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■ Abstract Lithium is highly effective in the treatment of bipolar disorder and also
has multiple effects on embryonic development, glycogen synthesis, hematopoiesis,
and other processes. However, the mechanism of lithium action is still unclear. A num-
ber of enzymes have been proposed as potential targets of lithium action, including
inositol monophosphatase, a family of structurally related phosphomonoesterases, and
the protein kinase glycogen synthase kinase-3. These potential targets are widely ex-
pressed, require metal ions for catalysis, and are generally inhibited by lithium in an
uncompetitive manner, most likely by displacing a divalent cation. Thus, the challenge
is to determine which target, if any, is responsible for a given response to lithium in cells.
Comparison of lithium effects with genetic disruption of putative target molecules has
helped to validate these targets, and the use of alternative inhibitors of a given target
can also lend strong support for or against a proposed mechanism of lithium action.
In this review, lithium sensitive enzymes are discussed, and a number of criteria are
proposed to evaluate which of these enzymes are involved in the response to lithium
in a given setting.

INTRODUCTION

Lithium has been used for more than fifty years as the primary therapy for bipolar
disorder (BPD) (1, 2), but its mechanism(s) of action is still unknown (3–10). Other
putatively therapeutic uses prior to the work of Cade had been described for lithium
salts, and an effect of lithium on embryonic development has been recognized for
at least 100 years (11). Lithium also affects metabolism, neuronal communication,
and cell proliferation in a diverse array of organisms, from cellular slime molds
to humans. Some attempts have been made to explain the mechanism of lithium
action in these diverse settings through a single unifying hypothesis. These efforts
have guided valuable research on the pharmacology of lithium action, but it remains
unclear whether these or other possible mechanisms are sufficient to explain any
or all of the effects of lithium. In this review, we focus on potential targets that
are known to be directly inhibited by lithium in vitro. The vast and expanding
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literature on downstream consequences of lithium action cannot be adequately
reviewed here; for this and related topics, readers are referred to several excellent
reviews (3–7, 12; see also 9, 10).

The clinical importance of defining the direct target(s) of lithium action is
twofold. First, while lithium is highly effective in treating BPD in many patients,
the therapeutic window between effective dosing and toxicity is narrow, side effects
are common even within the therapeutic dose range, and a significant number of
patients do not respond (3, 8). While anticonvulsants such as valproic acid offer
an alternative mode of therapy, an understanding of the targets of lithium (and of
valproic acid) will make it possible to identify additional therapies for this common
disorder. Second, little is known about the pathogenesis of BPD or other mood
disorders, and therefore identification of the molecular target of lithium should
shed light on the etiology of this disorder. Finally, it is of great scientific interest to
understand how a simple, small cation like lithium can demonstrate such relative
specificity in its range of actions when other monovalent cations have no apparent
effect. It is indeed remarkable that millions of people can actually tolerate this
simple drug with a minimum of prohibitive side effects.

Lithium is clearly able to inhibit multiple enzymes, and it is improbable that
all of the actions of lithium can be explained by interaction with a single target.
Since these diverse potential targets are often present in the same cell, it remains a
challenge to distinguish which, if any, of the known targets of lithium is involved
in the in vivo response to lithium. Thus, after a brief discussion of some of the
better characterized effects of lithium, we also discuss criteria that can be applied
to validate a putative target in a given setting.

EFFECTS OF LITHIUM

Lithium has numerous effects in humans and in model organisms; it would be
difficult to describe all of them in detail here. A few of the more common effects
of lithium are described to provide a physiological context for the discussion of
the potential molecular targets of lithium action that follows.

Neuropsychiatric

Bipolar disorder is a common psychiatric ailment characterized by cycling peri-
ods of extreme elation (mania) and severe depression (9); features of psychosis,
including delusions and hallucinations, can be associated with either extreme.
Although lithium salts were used in the nineteenth century for various and some-
times dubious purposes, for example as a soporific and a gout treatment (2, 13–
15), the use of lithium to treat the manic phase of BPD was first described by
Cade in 1949, after noticing the sedative effect of lithium on guinea pigs (1).
Cade boldly extended his observations to humans with BPD, providing a potent
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therapy for BPD. The occurrence of BPD has been estimated to be in 0.3% to
1.5% of the population, based on epidemiological studies sampling diverse re-
gions of the world (16). Although a genetic link is suspected given the clustering
of BPD in genetically homogenous populations (17–21), specific loci have not
been identified (22, 23). In addition to controlling mania, lithium has been used
as a mood stabilizer in the control of bipolar depression and may also have a
therapeutic value as adjunctive therapy in the treatment of unipolar depression
(8, 24) and in cluster headache. Lithium in cell culture models confers protec-
tion from excitotoxic neurotransmitters in cortical and cerebellar cells and leads
to synaptic remodeling in cerebellar cells (25–27). As described below, lithium
can cause an increase in neurotransmitter release inDrosophilaneuromuscular
junctions.

Developmental Effects

Lithium alters the development of phylogenetically diverse organisms (Figure 1)
(11, 28–32). For example, inDictyostelium, a simple eukaryotic organism, expo-
sure to lithium during early development blocks spore cell fate and promotes the
formation of stalk cells (28, 29). In sea urchins, lithium causes vegetalization of
animal blastomeres (32–34). In vertebrates such asXenopusand zebrafish, lithium
causes expansion of dorsal mesoderm, leading to duplication of the dorsal axis in
Xenopusor, in extreme cases, entirely dorsalized embryos lacking ventral tissues
(30, 31). In mammals, isolated nephrogenic mesenchyme undergoes mesenchymal
to epithelial differentiation when exposed to lithium (35), and mouse mammary
tumor cells have an increased proliferative index in the presence of lithium (36).
In humans teratogenic effects of lithium have been reported at surprisingly low
frequency when one considers the dramatic effects on the development of lower
vertebrates. Some studies have indicated an increased frequency of congenital
heart defects, particularly Ebstein’s anomaly, characterized by downward dis-
placement of the tricuspid valve in the right ventricle of the heart, but the reported
frequency of this defect has varied widely (9).

Metabolic Effects

Lithium can stimulate glycogen synthesis in mammals through activation of glyco-
gen synthase, mimicking insulin action (37–41). In addition, lithium therapy in
humans is associated with subclinical hypothyroidism and nontoxic goiter, nephro-
genic diabetes insipidus (decreased renal concentrating ability), weight gain, hy-
perparathyroidism, and a large number of other less common side effects (8, 9).

Hematopoiesis

One of the most prevalent benign side effects of lithium therapy in humans is an
increase in the number of circulating granulocytes (up to 1.5-fold), predominantly
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Figure 1 The effects of lithium on developing systems. (a) Exposure ofXenopusembryos to
lithium during an early stage of development causes expansion and duplication of dorsal and
anterior structures (30). On the left is a control tadpole. On the right, a lithium-treated embryo
with duplicated dorsal and anterior structures. (b) Dictyostelium discoideumis a simple eukary-
ote that, upon starvation, develops into two general cell types, spores (within a fruiting body)
and stalk cells (supporting the fruiting body). Exposure to lithium during development diverts
cells away from the spore cell fate with expansion of the stalk cell population (adapted from
Reference 28).

neutrophils, although effects on other lineages have also been reported (42–44).
Lithium appears to increase the level of pluripotent hematopoietic stem cells, either
indirectly by stimulating the release of cytokines or directly by acting on stem
cells (or both) (44–48). Thus, lithium treatment reduces chemotherapy-induced
neutropenia and febrile complications of marrow suppressive therapies in a number
of clinical trials (49–52) (reviewed in 44). In spite of these early encouraging
studies, lithium has not been used extensively in neutropenic patients, perhaps
because of its narrow therapeutic window.
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MOLECULAR TARGETS OF LITHIUM

Considerable information has been gained in the past 50 years concerning some
of the indirect physiological consequences of lithium therapy (3, 4, 6,53–56).
Lithium can affect neurotransmitter release, metabolism of biogenic monoamines,
and neuronal signal transmission through perturbation of the distribution of sodium,
magnesium, and calcium (9, 10). Lithium can inhibit depolarization-induced and
calcium-dependent release of norepinephrine and dopamine, (57), and conversely,
may stimulate the release of serotonin (58). A number of phosphoproteins have
been identified whose phosphorylation or expression level is sensitive to lithium
treatment, including neurofilament proteins (59), microtubule-associated proteins
(60), and protein kinase C (PKC) substrates such as the MARCKS protein, which
is downregulated in response to lithium therapy (4, 6, 53). Lithium also inhibits
ADP-ribosyl transferase in extracts derived from rat frontal cortex (61). Because
of the characteristic delay in clinical response to lithium therapy, an effect of
lithium on neuronal gene expression has also been proposed (56): In support of
this, lithium has been shown to activate AP-1-dependent transcription (62–67)
and Tcf/Lef-dependent transcription (see below). A number of studies have indi-
cated that lithium interferes with signal transduction through G protein–coupled
pathways, inhibiting the G proteins themselves or downstream effectors, includ-
ing adenylyl cyclase, phospholipase C, and protein kinase C (4, 68). However,
in each case, these effects of lithium have not been shown to be direct, largely
because of the difficulty in reconstituting these signaling systems from purified
components.

These observations are not necessarily in conflict with each other, and each
could lie in a pathway regulated by a common signaling molecule that is the direct
target of lithium action. Our focus ison targets known to be inhibited directly
by lithium (Table 1). These include inositol monophosphatase (69) and the large
family of related phosphomonoesterases (70), as well as the recently identified
target glycogen synthase kinase-3β (GSK-3β) (71). Since each of these potential
targets is expressed widely, and generally in the same cell types, it remains a

TABLE 1 Lithium-sensitive enzymes

Target Ki (mM) Type of inhibition Reference(s)

IMPase 0.8 Uncompetitive 72

IPPase 0.3 Uncompetitive 91

FBPase 0.3–0.8 193

BPntase 0.16–0.3 Uncompetitive 85, 90

Hal2p 0.1 Un-/noncompetitive 86

GSK-3β 1–2 Uncompetitive 71, 101
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challenge to distinguish which, if any, are involved in a given response to lithium.
To validate a molecule as a relevant direct target of lithium action, one would
expect the following:

1. The target should show direct sensitivity to lithium (and not to other
monovalent cations) in vitro.

2. The target should be sensitive to lithium in vivo at physiological
concentrations of lithium.

3. Loss-of-function mutations in the putative target should be phenocopied
by exposure to lithium.

4. Alternative inhibitors of the target molecule should mimic the effect of
lithium.

5. The effect of lithium should be reversed by appropriate modulation of
components downstream of the putative target.

6. A lithium-resistant form of the molecule should block the effect of lithium
in vivo.

Inositol Depletion Hypothesis

One of the most compelling hypotheses to explain lithium action is the inositol
depletion hypothesis (Figure 2), which is based on the observation that lithium
inhibits inositol monophosphatase (IMPase) in vitro at a Ki (0.8 mM) within the
therapeutic range (0.5 to 1.5 mM) for lithium treatment of patients with bipolar
disease (69, 72). Since IMPase regenerates inositol from inositol monophosphate
(IMP), inhibition of this step could deplete inositol if the cells do not have an
alternative source. In principle, this should lead to depletion of phosphatidylino-
sitol bisphosphate (PIP2), a necessary precursor for the generation of the second
messenger inositol-1,4,5 trisphosphate (IP3) in response to extracellular signals.
For example, numerous neurotransmitters bind to G protein–coupled receptors that
activate phospholipase C, which hydrolyzes PIP2 to diacylglycerol (DAG) and IP3;
DAG activates PKC, while IP3 causes release of calcium from intracellular stores
into the cytoplasm. The net effect of lithium, then, would be to block ligand-
dependent signaling through PKC and IP3/calcium.

Lithium is an uncompetitive inhibitor of IMPase, and it has been argued that
this may explain why lithium therapy is effective in BPD but has no apparent effect
on the psychiatric state of normal subjects (73). For an uncompetitive inhibitor,
the fractional inhibition is proportional to the level of enzyme-substrate complex,
which means that at higher concentrations of substrate (e.g. IMP), lithium would
have a greater effect. Thus, if mania or other disturbances of mood arise because of
excess signaling that leads to increased IMP levels, lithium would inhibit IMPase
to a greater extent than if given to “normal” patients with lower levels of IMP. It
follows, then, that an uncompetitive inhibitor cannot be overcome by increased
concentration of substrate, in contrast to a competitive inhibitor.
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Figure 2 Inositol depletion hypothesis. Ligand binding to a surface receptor activates phos-
pholipase C (PLC), which hydrolyzes the phospholipid PIP2 to yield two second messengers:
diacylglycerol (DAG) and inositol-1,4,5 trisphosphate (IP3). As shown in this simplified model,
lithium inhibits IMPase, which regenerates inositol from inositol monophosphate (IP). If this inhi-
bition is sufficient to deplete inositol, then it should also deplete PIP2 and prevent the formation of
IP3 and DAG, thus indirectly inhibiting transmembrane signaling. The bisphosphonate compound
L-690,330 is an IMPase inhibitor that is 1000-fold more potent than lithium.

The inositol depletion hypothesis is supported by observations that lithium can
inhibit IMPase in vivo (74), leading to accumulation of IMP. However, reduction
of inositol in mammals is seen only at toxic doses of lithium; therapeutic doses
in mammals do not deplete inositol, PIP2, or IP3 in vivo, either acutely or after
chronic administration (3, 4). Numerous studies have shown inositol depletion
in brain slices treated with lithium, but in these in vitro assays, a marked drop in
inositol reserves is incurred even before addition of lithium (3, 4). Still, therapeutic
concentrations of lithium could lower inositol levels within small, restricted regions
of the brain or within specific subcellular pools that are particularly sensitive to
inhibition of IMPase, and this might not be detected with the available assays for
inositol and inositol phosphates.

The inositol depletion hypothesis has also been invoked to explain the profound
effects of lithium on developing organisms (29, 75). Indeed, teratogenic doses
of lithium inhibit IMPase in vivo inXenopusembryos (71) and cause a 30%
reduction in inositol levels (76), while inDictyostelium, lithium lowers intracellular
inositol by 20% (77). In spite of these small changes in inositol levels, coinjection
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of inositol can prevent this teratogenic effect of lithium inXenopus, providing
additional support for the inositol depletion hypothesis (75).

Although the inositol depletion hypothesis is an attractive model for explaining
the effects of lithium in some settings, a closer examination of this hypothesis casts
doubt on whether inhibition of IMPase is sufficient to explain the developmental
effects of lithium (71, 78). Alternative inhibitors of IMPase (bisphosphonates) that
are 1000-fold more potent than lithium (79) have no effect on the development of
Xenopusembryos despite complete inhibition of IMPase in vivo (71). This obser-
vation suggests that inhibition of IMPase is not sufficient for the developmental
effects of lithium inXenopus. Why then does coinjection of inositol with lithium
reverse the developmental effects of lithium inXenopus(as above)? Elevated levels
of inositol or inositol phosphates may have unexpected and indirect effects on other
lithium-sensitive pathways; in support of this, raising the level of inositol inXeno-
pusblocks dorsal axis induction by agents other than lithium that are unlikely to act
through depletion of inositol, as discussed below (78). In addition, agonist-induced
increases in IP3 can be blocked in slime molds by disruption of the gene encoding
phospholipase C (although IP3 is still detectable at basal levels), yet this mutation
has no effect onDictyosteliumdevelopment (80), despite the dramatic effect of
lithium treatment. Furthermore,Dictyosteliumhas at least three forms of IMPase,
two of which are insensitive to lithium, which may explain the modest effect of
lithium on inositol levels (20% reduction) in this organism (77). Taken together,
these observations suggest that the developmental effects of lithium are mediated
through a target distinct from IMPase, although the possibility remains that inhi-
bition of IMPase is necessary but not sufficient for lithium action in these settings.

Phosphomonoesterases Other Than IMPase

In addition to IMPase, a number of structurally related phosphomonoesterases have
been described that require metal ions (especially magnesium) and are inhibited by
lithium (70). Biochemical and crystallographic analyses of three of these, IMPase,
inositol polyphosphate 1-phosphatase (IPPase), and fructose 1,6-bisphosphatase
(FBPase), have revealed similar tertiary structures and a consensus sequence
(D-Xn-EE-Xn-DP(i/l)D(s/g/a)T-Xn-WD-X11-GG) that is involved in metal ion
binding, which plays a role in catalysis, and that most likely interacts with lithium
ions (70, 81–84). A number of other phosphomonoesterases contain this consen-
sus sequence, including Hal2p and Tol1 (from budding yeast and fission yeast,
respectively), SAL1 (from Arabidopsis), the bacterial protein cysQ, and related
bisphosphate 3′ nucleotidases (BPntase) from mammals (70, 85–90), defining a
large family of lithium-sensitive enzymes.

IPPase catalyzes the removal of the 1-phosphate from inositol 1,4-bisphosphate
or 1,3,4-trisphosphate to form inositol 4-phosphate or inositol 3,4-bisphosphate
(83, 91). An in vivo correlation between lithium action and inhibition of IPPase
is found inDrosophilaneuromuscular junctions, where lithium exposure pheno-
copies mutations in IPPase, both of which lead to a similar defect in synaptic
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transmission due to increased vesicle release (92). The fact that lithium inhibits
IPPase in vitro offers a likely explanation for the effects of lithium in this setting.
It would be interesting to test whether overexpression of IPPase or expression of
a lithium-resistant form of IPPase prevents the effect of lithium on theDrosophila
neuromuscular junction and in other settings.

HAL2 was identified inSaccharomyces cerevisiaeas a gene that, when over-
expressed, confers tolerance to high-salt conditions (93). (HAL2 is identical to
MET22, which is required for methionine synthesis (94).) Hal2p removes the
3′ phosphate from adenosine 3′, 5′ bisphosphate (pAp) and is inhibited by lithium
at submillimolar concentrations (IC50= 0.1 mM (86)). Although lithium toxi-
city in yeast requires 100–200 mM LiCl in the growth medium (93, 95), it is not
clear what the intracellular concentration is under these conditions. Inhibition of
Hal2p by salt (lithium or sodium) or loss-of-function mutations inHAL2 leads to
the accumulation of pAp, which in turn causes inhibition of sulphotransferases
and RNA processing enzymes such as exoribonuclease Xrn1p (95, 96). Hal2p was
recently crystallized, and this structure, combined with genetic analysis, led to
the identification of residues important in binding metal ions and in mediating
inhibition by monovalent cations (96). In fact, mutations in Hal2p were identi-
fied that reduced sensitivity to monovalent cations; corresponding mutations were
generated in human IMPase and were found to reduce sensitivity to lithium almost
ninefold (96). It will be fascinating to test whether transgenic expression of lithium-
resistant IMPase (or other phosphomonoesterases, if possible) confers resistance
to lithium in model organisms or cell lines.

BPntase (also identified as RnPIP) is a bisphosphate 3′-nucleosidase with
activity toward pAp and other bisphosphate nucleotides, as well as toward 3′ phos-
phoadenosine 5′ phosphosulfonate (85, 89, 90). BPntase/RnPIP is dependent on
magnesium and is uncompetitively inhibited by lithium with a low Ki (157–
300µM). Since BPntase/RnPIP is structurally related to Hal2p and SAL1, which
are involved in salt tolerance in yeast and plants, Speigelberg et al have proposed
that inhibition of BPntase might account for lithium-induced nephrogenic diabetes
insipidus observed in mammals, a conditioned characterized by poor concentration
of urine with consequent polyuria. BPntase/RnPIP also remove the 1-phosphate
from inositol 1,4 bisphosphate (85, 89, 90), similar to SAL1 (88).

In summary, a large family of lithium-sensitive phosphomonoesterases has been
described in a broad range of organisms; these enzymes offer attractive targets to
consider as potential targets of lithium action, and in a few cases are associated
with lithium effects in vivo, particularly with IPPase inDrosophila, where loss
of function is phenocopied by lithium, and with Hal2p inS. cerevisiae, in which
overexpression prevents the effects of high lithium or sodium concentrations.

Glycogen Synthase Kinase-3

A novel hypothesis to explain the effects of lithium action on embryonic devel-
opment, glycogen synthesis, and hematopoiesis has been proposed based on the
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observation that lithium is a direct inhibitor of glycogen synthase kinase-3 (GSK-3)
(71). GSK-3 was first identified as a negative regulator of glycogen synthesis that
phosphorylates and inhibits glycogen synthase (97, 98). Two isozymes of GSK-3,
GSK-3α and GSK-3β, have been identified (99). Although published work has
focused on GSK-3β, GSK-3α has similar but not identical biochemical properties
(98 but see also 100). GSK-3β is expressed broadly in eukaryotes, including proto-
zoans such as yeast andDictyostelium, higher plants such asArabidopsis, rice, and
corn, invertebrates such asCaenorhabditis elegans, Drosophila, and sea urchins,
and vertebrates includingXenopus, mice and humans. In mammals, GSK-3β is
expressed in early embryos and in most adult tissue types, including brain (98, 99).

GSK-3β is inhibited by lithium with a Ki (1–2 mM) within the effective range
for lithium action (71). Lithium does not inhibit other protein kinases tested, in-
cluding casein kinase II, protein kinase A, p34cdc2, MAP kinase, and protein kinase
C. Lithium is an uncompetitive inhibitor of GSK-3β with respect to substrate (71),
as seen with IMPase and other phosphomonoesterases but appears to be compet-
itive with respect to magnesium, which may explain its mechanism of inhibition
(LJ Conrad & PS Klein, unpublished data). Lithium inhibition of GSK-3β, as
well as GSK-3α, has subsequently been confirmed in vitro (101). Lithium also
inhibits GSK-3β in vivo, as demonstrated in a number of systems by the reduced
phosphorylation of known GSK-3 substrates such as tau protein, MAP-1B, and
others (62, 101–106). Furthermore, lithium inhibits GSK-3 derived from diverse
species, fromDictyosteliumto mammals (33, 62, 101).

How then does this inhibition of GSK-3 explain the mechanism of lithium action
in developmental settings? Strong support for this hypothesis comes from genetic
disruption of GSK-3β in Dictyostelium(GSKA). Loss of GSKA inDictyostelium
alters cell fate so that presumptive spore cells are diverted to a stalk cell fate (107).
The phenotype described by Harwood et al (107) is remarkably similar to the effect
of lithium described by Maeda 25 years earlier (28), and thus, lithium phenocopies
loss of GSKA in this setting. This was confirmed by demonstrating that lithium
inhibits GSKA (62, 108).

In higher eukaryotes, GSK-3β is a negative regulator of the Wnt signaling path-
way (Figures 3, 4), which plays a central role in the patterning of early embryos
(109–113), in the regulation of cell proliferation (114–116), and in neuronal signal
transduction in adults (27). In the absence of Wnt signaling, GSK-3β is found
in a complex with several other proteins, including the adenomatous polyposis
coli protein (APC), axin, protein phosphatase 2A (PP2A), dishevelled (dsh), and
β-catenin (117). This multiprotein complex promotes GSK-3β-mediated phos-
phorylation ofβ-catenin, targetingβ-catenin for ubiquitination and degradation
via the proteosome pathway. Upon activation of Wnt signaling, GSK-3β is in-
hibited (118–120), allowingβ-catenin protein to accumulate (121). Accumulated
β-catenin translocates to the nucleus where it forms a transcriptionally competent
complex with members of the Tcf/Lef family of DNA binding factors, resulting
in the transcription of Wnt target genes (109, 110).

Perturbations that interfere with GSK-3β–mediated phosphorylation ofβ-cate-
nin, such as null mutations in the GSK-3β gene, known aszeste-white-3or shaggy
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Figure 3 The Wnt signaling pathway. Wnts are a family of secreted glycoproteins in-
volved in embryonic patterning, axonal remodeling, regulation of cellular proliferation,
stem cell development, and numerous other processes. In the absence of Wnt, GSK-3β

phosphorylatesβ-catenin, resulting in its rapid degradation. Binding of Wnt to the frizzled
receptor leads to inhibition of GSK-3β and stabilization ofβ-catenin, which accumulates
in the nucleus where it interacts with Tcf/Lef DNA binding factors to activate downstream
target genes. Lithium activates Wnt signaling by inhibiting GSK-3β directly. (Arrows
indicate positive effect and horizontal or inverted T indicates inhibitory effect.)
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Figure 4 Lithium activates β-catenin and glycogen synthase by inhibiting GSK-3β.
GSK-3β negatively regulatesβ-catenin and glycogen synthase. Shown on the left, inhibition
of GSK-3β by lithium results in the stabilization ofβ-catenin and the activation of Wnt target
genes. Shown on the right, GSK-3β reduces the activity of glycogen synthase. Activation of the
pathway by insulin or treatment of cells with lithium results in the inhibition of GSK-3β, leading
to an increase in glycogen synthesis.

in Drosophila (122–124), or dominant inhibitory forms of GSK-3β (125–127),
cause constitutive activation of Wnt signaling. Thus, agents such as lithium that
inhibit GSK-3β are predicted to mimic Wnt signaling (71), and this has been
observed in numerous settings: Lithium leads to accumulation and nuclear local-
ization ofβ-catenin protein inXenopusoocytes and embryos (62, 128, 129), sea
urchin embryos (33, 34, 130, 131), and cultured mammalian epithelial cells and
neurons (101, 118, 132). This effect onβ-catenin in turn activates Wnt-dependent
genes, leading, for example, to duplication of the dorsal axis inXenopus(30,
133–135) or axonal remodeling in mouse cerebellar cells (27, 106, 136), as well as
activation of Tcf/Lef-dependent transcriptional reporters (131, 137, CJ Phiel & PS
Klein, unpublished data). Lithium also mimics Wnt signaling in the induction of
epithelial differentiation of embryonic nephrogenic mesenchyme (35, 138, 139),
stimulation of cellular proliferation (36, 114), inhibition of adipocyte differentia-
tion (140), and the stimulation of hematopoiesis (44, 141, 142).

While the inhibition of GSK-3β and stabilization ofβ-catenin by lithium are
consistent with the developmental phenotypes, they are correlations, and one could
argue that they are independent of each other. However, the developmental effects
of lithium are clearly dependent on activation of downstream Wnt signaling since
dominant negative Tcf/Lef blocks the vegetalizing effect in sea urchins (131), and
depletion ofβ-catenin similarly blocks the dorsalizing effect of lithium inXenopus
embryos (J Heasman, personal communication).

Two reports have suggested that the effects of lithium on early vertebrate de-
velopment are mediated through pathways independent ofβ-catenin (143, 144).
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Using a cell-free system derived fromXenopusembryos, Nelson & Gumbiner
(143) found no change in endogenous or exogenousβ-catenin levels after expo-
sure to lithium and argued that the dorsalizing effects of lithium may involve a
different pathway. These observations are at odds with reports showing stabiliza-
tion of exogenousβ-catenin by lithium in oocytes, embryos, and cell-free extracts
(62, 129, 145); it is not yet clear which variables in the assays account for this
difference. Furthermore, treatment of preimplantation mouse embryos results in
a range of dorsal-anterior patterning defects in postimplantation embryos that are
not associated with changes inβ-catenin protein levels or nuclear localization
(144), which again raises the possibility that lithium can perturb embryonic devel-
opment by disrupting more than one pathway. It would be interesting to test the
bisphosphonate IMPase inhibitors in these specific assay systems.

As discussed above, lithium causes a 30% reduction in inositol levels inXeno-
pus embryos and coinjection of inositol with lithium prevents lithium-induced
dorsalization inXenopus, observations that have provided strong support for the
inositol depletion hypothesis. However, inositol also reverses dorsalization caused
by dominant inhibitory GSK-3β, which functions as an activator of Wnt signaling,
raising the possibility that injected inositol may have an indirect effect in this assay
(62). Since elevated GSK-3β activity rescues the effect of dominant inhibitory
GSK-3β (125–127) and of lithium (PS Klein, unpublished data), inositol could
indirectly activate GSK-3β. While neither inositol nor inositol 1-phosphate affects
GSK-3β activity in vitro (PS Klein, unpublished data), recent data have shown that
exposure of cells to high concentrations of glucose and hexosamines can increase
GSK-3β activity significantly (146). A similar response to high levels of inositol
or inositol phosphates could provide an indirect mechanism for inositol rescue of
lithium effects on GSK-3β regulated pathways.

As mentioned previously, GSK-3β was initially described as an inhibitor of
glycogen synthase, which is regulated by the insulin signaling pathway (97, 98, 147,
148). Insulin signaling activates the protein kinase Akt/PKB, which directly phos-
phorylates and inhibits GSK-3β, alleviating its inhibition of glycogen synthase
(Figure 4). Again, alternative agents that inhibit GSK-3β, such as lithium, would
then be predicted to activate glycogen synthase (71), as has been observed (37–41).

Disruption of the GSK-3β gene in mice leads to fetal hepatic necrosis but does
not appear to activate Wnt signaling (100). GSK-3α may compensate for the loss
of GSK-3β, at least with respect to Wnt signaling. This hepatic degeneration in
GSK-3β null mice is consistent with increased sensitivity to tumor necrosis factor
(TNF) seen in mice lacking the transcription factor NF-κB, and thus Hoeflich et al
(100) proposed that GSK-3β is required for NF-κB regulation of TNF responses. In
this respect, lithium again phenocopies loss of GSK-3β because when fibroblasts
derived from GSK-3β null mice are exposed to lithium, it also sensitizes their
response to TNF (149) and inhibits activation of NF-κB-dependent transcription.

If the effects of lithium are indeed manifested through inhibition of GSK-3β,
then alternative inhibitors of GSK-3β should mimic lithium action. Dominant
inhibitory GSK-3β mimics lithium action, but these mutated forms of GSK-3 do
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not inhibit endogenous GSK-3 activity per se (150). However, two alternative in-
hibitors of GSK-3β have been described through two hybrid screens for GSK-3
interacting genes (151, 152). GSK-3 binding protein (GBP), a homologue of a
previously novel protein named FRAT (frequently rearranged in advanced T-cell
lymphoma (152)), has been shown to bind GSK-3β in vivo, to inhibit its enzymatic
activity in the tau phosphorylation assay, and to cause dorsalization when overex-
pressed inXenopusembryos, similar to lithium (152, 153). Mutations that prevent
binding to GSK-3 prevent in vivo inhibition and dorsalization of embryos (152).

In addition, the axis inhibitor gene axin (154) was found by two-hybrid screens
in numerous laboratories (155–163) to act as a scaffolding protein that binds
GSK-3β andβ-catenin. This binding is required for GSK-3β phosphorylation
of β-catenin (157). Axin thus facilitates phosphorylation and degradation ofβ-
catenin. While full-length axin does not alter the enzymatic activity of GSK-3β,
fragments of axin that bind GSK-3β are potent inhibitors of its enzymatic activity
and mimic the effects of lithium inXenopusembryos (151) as well as in mammalian
cells (164; PS Klein, unpublished data). The GSK-3 interacting domain of axin has
been mapped to a 25-amino acid sequence that is well conserved among vertebrate
axins (although less well conserved inDrosophilaaxin), and this short peptide still
binds GSK-3, inhibits its activity in the tau phosphorylation assay, causes stabi-
lization ofβ-catenin, and activates Wnt-dependent gene expression (151).

Valproic acid, a well-known antiepileptic agent that is also a highly effective
treatment for BPD, has been reported to inhibit GSK-3β-mediated phosphorylation
of a peptide substrate in vitro (165) and can cause accumulation ofβ-catenin
protein. If valproic acid can be shown to inhibit GSK-3β in vivo, this would provide
exciting additional support for the hypothesis that GSK-3β is an important target
in the therapy of BPD.

In summary, the evidence in support of GSK-3β as a relevant target of lithium
action, at least in development and in glycogen synthesis, includes (a) in vitro in-
hibition, (b) in vivo inhibition, (c) lithium phenocopying GSK-3β loss of function,
(d ) alternative inhibitors of GSK-3β mimicking lithium action, (e) downstream
inhibition of Wnt signaling blocking the effects of lithium, and (f ) while lithium-
resistant forms of GSK-3β have not been identified, simple elevation of the levels
of GSK-3β also appears to reverse the effects of lithium.

CONCLUDING REMARKS

A Role for GSK-3β in Alzheimer’s Disease?

A prominent pathological feature in Alzheimer’s disease (AD) is the presence of
neurofibrillary tangles that are primarily composed of hyperphosphorylated tau
protein arranged in paired helical filaments (166–168). GSK-3β is one of several
protein kinases that can phosphorylate tau in vitro and appears to phosphorylate tau
at the same sites in vivo and in paired helical filaments (169–176). Phosphorylation
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of tau has been shown by numerous laboratories to be inhibited by lithium (78, 101–
104). While it is not clear whether hyperphosphorylation of tau plays a causative
role in AD or is a consequence of the disease process, it is intriguing to consider
that lithium, through inhibition of GSK-3β, could prevent the accumulation of
hyperphosphorylated tau protein and neurofibrillary tangles.

Furthermore GSK-3β andβ-catenin have been reported to interact with prese-
nilins 1 and 2 (177–183). Mutations inpresenilin-1and-2 have been identified
in hereditary forms of early-onset AD (184–186). Conflicting reports suggest a
number of possible roles for presenilin in the regulation ofβ-catenin and neuronal
survival (187–190). If presenilins are confirmed to regulateβ-catenin in vivo and
if modulation ofβ-catenin protein levels plays a role in the pathogenesis of AD,
then clearly the use of lithium, which inhibits GSK-3β and thereby increases the
level ofβ-catenin, could have important consequences in patients with AD.

Lithium and BPD

While a number of direct targets of lithium have been identified, the target respon-
sible for the therapeutic effect of lithium in the treatment of BPD is still unknown.
Furthermore, lithium could regulate multiple targets to achieve its dramatic mood-
stabilizing effect. Recent studies have identified alternative inhibitors of IMPase
(79), BPntase (85), and GSK-3β (151, 152), which could be used in animal mod-
els (191, 192) of lithium-sensitive behaviors to determine which potential target is
responsible for the behavioral effects of lithium.

Conditional gene disruption and transgenic expression of these genes in mice
will also prove highly useful in deciphering the relevant targets of lithium action in
neuropsychiatric settings as well as in other settings. In addition to identifying al-
ternative therapies for BPD, this analysis could lead to new agents that mimic other
lithium actions, for example stimulating hematopoiesis in neutropenic patients or
enhancing the response to extracellular signals such as insulin and TNF. An un-
derstanding of the mechanisms of lithium action should also provide important
insights into the pathogenesis of BPD and other disorders of mood.

Visit the Annual Reviews home page at www.AnnualReviews.org
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