur (see e.g.
Figure 4.14(a) for two different constant stiffness cases) and for ω → ∞ ⇒ dmax = 0 the
constant stiffness case converges to the rigid one as one would expect. For the variable
stiffness case there happens a built up that seems to grow beyond any fixed boundary with
increasing time. The end velocity is not strictly monotonic increasing anymore but zero
crossing instead.

If the control domain U2 ∈ [u2,min, u2,max] degenerates to a point it would obviously yield the
case of constant stiffness and the maximum achievable velocity would be equal or less than
Fext

m tf + dmax [m/s] in the given time span8. This leads in a natural way to the question of
how much effect is taken by shrinking/expanding the control domain.
In the sequel, two variants are considered where one expands from u2,min and the other from
u2,max.

1. UL2(γ) = [u2,min, u2,min + γ(u2,max − u2,min)]

8In Figure 4.14(a) the end velocities seem to be almost identical, this is a mere coincidence and not true in
general.
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(b) Ratio variable vs. constant stiffness

Figure 4.15: Left: Comparing the end velocity of the two variants for a fixed end time.
Although the end velocities appear identical for γ = 0 this is not the case and is due to
scaling. Right: The ratio of the variable stiffness mass spring system end velocity and the
constant stiffness one is depicted. For γ = 0 the variable and constant stiffness systems collaps
to the same system and the ratio is 1.

2. UR2(γ) = [u2,max + γ(u2,min − u2,max), u2,max]

The percentual factor γ ∈ [0, 1] indicates how much the domain is expanded, i.e. γ = 0 %
corresponds to one of the constant stiffness cases (depending on the chosen variant) and
γ = 100 % to the (full domain) variable stiffness case. Figure 4.15(a) depicts the end veloc-
ity of the last mass with respect to the size of the control domain UL2(γ) and UR2(γ). As
expected, both variants end up with the end velocity of the constant stiffness cases and the
variable stiffness case for γ = 0 % and γ = 100 %, respectively (cf. Figure 4.14). Furthermore,
with the expansion of the control domain, the corresponding end velocity of the last mass
increases immensely. In Figure 4.15(b) the ratio between the constant stiffness end velocity
and the end velocity of the variable stiffness case is shown with respect to the modified control
domain. It ends at a factor 5 between the two cases.
The fact that variable stiffness is so much faster can be assigned to the idealized assumption
that the stiffness can be adjusted directly, so it is possible to pump potential energy instan-
taneously into the system. At a control switch t1, the increase/decrease in potential energy
is given by ±1

2(kmax− kmin)ϕ
2(t1). Due to the lack of constraints, this instantaneous increase

is not bounded by any means. The surplus of energy can be calcutated as difference between
the total energy at final time of the constant stiffness robot

Econst = Uconst + Tconst =

n−1∑

i=1

1

2
kiϕ

2
i (tf ) +

n∑

l=1

1

2
mlq̇

2
l (tf ) (4.78)
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and the variable stiffness robot9

Evar = Uvariable + Tvariable

=

∫ ϕ(tf )

ϕ(t0)
kϕ(t)dϕ +

n∑

l=1

1

2
mlq̇l(tf ) =

∫ tf

t0

kϕ(t)ϕ̇(t)dt+
n∑

l=1

1

2
mlq̇

2
l (tf )

=

∫ t−
1

t0

kϕ(t)ϕ̇(t)dt+

j−1
∑

i=1

∫ t−i+1

t+i

kϕ(t)ϕ̇(t)dt+

∫ tf

t+j

kϕ(t)ϕ̇(t)dt+
n∑

l=1

1

2
mlq̇

2
l (tf )

=
1

2

[

−kminϕ
2(t0) +

j−1
∑

i=1

(−1)i(kmin − kmax)ϕ
2(ti) + kmaxϕ

2(tf )

]

+
n∑

l=1

1

2
mlq̇

2
l (tf ),

(4.79)

where j denotes the number of switches. For this specific example here j = 5 (see Figure
4.11(b)) and n = 2 (Variant 1 chosen due to vanishing deflection at final time) the difference
in energy at final time results in

△E = |Evariable − Econst| = |144.1463 − 12.5000| = 131.6463. (4.80)

Although one could think of mechanical realizations where the stiffness changes rapidly, e.g.
if two masses are connected by two springs and one is detached by pulling a bolt, a gradual
change of the stiffness is not very likely realizable without additional mechanism as it would
require to change and control the material properties themselves as desired. Usually, there is
a mechanical mechanism involving a motor (see Chapter 2.5) behind the stiffness actuation
and the energy that can be brought into the system is limited. To keep the comparison fair,
the energy will now be constrained so that the same amount of energy is used by both systems
at the final time. This can be expressed mathematically as a condition at final time10 for the
variable stiffness case as

1

2
kmaxϕ

2(tf ) +
1

2
m1x

2
3(tf ) +

1

2
m2x

2
4(tf ) = Econst. (4.81)

The optimal control problem is then solved again along with the new condition. Figure 4.16
depicts the velocities of both masses for the constant stiffness case (left) and the variable
stiffness case with the energetic constraint (right). It is surprising that the variable stiffness
mass spring system is still more optimal, although both systems consume the same energy.
While the last mass is not a factor 5 times faster as previously (see Figure 4.15(b)), it still
exceeds the velocity of the constant stiffness case by a factor ≈ 1.4. How can this be inter-
preted? Bilinear system have the beneficial property that they are more controllable than
linear systems and therefore offer a better performance overall [74]. Due to the additional
control it is possible to minimize the kinetic energy that dissipates into the first mass by
adjusting the stiffness accordingly. In Figure 4.16(b) it can be seen that the velocity of the
first mass could be decelerated to zero, whereas in the constant stiffness case the first mass
still moves with 2.46 [m/s] due to the inability of the system to somehow divide the energy
between the two masses. For both cases, the deflection (not depicted) is almost zero at final
time and hence the potential energy that contributes to the total amount of energy at final
time is negligible.

9The fact that the stiffness is constant a.e. is exploited for the subsequent calculation.
10It has been shown in Chapter 4.3 that both controls are at their upper boundary at final time, therefore

u2(tf ) = kmax.
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Figure 4.16: Comparing the constant stiffness case with the variable stiffness case and the
additional constraint.



Chapter 5

Nonlinear Dynamics

In the previous chapter, mass spring systems interconnected by springs with constant and
variable stiffness were analyzed. For the constant stiffness, the dynamics were linear and
for variable stiffness bilinear, which is a type of “weak” nonlinearity. In this chapter, (fully)
nonlinear dynamics are analyzed. The nonlinearity results from the consideration of gravity
and nonlinear effects due to the inertial coupling, when the masses (more precisely the links)
are allowed to move in more than one dimension.

5.1 Single Pendulum

y

x

g
b

q1

Figure 5.1: Elastic single pendulum

First, an elastic single pendulum will be considered. The motor is connected via a spring
to the link and the gravitational force points in −y direction, see Figure 5.1. Similar to the
example of Chapter 2, the equations of motion can be derived with the Lagrange equations
of the second kind. The only difference here is that the center of gravity is assumed to be
in the middle of the link and the inertia is taken into account for both the motor and the
link, i.e. for the inertia tensor I 6≡ 0. The moments of inertia can be obtained from modeling
the link as thin rods and the motors as solid disks. For the link with rotation axis through
the tip, this yields with the well-known formula and the axis parallel theorem Izz1 = 1

3m1l
2
1,

with m1 and l1 being the link mass and length and for the motor with rotation axis in the
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center of mass b1 = 1
2mml2mi2g, with motor mass mm, rotor length lm and gear ratio ig. The

gear ratio term is necessary because the link-side inertia is of interest. The dynamics for the
elastic single pendulum are then obtained as

(
1

4
m1l

2
1 + Izz1

)

︸ ︷︷ ︸

=:m11

q̈1 +
1

2
m1l1g sin(q1)
︸ ︷︷ ︸

=:g(q)

−k1(θ1 − q1) = 0

b1θ̈1 + k1(θ1 − q1) = τm,

(5.1)

where q1 and θ1 are link and motor positions, k1 the joint stiffness constant, g the gravity
constant and u = τm the motor torque that serves as control input. Due to constant link and
motor inertia matrices (here: scalars), the only difference to the previously examined mass
spring system is the sine term arising due to gravity. Therefore, for small q1, the solution is
expected to be similar to previously formulated statements.

Similar to the previous chapter, maximizing the link velocity at final time is expressed via
the cost function

J = −q̇1(tf ) → min! (5.2)

and the well-known control constraint is

−umax ≤ u ≤ umax. (5.3)

In Chapter 4.2, it could be observed that three cases occur if a spring deflection constraint is
imposed on the 2 DoF mass spring system. Since the third case was analyzed in more detail,
a small deflection bound is intentionally chosen here to invoke this case as well. The spring
deflection is defined as ϕ1 := θ1 − q1 and the corresponding (symmetric) constraint is

−ϕmax ≤ ϕ ≤ ϕmax. (5.4)

In Chapter 4.2, the boundary control ub was calculated in two different ways. First, by
physical reasoning and secondly by means of optimal control. Choosing the latter here as
well, the state constraint ϕ ≤ ϕmax is still of second order nq = 2 and solving (3.52b) for ub
yields

u+b (t) = b1

(
k1
b1

+
k1
m11

)

ϕmax −
b1
m11
︸︷︷︸

=:R

1

2
m1l1g sin(q(t))
︸ ︷︷ ︸

=g(q)

(5.5)

For g = 0, this is equivalent to (4.37) and the boundary control is constant, see also the
examples in Figures 4.6(f) and 4.8(c). However, taking gravity into account, (5.5) shows that
the boundary control is influenced by a new term depending on the link position, which makes
it non-constant. In fact, the new term is just the gravitational force vector times the inertial
ratio R. In Chapter 4, it was sufficient to consider only an upper bound ϕ ≤ ϕmax. However,
for the nonlinear elastic single pendulum, upswinging motions can occur and both constraint
boundaries need to be considered. It is straightforward to calculate the boundary control for
ϕ ≥ −ϕmax, which yields

u−b (t) = −b1

(
k1
b1

+
k1
m11

)

ϕmax −
b1
m11
︸︷︷︸

=R

1

2
m1l1g sin(q(t))
︸ ︷︷ ︸

=g(q)

(5.6)
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The optimal boundary control must lie within the following boundaries

±b1

(
k1
b1

+
k1
m11

)

ϕmax −
b1

2m11
m1l1g

︸ ︷︷ ︸

>0

≤ u±b (t) ≤ ±b1

(
k1
b1

+
k1
m11

)

ϕmax +
b1

2m11
m1l1g

︸ ︷︷ ︸

>0

(5.7)

as well as the control constraint (5.3)

−umax ≤ u±b (t) ≤ umax (5.8)

Figure 5.2 depicts the numerical solution of the optimal control problem (5.1)-(5.4) with
initial values (q0, q̇0, θ0, θ̇0) = (0, 0, 0, 0), tf = 0.65 [s], ϕmax = 2 [◦] and umax = 70 [Nm]. The
remaining values for the elastic single pendulum can be found in Table B.1 in Appendix B.
The usual numerical fluctuations for the control around switching times and at final time can
be observed as in Chapter 4, here amplified due to the nonlinearity. The analytic expressions
u+b and u−b of equations (5.5) and (5.6) are plotted in Figure 5.2(b) and comply with the
numerical solution of the controls at the deflection boundary.

The switching structure is fairly similar to the 2 DoF mass spring system of Chapter 4.2.
There, two switchings were needed to get to a state with maximal deflection which was being
held until final time. Here, two control switchings occur to bring the system in a state that
reaches maximal negative deflection and afterwards, another two switchings in order to bring
the system to a state with maximal positive deflection. Of course, for increasing final time,
this switching structure will not always prevail. For greater deflections of the link, the gravity
plays an important role and will have significant impact on the solution/switching structure.
To maximize link velocity, the gravity can be used intentionally as an accelerating factor and
by switching back and forth, an upswinging motion may be optimal in order to minimize the
work that otherwise has to be exerted against gravity.

The results for the boundary control from previous calculations and of Chapter 4.2 can be eas-
ily extended for higher dimensional robotic systems with elastic joint transmission elements.
Consider the reduced flexible joint model of (2.37)

M(q)q̈ + c(q, q̇) + g(q) +K(q − θ) = 0

Bθ̈ +K(θ − q) = τm,
(5.9)

which also holds for intrinsically compliant robots without stiffness adjusting mechanism. The
deflection constraint is assumed to be

−ϕmax ≤ θ − q ≤ ϕmax. (5.10)

(5.10) should be understood component-wise, since ϕmax ∈ R
n here. As usual, the motor

torque is the control input u = τm. Subtracting motor and link accelerations yields

θ̈ − q̈ = B−1u−B−1K(θ − q)−M−1K(θ − q) +M−1c(q, q̇) +M−1g(q). (5.11)

At a boundary, θ̈ − q̈ needs to vanish and the boundary control can be calculated for the
upper or lower bound with ϕ = θ − q = ±ϕmax respectively, as

⇒ B−1u±b −B−1K (θ − q)
︸ ︷︷ ︸

±ϕmax

−M−1K (θ − q)
︸ ︷︷ ︸

±ϕmax

+M−1c(q, q̇) +M−1g(q)
!
= 0 (5.12)
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Figure 5.2: Numerical solution for the elastic single pendulum with deflection constraint.
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⇒ u±b (t) = B(B−1K +M−1(q)K) · (±ϕmax)−BM−1(q) (c(q, q̇) + g(q)) , (5.13)

where ±ϕmax = (±ϕ1max,±ϕ2max, ...,±ϕnmax) is the vector of (mixed) boundary limits which
are active at the current time instance, and R := BM−1 is the inertial ratio. It shall be noted
that formula (5.13) is only valid if the spring deflection is in the limit for every joint, which is
of course a special case. The case where only some deflections are in their limits, while others
are not, is left for future work.

5.2 Double Pendulum

For the double pendulum, a full set of constraints will be taken into account that is reasonable
for real-world applications.

y

x

g
b

q1

b

vEE
q2

Figure 5.3: Elastic double pendulum

Singular optimal control problem

Here, a different cost function is necessary. Choosing J = −q̇2(tf ) would lead to unnatural
and jerky movements without any further restriction (such as a pre-specified area for the
end position of the pendulum). This is due to the fact that maximizing the link velocity
for the second link does not imply anything for the first link. This may result in unnatural
movements when the first joint is counter reacting with the second link. Therefore, from now
on, the goal will be to maximize the end-effector velocity. The end-effector velocity results
from kinematic considerations

‖vEE‖ = ‖
d

dt
rEE‖ =

√

l21q̇
2
1 + 2l1l2q̇1(q̇1 + q̇2) cos(q2) + l22(q̇1 + q̇2)2 (5.14)

The new cost function then reads as

J = −‖vEE(tf )‖ → min! (5.15)
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Again, the Lagrange equations of the second kind yield the dynamics in the subsequent form

Mq̈ + c(q, q̇) + g(q)−K(θ − q) = 0 (5.16a)

Bθ̈ +K(θ − q) = τm, (5.16b)

where K = diag{k1, k2} is the diagonal positive definite stiffness matrix with constant values.
The derivation is straightforward but tedious and will not be displayed. A detailed description
of the matrices and vectors of (5.16) can be found in Appendix B. In addition to the control
constraints, several state constraints are now considered. Besides the deflection constraint
that was already imposed several times before, new constraints on the motor and link position,
as well as on the motor velocity, are introduced. The full set of constraints reads as

−u1max ≤ ui ≤ u1max (5.17a)

−qmax ≤ qi ≤ qmax (5.17b)

−θmax ≤ θi ≤ θmax (5.17c)

−ϕmax ≤ ϕi ≤ ϕmax (5.17d)

−θ̇max ≤ θ̇i ≤ θ̇max, (5.17e)

where i ∈ {1, 2} denotes the number of the corresponding joint.

For numerical examples, the constraint boundaries are chosen as u1max = 70 [Nm], qmax = 135
[◦], θmax = 120 [◦], ϕmax = 15 [◦], θ̇max = 4 [rad/s]. The remaining numerical values for the
elastic double pendulum can be found in Table B.1 in Appendix B. As always, initial state,
initial time and end time are fixed and the final state is free. The initial configuration is
(q, q̇, θ, θ̇) = (0, 0, 0, 0)T at initial time t0 = 0 [s] and the final time is chosen as tf = 0.2 [s].

For the numerical solver GPOPS, the dynamics are brought into first-order form ẋ = f(x, u)
by introducing the control u = τm and state vector as x = (q, q̇, θ, θ̇)T . Also, the first
derivative of the right-hand side of the first-order dynamics w.r.t. the states and controls is
calculated with the computer algebra system MAPLE and passed on to the software. Overall,
this improves solution accuracy and calculation speed significantly.

For the variable stiffness case, the dynamics (5.16) change only marginally. The stiffness
matrix K is replaced with K(u) = diag{u3, u4}, where u3 and u4 are the additional control
variables that are able to directly change the stiffness. The corresponding constraints for the
stiffness controls are

u2min ≤ u1/2 ≤ u2max, (5.18)

with the numerical values u2min = 400 [Nm/rad] and u2max = 800 [Nm/rad] for the subsequent
examples1.

Figures 5.4 and 5.5 depict the numerical solutions of the optimization problems for the con-
stant stiffness case (5.15)-(5.17) and the variable stiffness case (K = K(u)) (5.15)-(5.18) with
the additional initial/end conditions, respectively.

Following observations can be made

1This is a simplification because for real-world robotic systems as the HASy, the stiffness can not be
controlled directly. There, a stiffness adjusting mechanism is prevalent which needs its own dynamic modeling,
cf. Chapter 2.5.
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Figure 5.4: Solution of the optimal control problem for the elastic double pendulum with
constant stiffness.



74 Nonlinear Dynamics

0 0.05 0.1 0.15 0.2
−100

−50

0

50

100

Time t [s]

C
o
n
tr

o
ls

u
1
,u

2
[N

m
]

 

 

u1
u2

I

IV

V III

(a) Torque Controls

0 0.05 0.1 0.15 0.2
300

400

500

600

700

800

900

Time t [s]

C
o
n
tr
o
ls
u
3
,u

4
[N

m
/
ra
d
]

 

 
u3
u4

II

(b) Stiffness Controls

0 0.05 0.1 0.15 0.2
−10

−5

0

5

10

15

Time t [s]

L
in
k
ve
lo
ci
ti
es

q̇
[r
a
d
/
s]

 

 

q̇1
q̇2

Max. rigid robot

(c) Link velocities

0 0.05 0.1 0.15 0.2
−6

−4

−2

0

2

4

6

Time t [s]

M
o
to
r
ve
lo
ci
ti
es

θ̇
[r
a
d
/
s]

 

 

θ̇1
θ̇2

I

IV

II III

V

(d) Motor Velocities

0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

Time t [s]

D
efl
ec
ti
o
n
s
ϕ
[◦
]

 

 
ϕ1
ϕ2

(e) Deflections

0 0.05 0.1 0.15 0.2
−30

−20

−10

0

10

20

30

40

Time t [s]

L
in
k
/
M
o
to
r
p
o
si
ti
o
n
s
q
,θ

[◦
]

 

 
q1
q2
θ1
θ2

(f) Link and Motor Positions

Figure 5.5: Solution of the optimal control problem for the elastic double pendulum with
variable stiffness.
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• For a rigid robot, the maximal link velocity equals the maximal motor velocity due to
the stiff coupling. In Figures 5.4(e) and 5.5(c) the maximal link velocity for a rigid
robot is indicated by a green dashed line. For the case of constant as well as variable
stiffness, this velocity is exceeded by far.

• Figure 5.6 shows the end-effector velocity for the constant and variable stiffness case.
At final time, the end-effector velocity for the variable stiffness case is 30% faster than
the end-effector velocity for the constant stiffness case. For a rigid robot, the maximal
end-effector velocity would be vrigid,EE = q̇max(l1 + l2) = θ̇max(l1 + l2) = 3.64 [m/s].
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Figure 5.6: End-effector velocity of the actuated double pendulum with variable and constant
stiffness transmission elements.

• The bang-boundary-bang structure is clearly observable, see Figures 5.4(a), 5.5(a) and
5.5(b). Apparently, no singular arcs occur, i.e. for every part in the control which
is non-constant, there is a corresponding boundary arc in the state constraints. For
example, in the variable stiffness case, there are five boundary arcs which occur due to
the constraint in the motor velocity, see Figure 5.5(d) segments I-V. Two times, the
maximum motor velocity is reached for the first motor, which then invokes a boundary
control for the torque input (Figure 5.5(a), segment I) and a boundary control for the
stiffness adjusting input (Figure 5.5(b), segment II). For the second motor velocity,
there are three boundary arcs which all lead to a boundary torque control, cf. segments
III-V in Figures 5.5(a) and 5.5(d). The same can be observed for the constant stiffness
case, where three boundary arcs occur, see Figures 5.4(a) and 5.4(b).

• Here, the crucial constraint seems to be the motor velocity. Since the torque inputs
are always at their maximum value, the motor velocities are rapidly brought to their
limits. Due to the relatively short final time, the other state constraints do not seem
to play an important role. For larger values of the final time, the system will obviously
be brought into more of its limitations. To an extent, this already becomes apparent
for the deflection in the variable stiffness case. In Figure 5.5(e), it can be seen that
the deflection touches the constraint. However, since a touch point can be seen as a
boundary arc of length zero, the control is still constant before and after the touch
point.
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• None of the state constraints are violated and all kept within their boundaries. For the
control constraint, however, there are overshoots that occur in transitions between the
constituent arcs. This phenomenon has already been observed a couple of times in this
thesis. It is a well-known problem in pseudospectral methods [60]. The reason therefore
is the placement of the LGR collocation points in pseudospectral methods. In general,
there is no a-priori knowledge about the switching times that cause the discontinuities
in the control. As mentioned in Chapter 3.5, by placing the mesh points at locations of
nonsmoothness, the solution accuracy can be improved immensely. Unfortunately, the
option to manually place mesh points at critical points is not supported yet.

Double pendulum with regularization term in the cost functional

For real-world applications, the controls should not violate their boundaries and the change
in the slope should be bounded by a constant given by the dynamics. This enables the motor
to track the desired trajectory. Since jumps are critical for the numerical calculations, a well-
known trick in optimal control is to add a Lagrange term2

∫ tf
t0

εru
2dt to the cost functional

in order to smooth out discontinuous control trajectories. According to Chapter 3.2, the
Hamiltonian for control-affine dynamics becomes

H = εru
2 + λT f(x, u) = εru

2 + λT f1(x)u+ λT f2(x) (5.19)

and the Hessian results inHuu = diag{2εr , ..., 2εr}, which is regular for εr 6= 0. Henceforth, εr
will be called regularization factor. Whereas the control could be discontinuous at transitions
from the constituent arcs (bang, boundary or singular) before, the continuity of the control
is guaranteed now [81]. The new cost functional for the constant stiffness case becomes

Jr1 = −‖vEE(tf )‖+

∫ tf

t0

εr1(u
2
1 + u22)dt (5.20)

and for the variable stiffness case

Jr2 = −‖vEE(tf )‖+

∫ tf

t0

εr1(u
2
1 + u22) + εr2(u

2
3 + u24)dt (5.21)

Again, solving the same optimal control problems for the constant stiffness (5.16)-(5.17),
(5.20) and for the variable stiffness case (K = K(u)) (5.16)-(5.18),(5.21) as before with the
new cost functionals leads to the solutions depicted in Figures 5.7 and 5.8. The regularization
factors are chosen as εr1 = 10−3 and εr2 = 10−5.

The most noticeable difference is of course the continuity of the control. As a consequence,
the undesired overshoot in the control is avoided, which makes this approach accessible for
real-world applications. However, due to the new cost functional term, the descriptive bang-
boundary-bang structure is lost here. The link velocities still exceed the link velocities of a
rigid robot by far, see Figures 5.7(e) and 5.8(c). The end-effector velocities are depicted in
Table 5.1 and one can see that variable stiffness is still superior to constant stiffness with

2The subsequent squared notation of a vector here is of course a shorthand for the dot product and serves
visualization purposes.
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Figure 5.7: Solution of the optimal control problem for the elastic double pendulum with
constant stiffness and regularization factor.
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(c) Link velocities
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Figure 5.8: Solution of the optimal control problem for the elastic double pendulum with
variable stiffness and regularization factors in the cost functional.
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Constant Stiffness ‖vEE(tf )‖ Variable Stiffness ‖vEE(tf )‖ Velocity gain

Singular 5.0241 [m/s] 6.5359 [m/s] 30.09 %

Regularized 4.8266 [m/s] 6.1460 [m/s] 27.34 %

Table 5.1: End-effector velocities at final time for the constant and variable stiffness case as
well as different cost functionals.

a velocity gain of 27 %. Furthermore, one can extract the unsurprising fact that the final
velocities are both lower than for the singular optimal control case.

Since there are small overshoots in the stiffness control, see Figure 5.8, one could think of
increasing the second regularization factor εr2 . This leads in a natural way of asking how
much impact the regularization factors will have with respect to the achievable performance.

Figure 5.9 depicts the dependencies of the end-effector velocity on the regularization factors
for the constant and variable stiffness case. In the constant stiffness case, a rapid decline of
the end-effector velocity can be seen, see Figure 5.9(a). For the variable stiffness case, the
performance seems to be more prone to the stiffness regularization term εr2 , while εr1 affects
it less as opposed to the constant stiffness case. Therefore, it is advised to rather lower the
boundaries for the maximal allowed stiffness rather than increasing εr2 .
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Figure 5.9: Dependencies of the end-effector velocity at final time on different regularization
factors.





Chapter 6

Conclusion and Outlook

This thesis aimed at investigating multibody robotic systems that have elastic transmission
elements with the objective to maximize the velocity of the final mass/the last link. Further-
more, the impacts of variable stiffness actuation with regard to performance were examined
and compared to the performance of rigid and elastic systems.

For a well-defined problem formulation, control constraints and a fixed final time are at least
necessary. Later on, for a more realistic approach, state constraints were imposed as well.
The most important one is the spring deflection constraint, which should not be violated for
intrinsically compliant robots and therefore plays an important role throughout the thesis.

Mass spring systems with torque input (with or without stiffness adjusting property) can be
regarded as simplified models for intrinsically compliant robots. Hence, it was reasonable to
examine those systems first to gain a basic understanding of the underlying behavior of this
class of robots. Subsequently, it has been analyzed to what extent the found results can be
transferred to intrinsically compliant robots that exhibit nonlinear dynamics.

Since the control will enter linearly for rigid and intrinsically compliant robots, a large class of
cost functions leads to singular optimal control problems. The inherent numerical problems
that arise for the control have been tackled as follows. For a subcase, an approach via energetic
considerations has been chosen to find the switching times numerically, while the remaining
quantities could be retrieved analytically, yielding a solution with high precision. This ap-
proach falls under the category of indirect methods. For nonlinear dynamics, a regularization
strategy led to smoother control trajectories that are less prone to numerical artifacts using
direct methods. Consequently, both strategies nullified the undesired overshoot of the control
over its boundaries.

The key results of this thesis can be summarized as

• A 2 DoF mass spring system with constant stiffness and deflection constraint has been
analyzed. Depending on the maximal allowed deflection, a distinction between three
cases can be made. A focus was laid on the third case, where via an energetic approach
the switching times are retrieved numerically. With the theory of optimal control, the
remaining quantities could be obtained analytically. The assumed switching structure
was verified later on with (direct) numerical methods.
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• A similar pattern of the switching structure could be observed for the elastic single
pendulum for a (sufficiently) small final time. However, due to gravitational effects, the
boundary control is deformed by a nonlinear term. The formula for it could be obtained
analytically and was verified by a numerical example. For the generalization of an n
DoF intrinsically compliant robot that is at all deflection limits at a time instance, a
formula for the boundary control depending on the link positions and velocities could
be obtained in a straightforward manner.

• The controllability property for an n DoF mass spring system with constant stiffness
and only one force input acting on the first mass has been proven. This has immediate
consequences for the control structure of time-optimal control problems, meaning they
will be of bang-bang type.

• For the n DoF variable stiffness mass spring system, the switchings of the torque control
are induced by zeros in the deflection of the mass spring system or the corresponding
virtual system. For equal masses the virtual system degenerates to the dual system of
previous works.

• A direct comparison of a 2 DoF mass spring system with either constant, varying stiffness
or stiff coupling has led to the observation that the speed of the last mass at final time
is the greatest for the variable stiffness case, which speaks in favor for variable stiffness
actuation. Moreover, it is rapidly increasing with the expansion of the stiffness control
domain. Surprisingly, the last mass for the varying stiffness case was faster at final time
as opposed to the constant stiffness case although the same energy consumption was
imposed by an additional constraint. This can be accredited to the bilinear nature of
the dynamics that allows more controllability over the system.

• For the elastic double pendulum, the link velocity exceeds the link velocity of a rigid
robot for both constant and variable stiffness. Furthermore, the end-effector velocity
is greater for the variable stiffness than for the constant stiffness, which again speaks
in favor for variable stiffness actuation. In order to diminish numerical artifacts and
avoid overshooting of the control over the control boundaries, regularization terms were
used. It is advised to choose regularization factors carefully, since there is a significant
degradation in performance with increasing regularization. For the variable stiffness
case, the performance is more prone to the regularization factor that corresponds to the
stiffness actuation than the one that corresponds to the torque control.

Although a large variety of different aspects has been considered and analyzed, numerous
open issues remain, which shall be treated in future work, such as

• The exclusion of singular arcs for the n DoF mass spring system. For this generalization,
an elegant proof without the (tedious) procedure of differentiating and case-by-case
analysis would be preferable.

• For the 2 DoF mass spring system with constant stiffness and deflection constraint, the
second case has not been covered extensively and only a numerical solution with a direct
solver is presented in this thesis. Setting up a TPBVP for the second case requires the
treatment of contact points and furthermore the structure is also depending on the final
time as opposed to the third case.

• Under idealized assumptions (an instantaneous change in the control is possible), the
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controls will be driven to their limits if no state constraints are active. This leads to the
consideration of k ∈ [0,∞] as a degenerated case. This was excluded in the theoretical
analysis of mass spring systems, where it was necessary for analytical results, such as
the exclusion of singular arcs. For intrinsically compliant robots, k = 0 corresponds to
an underactuated robot due to the decoupling of motor and link and k = ∞ to a rigid
robot due to the stiff coupling. However, since the control domain needs to be closed,
k = ∞ needs to be treated differently. Therefore, the dynamics should be modeled for
each case of k = ∞∨0 in a joint separately and proper switching between the dynamics
needs to be ensured. This leads to the theory of optimal control of hybrid systems.

• Time-optimal control problems with free final time for mass spring systems, or nonlinear
robot dynamics with torque input have not yet been discussed thoroughly.

• Similar to the expansion of the control domain in the 2 DoF mass spring systems, one
could observe the effects for expanding the control domain for the double pendulum and
analyze the limitations of variable stiffness actuation.





Chapter A

Appendix to Chapter Mass
Spring Systems

A.1 Analytic Solution for the 2 DoF Mass Spring System with
Constant Stiffness

The analytical solution of the states and costates belonging to the boundary value problem
(4.3),(4.6),(4.7) with x0 = (0, 0, 0, 0)T considered in Chapter 4.1 is displayed subsequently

x∗ =









−k1umax

m2
1
ω4 cos(ωt) + umax

ω2m1
( k1
ω2m1

+ k1
2m2

t2)
k1umax

m1m2ω4 cos(ωt) +
umax

ω2m1
( k1
ω2m1

+ k1
2m2

t2 − 1)
umax

ωm1(1+
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)
sin(ωt) + umax
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t

− umax
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t






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
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
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k1
m2ω

sin(ω(t− tf ))

− k1
m2ω

sin(ω(t− tf ))
m1

m1+m2
(cos(ω(t− tf ))− 1)

−
m2+m1 cos(ω(t−tf ))

m1+m2








A.2 Transformationmatrix for the Modal Analysis

The transformation matrix arising in the course of modal analysis for the 3 DoF mass spring
system with constant stiffness in Chapter 4.1 reads as follows

Q =





q11 q12 1
q21 q22 1
1 1 1




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where the entries of the matrix are

q11 =
−4k1(−m1k2 + k1m3)m

2
3m2

(C2 + C1 − 2m3m1k2 − 2m3m1k1 − 2m3k1m2)(C2 + C1 − 2m3k1m2)

q12 =
−4k1(−m1k2 + k1m3)m

2
3m2

(−C2 + C1 + 2m3m1k2 + 2m3m1k1 + 2m3k1m2)(−C2 + C1 + 2m3k1m2)

q21 =
2m3(−m1k2 + k1m3)

C2 + C1 − 2m3m1k2 − 2m3m1k1 − 2m3k1m2

q22 =
−2m3(−m1k2 + k1m3)

−C2 + C1 + 2m3m1k2 + 2m3m1k1 + 2m3k1m2

with constants C1, C2

C1 :=(k22m
2
2m

2
1 − 2k2m2m

2
1m3k1 + 2k22m2m

2
1m3 − 2k2m

2
2m1k1m3 +m2

3m
2
1k

2
1 · · ·

+ 2m2
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2
1k1k2 + 2m2

3m1k
2
1m2 +m2

3m
2
1k

2
2 − 2m2

3m1k2k1m2 + k21m
2
2m

2
3)

1

2

C2 :=m3k1m2 + k2m1m2 +m3m1k2 +m3m1k1

A.3 Inductive Proof for the Special Structure of the Control-

lability Matrix

Figure A.1: Structure of the matrix A

For

C = [b,Ab,A2b,A3b, . . . , Am−1b] ∈ R
m×m

A = Tridi[a21, a32, . . .
︸ ︷︷ ︸

∈ R
m+1

; 0, . . . , 0
︸ ︷︷ ︸

∈ R
m

; a12, a23, . . .
︸ ︷︷ ︸

∈ R
m+1

]

b = (b1, 0, . . . , 0) ∈ R
m

the matrix C takes an upper triangular form and the values are displayed in equation (4.33).
In order to show that, first the upper triangular form needs to be proven and then the series
that describes the diagonal entries.

Proof

(i) Upper triangular
The first column of C is b and therefore zero except the first entry and it is trivial to
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see that the second column Ab is zero after the second entry due to the tridiagonal
structure of A, the third column A2b = A(Ab) is zero after the third entry etc.

(ii) Proof by induction for diagonal elements:

(a) Initial steps:

The first diagonal element of C is b1, the second b1 · a21. The first column of A2

(i ∈ {1, ...,m}) can be described by

(a2)i1 =
n∑

k=1

aik · ak1 = ai1 · a11
︸︷︷︸

=0

+ai2 · a21 +
n∑

k=3

aik · ak1
︸︷︷︸

=0
︸ ︷︷ ︸

=0

= ai2 · a21

The third diagonal element of C for i = 2 is (a2)31 = a32 · a21 and therefore, the
first column of A3 (i ∈ {1, ...,m}) equals

(a3)i1 =
n∑

k=1

aik · (a
2)k1 =

n∑

k=1

aik · (a
2)k1 =

n∑

k=1

aik · ak2 · a21

=

3∑

k=1

aik · ak2 · a21 +

n∑

k=4

aik · ak2
︸︷︷︸

=0

·a21

= ai1 · a12 · a21 + ai2 · a22
︸︷︷︸

=0

·a21 + ai3 · a32 · a21

Fourth diagonal element of C for i = 3:

b1(a
3)41 = b1 · a41

︸︷︷︸

=0

·a12 · a21 + b1 · a43 · a32 · a21 = b1 · a43 · a32 · a21

(b) Inductive assumption:

b1 · (a
i)i+1,1 = b1 ·

i∏

k=1

ak+1,k for i ∈ {1, ...,m − 1}
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(c) Inductive step:

b1 · (a
i+1)i+2,1 = b1

n∑

k=1

al+2,k · (a
i)k1

= b1

i∑

k=1
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︸ ︷︷ ︸

=0

·(ai)k1 + b1 · ai+2,i+1 · (a
i)i+1,1

+b1 · ai+2,i+2
︸ ︷︷ ︸
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·(ai)i+2,1 + b1 · ai+2,i+3 · (a
i)i+3,1

+b1
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k=i+4
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=0
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I.A.
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ak+1,k + b1 · ai+2,i+3 · (a
i)i+3,1
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︸ ︷︷ ︸
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�

⇒ Controllability Matrix upper triangular and diagonal elements are

diag(C) = {b1, b1 · a21, b1 · a21 · a32, . . . , b1 ·

m−1∏

k=1

ak+1,k}

m1 [kg] m2 [kg] m3 [kg] k1 [N/m] k2 [N/m] umax[N] tf [s]

Figure 4.3 2 1.5 0.5 80 25 4 1.5

Figure 4.4 2 2 8 40 10 4 10

Figure 4.6 2 2 - 25 - 4 3

Figure 4.11 2 2 - [25,80] - 4 1.2

Figure 4.14 2 2 - 25,80,[25,80] - 4 2.5133

Figure 4.15 2 2 - γ, [25,80] - 4 2.5133

Figure 4.16 2 2 - 80 - 4 2.5133

Table A.1: Numerical values with umax = −umin



Chapter B

Double Pendulum Dynamics

Mq̈ + c(q, q̇) + g(q) − τJ(q, θ) = 0

Bθ̈ + τJ(q, θ) = u

M(q) =

[
1

4
m1l

2
1 +

1

4
m2l

2
2 + Jzz1 +m2l

2
1 +m2l1l2 cos(q2) + Jzz2

1

4
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2
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4
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2 + Jzz2

]

c(q, q̇) =

(
− 1

2
m2l1l2 sin(q2)(2q̇1q̇2 + q̇22)

1

2
m2l1l2q̇1 sin(q2)
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(
1

2
m1g sin(q1)l1 +m2g(sin(q1)l1 +

1

2
sin(q1 + q2)l2)

1

2
m2g sin(q1 + q2)l2

)

B =

[
b1 0
0 b2

]

τJ = K(θ − q) =

[
k1 0
0 k2

]

(θ − q)

where q are joint angles, q̇ angular velocities, θ motor angles and θ̇ motor velocities. The
moments of inertia for the links Jzzi =

1
3mil

2
i , i ∈ {1, 2} and the motors b1 = b2 =

1
12mml2mi2g

result from the consideration of a thin rod model for both.

Name Symbol Value Unit

Motor mass mm 0.24 kg

Link mass m1, m2 7.4,4.1 kg

Rotor length lm 0.0204 m

Link length l1, l2 0.45,0.46 m

Gear ratio ig 80 -

Gravity constant g 9.81 m/s2

Stiffness constant k1,k2 600 Nm/rad

Table B.1: Numerical values for the elastic double pendulum (Properties also used for the
elastic single pendulum). Link masses and link lengths chosen according to the human leg
[10], which are in the same order of magnitude as the DLR HASy. The motor properties are
taken from DLR HASy.
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sität München, 2007.



Bibliography 97

[94] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi. Vsa-ii: A novel prototype of variable
stiffness actuator for safe and performing robots interacting with humans. In IEEE
International Conference on Robotics and Automation, pages 2171–2176. IEEE, 2008.

[95] W. Schiehlen. Technische Dynamik. Mechanik. Teubner Studienbücher Mathematik,
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