
978-1-7281-1328-9/19/$31.00 ©2019 IEEE

The Risks and Challenges of Implementing Ethereum

Smart Contracts
Christopher G. Harris

School of Mathematical Sciences

University of Northern Colorado

Greeley, CO 80639 USA

christopher.harris@unco.edu

Abstract—Smart contracts are designed to facilitate the

performance of trackable and irreversible transactions without
the need for third party involvement. Therefore, as a result of

this lack of overs ight, it is essential that these smart contracts are

written and properly tested. In this paper, we examine some of

the prominent risks and challenges involved with writing and

implementing smart contracts and discuss how each of these
challenges can be overcome. We focus on contracts executed on

Ethereum, the most prominent smart contract platform.

Keywords—Ethereum, smart contracts, Solidity, blockchain

I. INTRODUCTION

Smart contracts – one of the most widely-discussed

applications to result from the rise of blockchain technology –
permit companies to create trustless, automated agreements.

These smart contracts are considered fulfilled only when
specific conditions built into the contract are met. Not only do

they facilitate the development of applications directly on the

chain, but they also work with tokens that provide considerable
utility for various types of financial transactions. These factors

have facilitated considerable speculation over its potential to

affect numerous industries from law to logistics to finance.

As a new technology smart contracts are not without
numerous risks and challenges, many of which are a direct

result of their stated benefits, such as lack of third-party

oversight and their immutability. Therefore, they have drawn
considerable criticism from many who have observed the

resulting chaos. The most prominent framework for smart
contracts is Ethereum [1], whose capitalization has exceeded

$12.2B since its mid-2015 launch 1 . In Ethereum, smart
contracts are rendered as computer programs written in

Solidity, a Turing-complete language. In this paper, we

examine these risks and challenges primarily in the context of
Ethereum; however, many of these same issues can be seen on

the 40+ other platforms used for smart contract development
(for a comprehensive list, see [2]). Ethereum maintains a

shared view of the global state using a proof-of-work

consensus mechanism like that found in Bitcoin.

The remainder of this paper is organized as follows. In the
next section, we discuss the essential properties of smart

contracts. In Section III, we discuss some of the common

types of bugs encountered in Ethereum and describe some of

1 https://coinmarketcap.com/currencies/ethereum/

the approaches that have been used to address these bugs.
Last, in Section IV, we discuss the general issues of risk in

smart contracts and examine overall directions in their

resolution.

II. SMART CONTRACTS

In 1994, Nick Szabo introduced the concept of a smart

contract. He defined it as “a computerized transaction protocol
that executes the terms of a contract” [3]. Whereas a contract

is an agreement between two or more parties that binds them to
some future condition or state, according to Szabo smart

contracts translate these contractual clauses (such as collateral

and bonding) into the code and embeds them into hardware or
software. This structure makes them self-enforceable in order

to minimize the need for trusted intermediaries between
transacting parties [4]. Blockchain technology, which provides

the essential characteristics of immutability, irreversibility,
decentralization, and persistence, have made smart contracts

achievable [5].

A. Essential Properties of Smart Contracts

Smart contract platforms need to provide three properties:

they need to be deterministic, isolated, and terminable.

 The first property is deterministic – they need to produce

the same result each time they run. Several conditions can

affect deterministic behavior in a program:

• If it relies on an external state or relies on dynamic or non-
deterministic function calls, such as those that depend on

hardware timer values, random values or values that change

over time.

• If it operates in a way that is sensitive to timing or run
order, for example, if multiple processors are writ ing to the

same data at the same time; the precise order in which each

processor writes its data affects the result.

• If a hardware error causes the program’s state to change

unexpectedly.

Isolation is the second condition for a smart contract. A

smart contract can be uploaded by anyone, which introduces a
risk since any single contract may (by design or by accident)

contain viruses and bugs. If the contract is not isolated, this
could impact the entire blockchain ecosystem. Therefore,

contracts need to be isolated in a sandbox to save the entire

ecosystem from any negative effects that one contract could

introduce.

The third condition, termination, is also essentia l in smart
contracts since by definition a smart contract must be capable

of completing within a specified time limit. There are three
primary methods to guarantee termination in smart contract

programs.

• Turing Incompleteness: To avoid entering an endless loop,

a Turing Incomplete blockchain will have limited

functionality and may not be capable of making jumps and

loops.

• Steps and Fee Meters: A program can keep track of the
number “steps” it has taken and then terminate once a step

count has been reached. With a fee meter, contracts are
executed with a pre-paid amount put into a reserve. Every

instruction execution requires a specified fee. If the fee

spent exceeds the pre-paid allocated amount, the contract is

subsequently terminated.

• Timers: Here a pre-determined timer is maintained; if the
contract execution exceeds the time limit then it is

externally aborted.

Ethereum contracts have no non-deterministic functions and

the available data is limited to on-chain information only.
Dynamic calls can be executed, and these calls can be non-

deterministic. Ethereum uses the fee meter approach for

termination, requiring “gas” (a fee) to deploy and execute
smart contracts; once the gas used exceeds the pre-paid

allocated amount, the contract is terminated. The Ethereum
Virtual Machine (EVM) language supports an instruction set of

150 8-bit opcodes (at the time of this writing, see [6] for a list).
This instruction set allows the creation of Turing-complete

programs that support smart contract execution and are thus

able to express arbitrarily complex logic [7]; however, the
number of instructions available in EVM is limited to ensure

termination; otherwise, the miners could encounter endless
loops, and formal blockchain verification would become

impossible. For this reason, EVM is considered a quasi-Turing
complete language in practice [9]. Ethereum provides a virtual

machine environment assuring isolation but competing
platforms such as Hyperledger Fabric use a docker, which is

namespace dependent and thus cannot guarantee isolation.

III. ETHERIUM-BASED BUGS

We can divide these bugs into four categories: those

related to callbacks, those related to integer errors, those
related to language and version inconsistencies, and those

related to execution inconsistencies.

A. Bugs related to callbacks

Unlike most standard programming environments like Java and
C, Ethereum smart contracts lack a global mutable shared state.

Ethereum blockchains (as well as numerous other dynamic
environments) implement event-driven programming using

callbacks. These callbacks allow programmers to break
modularity – while they are essential for good programming

style and code extendibility, they also have the adverse

consequence of potentially compromising security.

Modularity is essential to blockchain development since
contracts are often contributed by multiple sources, some of

which may have malicious intent. A widely-reported bug in
The DAO contract in June 2016 exploited callbacks to steal

$150M [7], but there are many other bugs related to callbacks

that did not get as much attention. A callback bug in The DAO
allowed an adversarial contract to mutate The DAO’s state by

calling back to it recursively. A function called splitDAO() was
vulnerable to the recursive send pattern in which updates to

user balances and totals were done after the movement of
funds; the call the function to execute a split were allowed to

occur before the initial withdrawal completed. This exploit
was only rectified through the one-time use of a hard fork, thus

violating the immutability principle of the blockchain.

As with many ca llback bugs, The DAO exploit was not due to
any issues with the Ethereum opcodes, but due to poor

programming and testing. As a result, several researchers have
published methods to examine the use of reentrant code [10] or

provide a static analysis of smart contracts [11]. As these
methods mature, we anticipate checks of these types to be

incorporated into the EVM bytecode before a contract can be

implemented.

B. Bugs related to integer errors

There are many scenarios involving integer operations that

can result in bugs in Ethereum smart contracts. Integer errors

in smart contracts can be broken into three main categories:

arithmetic bugs, truncation bugs and signedness bugs [9].

Arithmetic bugs include overflows (i.e., through opcodes
ADD and MUL), underflows (i.e., through the SUB opcode),

and division by zero or modulo zero. These can occur if the
bounds conditions are not fulfilled by the resulting type. This

results in a value that wraps around. All operations in EVM

are modulo 2256 due to the 256-bit word size,, but if the
addition of two unsigned numbers is greater than 232–1 in

Solidity (currently the primary language used in coding
Ethereum contracts), it will wrap around, without producing an

exception as would occur in other la nguages like Java or C.
Likewise, in Solidity versions 0.4.0 and lower, d ivision by zero

or a number modulo zero will also produce a 0 and not an

exception [12]. In April 2018, abnormal fluctuations were
observed in BEC tokens. Attackers had successfully got 1058

BECs exploiting a vulnerability caused by an integer overflow
[13]. The authors of [9] found that out of the 50,535 distinct

contracts (i.e., non-copied versions) they investigated in 2018,
20,520 overflows were found in 21% of the contracts, 6,103

underflows in 12% of the contracts and 29 modulo division

errors in less than 1% of contracts.

Truncation bugs occur when the precision of a value is

lost, usually due to a conversion from one integral type to a
narrower integral type. The speed of light in a vacuum is

299,792,458 meters per second. In notation, this quantity is
expressed as 2.99792458 x 108. Truncating it to two decimal

places yields 2.99 x 108. The truncation error is the difference
between the actual value and the truncated value, or

0.00792458 x 108. Expressed properly in scientific notation, it

is 7.92458 x 105, which is a rounding error of approximately
0.26%. In computing applications, a truncation error is a

discrepancy that arises from executing a finite number of steps
to approximate an infinite process. In a financial transaction,

this type of truncation error can result in the loss of Ether.

Signedness bugs occur when a conversion is made from a

signed integer type to an unsigned integer type of the same

width (or vice versa). This type of behavior can occur because
internally to the computer, there is no distinction between the

way signed and unsigned variables are stored. This class of bug
can be problematic to exploit, since signed integers, when

interpreted as unsigned, tend to be very large. If in Figure 1,

the values supplied to a and b are both 0x7fffffff, the

bounds check in line 2 passes, and the resulting value is

0xfffffffe, or -2, which is far less than the expected value.

1 function addval (uint32 a, uint32 b) public returns (uint) {
2 return a + b;

3 }

Fig. 1. An example of a signedness bug.

Integer bugs, like bugs related to callbacks, are a result of

poorly-tested coding practices that occur in h igher-level

languages like Solidity, and not in the EVM opcodes. There
are several integer bug checkers, such as Osiris [14] and Zeus

[15], that can check for integer-based errors. Requiring these
types of error checks before a contract can be listed, while not

perfect, would identify and reduce the number of potentia l
errors on the blockchain.

C. Bugs related to language and version inconsistencies

As indicated in the earlier d iscussion on arithmetic bugs,

pre-0.4.0 versions of the Solidity software handle arithmetic
errors differently than post-0.4.0 versions, which may result in

unexpected behavior.

Although Solidity syntax resembles a mixture of C and
JavaScript, it uses a variety of unique concepts specific to

smart contract development and therefore may be unfamiliar
for new developers [9]. There are several known issues with

Solidity [16]. For example, EVM uses a memory model that is
specific to the execution of smart contracts on a blockchain and

differs from the traditional von Neumann architecture, which
may cause confusion. EVM features four different types of

memory, each with different properties and usage costs in

terms of gas. While the stack and memory constructs are
volatile and only hold values during execution of a contract,

storage is persistent and part of Ethereum’s world state,
organized as a Patricia Merkle trie holding sets of persistent

key/value pairs of all accounts. Storage is isolated from the
other smart contracts and is the only way for a smart contract

to save values across executions.

Solidity allows integers to be signed or unsigned,
containing lengths of between 8 and 256 bits (in 8-bit

increments) denoted, for example, as uint8 or int128. These
resemble integer types in C and may lead developers to falsely

assume that a uint8 occupies 8 bits in memory and an int128
occupies 128 bits. However, all integer types are represented in

the EVM as a 256-bit big endian using twos-complement.

Thus, integer typing in So lidity is inconsistent with that of the
EVM, which can lead to programming errors. Explicit

conversion between primitive types is possible, but the effects
are poorly documented. Explicitly casting a signed negative

integer to an unsigned one, for example, will not result in the
absolute value as expected, but leave its bit-level representation

intact.

Smart contracts are scripts stored on the blockchain and

have a unique address. They are triggered by addressing a

transaction to the smart contract script, which executes
independently and automatically in a prescribed manner on

every node in the network, making use of the data that was
included in the triggering transaction. Coding bugs are bound

to occur. For example confusion between == (equals) and !=

(not equals) allowed any user—apart from the smart contract

creator—to freely enable and disable transactions of all ICX
ERC-20 tokens on ICON’s Ethereum smart contract (i.e.,

immobilizing an $800+ million blockchain) [17].

Although the Solidity language has become more robust in

later (post 0.4.0) versions, poor non-centralized documentation
indicates that these types of bugs will likely persist for some

time. As it continues to gain prominence as the primary coding

language on the largest smart contract platform, we anticipate
that coders will exert greater influence to streamline the

language.

D. Bugs related to execution inconsistencies

In Ethereum, gas is a unit that represents the relative
amount of computational effort that it will take to execute

certain operations on the blockchain. Every single operation
that takes part in Ethereum, from a simple transaction or smart

contract requires some amount of gas. Gas is used to calculate
the fees paid to the network to execute an operation. When a

smart contract is submitted, it has a pre-determined gas value

(gas values for various EVM opcodes can be found in [2]). At
the time of execution, each step of the contract requires a

certain amount of gas, paying the network for the cost of
bandwidth, cost of storage and cost of computation. Adding

more than the required amount of gas can move the contra ct to
the beginning of the queue and incentivize the transaction to be

included in the next block. This incentive is analogous to a

"higher priority" in other systems. Thus, in theory, it may be
possible for collusion to occur and potentially starve other

contracts from executing, though there have not been any

examples of this occurring to date.

ERC-20 (Ethereum Request for Comment) is a technical
standard used for smart contracts on the Ethereum blockchain

for implementing tokens [18]. It defines a common list of ru les
for Ethereum tokens to follow within the larger Ethereum

ecosystem, allowing developers to predict the interaction

between tokens accurately. These rules include how the tokens
are transferred between addresses and how data within each

token can be accessed. Although at the time of this writing the
clear majority of tokens issued on the Ethereum blockchain are

ERC-20 compliant, interacting with tokens not compliant with
this standard may introduce unforeseen errors. These non-

compliant contracts can easily be checked before a transaction

occurs, but as of the time of this writing, few if any smart

contracts are known to make use of this information.

Last, as smart contracts become more ubiquitous, they
attract more users with malicious intent [19]. This increased

attraction is primarily due to the lack of regulation and the
anonymity they provide. Smart contracts provide rich

environments for Ponzi schemes. A Ponzi scheme is an
unsustainable fraudulent investment operation in which the

operator generates returns for older investors through revenue

paid by new investors, rather than from legitimate business

activities or profits of financial trading [20].

Detection of Ponzi schemes are difficult because of the
anonymous, decentralized nature; these are contributing reason

for their persistence in various forms for over a century. It is
only possible to detect their presence by examining the smart

contract code. Some researchers (e.g., [21) have recently
developed tools that incorporate machine learning techniques

to examine the flow of payments.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Smart contracts, due to their self-executing, self-enforcing

nature, provide great potential to disrupt numerous industries.
However, as currently implemented, they are not without

considerable risks and challenges. The results of these risks
and challenges can be observed in the number of bugs, scams,

and errors that have occurred since their inception in mid-2015.

As with any new technology, kinks are bound to occur. In

this paper, we have discussed the three key properties that
smart contracts need to contain (deterministic, isolated, and

terminable), the four primary categories of bugs (callbacks,

integer errors, language and version inconsistencies, and
execution inconsistencies), and some methods that are being

explored to maintain these principles and reduce the potential
and severity of bugs. We focused on the development issues

and did not discuss some identified issues with the Ethereum
environment that are likely to limit its growth, such potential

problems with scalability and the lack of a user-friendly

development environment. We plan to expand on the topics
covered here and address Ethereum and other emerging smart

contract platforms in future work.

REFERENCES

[1] V. Buterin. (2013). Ethereum: a next generation smart contract and
decentralized application platform. [Online] Available:
https://github.com/ethereum/wiki/wiki/White-Paper .

[2] V. Saini. (2018). ContractPedia: An Encyclopedia of 40 Smart Contract
Platforms. [Online]. Available: https://hackernoon.com/contractpedia-
an-encyclopedia-of-40-smart-contract-platforms-4867f66da1e5

[3] N. Szabo. (1994). Smart Contracts. [Online]. Available:
http://szabo.best.vwh.net/smart.contracts.html

[4] N. Szabo. (1997). The Idea of Smart Contracts. [Online]. Available:
http://szabo.best.vwh.net/smart_contracts_idea.html

[5] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos & G. Das, G. (2018).
Everything You Wanted to Know About the Blockchain: Its Promise,
Components, Processes, and Problems. IEEE Consumer Electronics
Magazine, 7(4), 6-14.

[6] J. Little, O. Boukle-Hacene, and D. Guido. (2018) Ethereum VM
(EVM) Opcodes and Instruction Reference. [Online] Available:
https://github.com/trailofbits/evm-opcodes

[7] S. Tikhomirov. (2017). Ethereum: state of knowledge and research
perspectives. [Online]. Available: https://hdl.handle.net/10993/32468.

[8] P. Daian. (2016). Analysis of the DAO exploit. [Online]. Available:
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

[9] C.F. Torres & J. Schütte. (2018). Osiris: Hunting for Integer Bugs in
Ethereum Smart Contracts. In Proceedings of the 34th Annual Computer
Security Applications Conference (pp. 664-676). ACM.

[10] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, B., & B. Roscoe. (2018).
ReGuard: finding reentrancy bugs in smart contracts. In Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings (pp. 65-68). ACM.

[11] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E.
Marchenko, and Y. Alexandrov. (2018). SmartCheck: Static Analysis of
Ethereum Smart Contracts. In WETSEB’18: WETSEB’18:IEEE/ACM
1st International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB 2018), Gothenburg, Sweden.
ACM, New York. https://doi.org/10.1145/3194113.3194115

[12] Y. Hirai. (2016). Exception on overflow-Issue #796-ethereum/solidity.
[Online] Available: https://github.com/ethereum/solidity/issues/796
#issuecomment-253578925

[13] Secbit. (2018). A disastrous vulnerability found in smart contracts of
BeautyChain (BEC). [Online]. Available: https://medium.com/secbit-
media/a-disastrous-vulnerability-found-in-smart-contracts-of-
beautychain-bec-dbf24ddbc30e

[14] O. Avan-Nomayo. (2018). Breaking News: Bug Discovered in ICON
(ICX) Smart Contract – Token Transfers Disabled. [Online]. Available:
https://ethereumworldnews.com/breaking-news-bug-discovered-in-icon-
smart-contract-token-transfers-disabled/

[15] S. Kalra, S. Goel, M. Dhawan, M., & S. Sharma. (2018). Zeus:
Analyzing safety of smart contracts. NDSS.

[16] P. Merriam. (2018). Solidity and Smart Contracts Gotchas. [Online]
Available: https://populus.readthedocs.io/en/latest/gotchas.html

[17] N. Chong. (2018) A Single Incorrect Character Cripples ICON
Blockchain, Bug Fix Implemented. [Online] Available:
https://www.newsbtc.com/2018/06/17/single-incorrect-character-
cripples-icon-blockchain-bug-fix-implemented/

[18] TheEthereum.wiki. (2017) ERC20 Token Standard [Online]. Available:
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

[19] Harris, Christopher G. (2018) "The risks and dangers of relying on
blockchain technology in underdeveloped countries." In NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium, pp.
1-4. IEEE.

[20] Wikipedia. (2018). Ponzi scheme. [Online]. Available:
https://en.wikipedia.org/wiki/Ponzi_scheme

[21] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, & Y. Zhou, Y. (2018).
Detecting Ponzi Schemes on Ethereum: Towards Healthier Blockchain
Technology. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web (pp. 1409-1418). International World Wide Web
Conferences Steering Committee.

