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Abstract—Smart contracts are designed to facilitate the 

performance of trackable and irreversible transactions without 
the need for third party involvement.  Therefore, as a result of 

this lack of overs ight, it is essential that these smart contracts are 

written and properly tested.  In this paper, we examine some of 

the prominent risks and challenges involved with writing and 

implementing smart contracts and discuss how each of these 
challenges can be overcome. We focus on contracts executed on 

Ethereum, the most prominent smart contract platform. 
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I. INTRODUCTION 

Smart contracts – one of the most widely-discussed  

applications to result from the rise of blockchain technology – 
permit companies to create trustless, automated agreements.  

These smart contracts are considered fulfilled only when 
specific conditions built into the contract are met. Not only do 

they facilitate the development of applications directly on the 

chain, but they also work with tokens that provide considerable 
utility for various types of financial transactions.  These factors 

have facilitated considerable speculation over its potential to 

affect numerous industries from law to logistics to finance. 

As a new technology smart contracts are not without 
numerous risks and challenges, many of which are a direct 

result of their stated benefits, such as lack of third-party 

oversight and their immutability. Therefore, they have drawn 
considerable criticism from many who have observed the 

resulting chaos.  The most prominent framework for smart 
contracts is Ethereum [1], whose capitalization has exceeded 

$12.2B since its mid-2015 launch 1 . In Ethereum, smart 
contracts are rendered as computer programs written in  

Solidity, a  Turing-complete language. In this paper, we 

examine these risks and challenges primarily in the context of 
Ethereum; however, many of these same issues can be seen on 

the 40+ other platforms used for smart contract development 
(for a  comprehensive list, see [2]). Ethereum maintains a 

shared view of the global state using a  proof-of-work 

consensus mechanism like that found in Bitcoin. 

The remainder of this paper is organized as follows.  In the 
next section, we discuss the essential properties of smart 

contracts.  In Section III, we discuss some of the common 

types of bugs encountered in Ethereum and describe some of 

 
1 https://coinmarketcap.com/currencies/ethereum/ 

the approaches that have been used to address these bugs.  
Last, in Section IV, we discuss the general issues of risk in  

smart contracts and examine overall directions in their 

resolution. 

II. SMART CONTRACTS 

In 1994, Nick Szabo introduced the concept of a  smart 

contract.  He defined it as “a computerized transaction protocol 
that executes the terms of a contract” [3].  Whereas a contract 

is an agreement between two or more parties that binds them to 
some future condition or state, according to Szabo smart 

contracts translate these contractual clauses (such as collateral 

and bonding) into the code and embeds them into hardware or 
software.  This structure makes them self-enforceable in order 

to minimize the need for trusted intermediaries between 
transacting parties [4]. Blockchain technology, which provides 

the essential characteristics of immutability, irreversibility, 
decentralization, and persistence, have made smart contracts 

achievable [5].   

A. Essential Properties of Smart Contracts  

Smart contract platforms need to provide three properties: 

they need to be deterministic, isolated, and terminable. 

 The first property is deterministic – they need to produce 

the same result each time they run.  Several conditions can 

affect deterministic behavior in a program: 

• If it relies on an external state or relies on dynamic or non-
deterministic function calls, such as those that depend on 

hardware timer values, random values or values that change 

over time.   

• If it operates in a way that is sensitive to timing or run 
order, for example, if multiple processors are writ ing to the 

same data at the same time; the precise order in which each 

processor writes its data affects the result. 

• If a  hardware error causes the program’s state to change 

unexpectedly. 

Isolation is the second condition for a smart contract.  A 

smart contract can be uploaded by anyone, which introduces a 
risk since any single contract may (by design or by accident) 

contain viruses and bugs.  If the contract is not isolated, this 
could impact the entire blockchain ecosystem. Therefore, 

contracts need to be isolated in a sandbox to save the entire 



ecosystem from any negative effects that one contract could 

introduce.   

The third condition, termination, is also essentia l in smart 
contracts since by definition a smart contract must be capable 

of completing within a specified time limit.  There are three 
primary methods to guarantee termination in smart contract 

programs. 

• Turing Incompleteness: To avoid entering an endless loop, 

a  Turing Incomplete blockchain will have limited 

functionality and may not be capable of making jumps and 

loops.  

• Steps and Fee Meters: A program can keep track of the 
number “steps” it has taken and then terminate once a step 

count has been reached. With a  fee meter, contracts are 
executed with a pre-paid amount put into a reserve. Every 

instruction execution requires a specified fee. If the fee 

spent exceeds the pre-paid allocated amount, the contract is 

subsequently terminated. 

• Timers: Here a pre-determined timer is maintained; if the 
contract execution exceeds the time limit then it  is  

externally aborted. 

Ethereum contracts have no non-deterministic functions and 

the available data is limited to on-chain information only.  
Dynamic calls can be executed, and these calls can be non-

deterministic.  Ethereum uses the fee meter approach for 

termination, requiring “gas” (a  fee) to deploy and execute 
smart contracts; once the gas used exceeds the pre-paid 

allocated amount, the contract is terminated.  The Ethereum 
Virtual Machine (EVM) language supports an instruction set of 

150 8-bit opcodes (at the time of this writing, see [6] for a list). 
This instruction set allows the creation of Turing-complete 

programs that support smart contract execution and are thus 

able to express arbitrarily complex logic [7]; however, the 
number of instructions available in EVM is limited to ensure 

termination; otherwise, the miners could encounter endless 
loops, and formal blockchain verification would become 

impossible.  For this reason, EVM is considered a quasi-Turing 
complete language in practice [9]. Ethereum provides a virtual 

machine environment assuring isolation but competing 
platforms such as Hyperledger Fabric use a docker, which is 

namespace dependent and thus cannot guarantee isolation. 

III. ETHERIUM-BASED BUGS 

We can divide these bugs into four categories:  those 

related to callbacks, those related to integer errors, those 
related to language and version inconsistencies, and those 

related to execution inconsistencies. 

A. Bugs related to callbacks 

Unlike most standard programming environments like Java and 
C, Ethereum smart contracts lack a global mutable shared state. 

Ethereum blockchains (as well as numerous other dynamic 
environments) implement event-driven programming using 

callbacks. These callbacks allow programmers to break 
modularity – while they are essential for good programming 

style and code extendibility, they also have the adverse 

consequence of potentially compromising security.  

Modularity is essential to blockchain development since 
contracts are often contributed by multiple sources, some of 

which may have malicious intent.  A widely-reported bug in 
The DAO contract in June 2016 exploited callbacks to steal 

$150M [7], but there are many other bugs related to callbacks 

that did not get as much attention.  A callback bug in The DAO 
allowed an adversarial contract to mutate The DAO’s state by 

calling back to it recursively. A function called splitDAO() was 
vulnerable to the recursive send pattern in which updates to 

user balances and totals were done after the movement of 
funds; the call the function to execute a split were allowed to  

occur before the initial withdrawal completed.  This exploit 
was only rectified through the one-time use of a hard fork, thus 

violating the immutability principle of the blockchain.   

As with many ca llback bugs, The DAO exploit was not due to 
any issues with the Ethereum opcodes, but due to poor 

programming and testing. As a result, several researchers have 
published methods to examine the use of reentrant code [10] or 

provide a static analysis of smart contracts [11].  As these 
methods mature, we anticipate checks of these types to be 

incorporated into the EVM bytecode before a contract can be 

implemented. 

B. Bugs related to integer errors 

There are many scenarios involving integer operations that 

can result in bugs in Ethereum smart contracts.  Integer errors 

in smart contracts can be broken into three main categories: 

arithmetic bugs, truncation bugs and signedness bugs [9].   

Arithmetic bugs include overflows (i.e., through opcodes 
ADD and MUL), underflows (i.e., through the SUB opcode), 

and division by zero or modulo zero.  These can occur if the 
bounds conditions are not fulfilled by the resulting type.  This 

results in a value that wraps around.  All operations in EVM 

are modulo 2256 due to the 256-bit word size,, but if the 
addition of two unsigned numbers is greater than 232–1 in 

Solidity (currently the primary language used in coding 
Ethereum contracts), it  will wrap around, without producing an 

exception as would occur in other la nguages like Java or C.  
Likewise, in Solidity versions 0.4.0 and lower, d ivision by zero 

or a number modulo zero will also produce a 0 and not an 

exception [12].  In April 2018, abnormal fluctuations were 
observed in BEC tokens. Attackers had successfully got 1058 

BECs exploiting a vulnerability caused by an integer overflow 
[13].  The authors of [9] found that out of the 50,535 distinct 

contracts (i.e., non-copied versions) they investigated in 2018, 
20,520 overflows were found in 21% of the contracts, 6,103 

underflows in 12% of the contracts and 29 modulo division 

errors in less than 1% of contracts. 

Truncation bugs occur when the precision of a value is 

lost, usually due to a conversion from one integral type to a 
narrower integral type.  The speed of light in a vacuum is 

299,792,458 meters per second. In notation, this quantity is 
expressed as 2.99792458 x 108. Truncating it to two decimal 

places yields 2.99 x 108. The truncation error is the difference 
between the actual value and the truncated value, or 

0.00792458 x 108. Expressed properly in scientific notation, it 



is 7.92458 x 105, which is a rounding error of approximately 
0.26%.  In computing applications, a  truncation error is a  

discrepancy that arises from executing a finite number of steps 
to approximate an infinite process.  In a financial transaction, 

this type of truncation error can result in the loss of Ether. 

Signedness bugs occur when a conversion is made from a 

signed integer type to an unsigned integer type of the same 

width (or vice versa). This type of behavior can occur because 
internally to the computer, there is no distinction between the 

way signed and unsigned variables are stored. This class of bug 
can be problematic to exploit, since signed integers, when 

interpreted as unsigned, tend to be very large.  If in Figure 1, 

the values supplied to a and b are both 0x7fffffff, the 

bounds check in line 2 passes, and the resulting value is 

0xfffffffe, or -2, which is far less than the expected value. 

1 function addval (uint32 a, uint32 b) public returns (uint) { 
2     return a + b; 

3 } 

Fig. 1. An example of a signedness bug. 

Integer bugs, like bugs related to callbacks, are a result of 

poorly-tested coding practices that occur in h igher-level 

languages like Solidity, and not in the EVM opcodes.  There  
are several integer bug checkers, such as Osiris [14] and Zeus 

[15], that can check for integer-based errors.  Requiring these 
types of error checks before a contract can be listed, while not 

perfect, would identify and reduce the number of potentia l 
errors on the blockchain. 

C. Bugs related to language and version inconsistencies 

As indicated in the earlier d iscussion on arithmetic bugs, 

pre-0.4.0 versions of the Solidity software handle arithmetic 
errors differently than post-0.4.0 versions, which may result in 

unexpected behavior.  

Although Solidity syntax resembles a  mixture of C and 
JavaScript, it uses a variety of unique concepts specific to 

smart contract development and therefore may be unfamiliar 
for new developers [9]. There are several known issues with  

Solidity [16]. For example, EVM uses a memory model that is 
specific to the execution of smart contracts on a blockchain and 

differs from the traditional von Neumann architecture, which 
may cause confusion.  EVM features four different types of 

memory, each with different properties and usage costs in 

terms of gas. While the stack and memory constructs are 
volatile and only hold values during execution of a contract, 

storage is persistent and part of Ethereum’s world state, 
organized as a Patricia  Merkle trie holding sets of persistent 

key/value pairs of all accounts. Storage is isolated from the 
other smart contracts and is the only way for a smart contract 

to save values across executions.  

Solidity allows integers to be signed or unsigned, 
containing lengths of between 8 and 256 bits (in  8-bit  

increments) denoted, for example, as uint8 or int128. These 
resemble integer types in C and may lead developers to falsely 

assume that a  uint8 occupies 8 bits in memory and an int128 
occupies 128 bits. However, all integer types are represented in 

the EVM as a 256-bit big endian using twos-complement. 

Thus, integer typing in So lidity is inconsistent with that of the 
EVM, which can lead to programming errors. Explicit  

conversion between primitive types is possible, but the effects 
are poorly documented. Explicitly casting a signed negative 

integer to an unsigned one, for example, will not result in  the 
absolute value as expected, but leave its bit-level representation 

intact. 

Smart contracts are scripts stored on the blockchain and 

have a unique address. They are triggered by addressing a 

transaction to the smart contract script, which executes 
independently and automatically in a prescribed manner on 

every node in the network, making use of the data that was 
included in the triggering transaction.  Coding bugs are bound 

to occur.  For example confusion between == (equals) and != 

(not equals) allowed any user—apart from the smart contract 

creator—to freely enable and disable transactions of all ICX 
ERC-20 tokens on ICON’s Ethereum smart contract (i.e., 

immobilizing an $800+ million blockchain) [17].  

Although the Solidity language has become more robust in 

later (post 0.4.0) versions, poor non-centralized documentation 
indicates that these types of bugs will likely persist for some 

time.  As it continues to gain prominence as the primary coding 

language on the largest smart contract platform, we anticipate 
that coders will exert greater influence to streamline the 

language. 

D. Bugs related to execution inconsistencies 

In Ethereum, gas is a unit that represents the relative 
amount of computational effort that it will take to execute 

certain operations on the blockchain. Every single operation 
that takes part in Ethereum, from a simple transaction or smart 

contract requires some amount of gas. Gas is used to calculate 
the fees paid to the network to execute an operation. When a 

smart contract is submitted, it has a pre-determined gas value 

(gas values for various EVM opcodes can be found in [2]). At  
the time of execution, each step of the contract requires a 

certain amount of gas, paying the network for the cost of 
bandwidth, cost of storage and cost of computation.  Adding 

more than the required amount of gas can move the contra ct to 
the beginning of the queue and incentivize the transaction to be 

included in the next block. This incentive is analogous to a 

"higher priority" in other systems.  Thus, in  theory, it may be 
possible for collusion to occur and potentially starve other 

contracts from executing, though there have not been any 

examples of this occurring to date. 

ERC-20 (Ethereum Request for Comment) is a  technical 
standard used for smart contracts on the Ethereum blockchain 

for implementing tokens [18]. It defines a common list of ru les 
for Ethereum tokens to follow within the larger Ethereum 

ecosystem, allowing developers to predict the interaction 

between tokens accurately. These rules include how the tokens 
are transferred between addresses and how data within each 

token can be accessed. Although at the time of this writing the 
clear majority of tokens issued on the Ethereum blockchain are 

ERC-20 compliant, interacting with tokens not compliant with 
this standard may introduce unforeseen errors.  These non-

compliant contracts can easily be checked before a transaction 

occurs, but as of the time of this writing, few if any smart 

contracts are known to make use of this information. 



Last, as smart contracts become more ubiquitous, they 
attract more users with malicious intent [19].  This increased 

attraction is primarily due to the lack of regulation and the 
anonymity they provide. Smart contracts provide rich 

environments for Ponzi schemes. A Ponzi scheme is  an 
unsustainable fraudulent investment operation in which the 

operator generates returns for older investors through revenue 

paid by new investors, rather than from legitimate business 

activities or profits of financial trading [20].  

Detection of Ponzi schemes are difficult because of the 
anonymous, decentralized nature; these are contributing reason 

for their persistence in various forms for over a century.  It is 
only possible to detect their presence by examining the smart 

contract code.  Some researchers (e.g., [21) have recently 
developed tools that incorporate machine learning techniques 

to examine the flow of payments. 

IV. CONCLUSIONS AND FUTURE DIRECTIONS 

Smart contracts, due to their self-executing, self-enforcing 

nature, provide great potential to disrupt numerous industries.  
However, as currently implemented, they are not without 

considerable risks and challenges.  The results of these risks 
and challenges can be observed in the number of bugs, scams, 

and errors that have occurred since their inception in mid-2015.  

As with any new technology, kinks are bound to occur.  In 

this paper, we have discussed the three key properties that 
smart contracts need to contain (deterministic, isolated, and 

terminable), the four primary categories of bugs (callbacks, 

integer errors, language and version inconsistencies, and 
execution inconsistencies), and some methods that are being 

explored to maintain these principles and reduce the potential 
and severity of bugs.  We focused on the development issues 

and did not discuss some identified issues with the Ethereum 
environment that are likely to limit its growth, such potential 

problems with scalability and the lack of a user-friendly 

development environment.  We plan to expand on the topics 
covered here and address Ethereum and other emerging smart 

contract platforms in future work. 
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