About
49
Publications
5,755
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,896
Citations
Citations since 2017
Introduction
Christoph Riplinger currently works at FAccTs GmbH. His most recent publication is 'NAMD goes quantum: an integrative suite for hybrid simulations'.
Additional affiliations
February 2013 - January 2015
November 2011 - December 2012
November 2011 - December 2012
Publications
Publications (49)
While the domain-based local pair natural orbital coupled-cluster method with singles, doubles, and perturbative triples (DLPNO-CCSD(T)) has proven instrumental for computing energies and properties of large and complex systems accurately, calculations on first-row transition metals with a complex electronic structure remain challenging. In this wo...
Quantum computers are special purpose machines that are expected to be particularly useful in simulating strongly correlated chemical systems. The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner. We present a quantum phase estimation calculation on F2 in a (2,2) active sp...
In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional...
Quantum computers are special purpose machines that are expected to be particularly useful in simulating strongly correlated chemical systems. The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner. We present a quantum phase estimation calculation on F$_2$ in a (2,2) active...
Over the last two decades, the local approximation has been successfully used to extend the range of applicability of the “gold standard” singles and doubles coupled-cluster method with perturbative triples CCSD(T) to systems with hundreds of atoms. The local approximation error grows in absolute value with the increasing system size, i.e., by incr...
Here we will comment on how one can make use of the newest developments in quantum theory, implemented in the ORCA software, to predict excited state lifetimes from scratch. Starting only from the Lewis structure of a given molecule, now it is possible to compute or estimate its photophysical rates and even emission color of OLEDs.
In order to assess safety and efficacy of small molecule drugs as well as agrochemicals, it is key to understanding the nature of protein–ligand interaction on an atomistic level. Prothioconazole (PTZ), although commonly considered to be an azole-like inhibitor of sterol 14-α demethylase (CYP51), differs from classical azoles with respect to how it...
We present an explicit solvation protocol for the calculation of electron affinity values of the solvated nucleobases. The protocol uses a quantum mechanics/molecular mechanics (QM/MM) approach based on the newly implemented domain-based pair natural orbital EOM-CCSD (equation-of-motion coupled-cluster single-double) method. The stability of the so...
Drug binding to a protein target is governed by a complex pattern of noncovalent interactions between the ligand and the residues in the protein's binding pocket. Here we introduce a generally applicable, parameter‐free, computational method that allows for the identification, quantification, and analysis of the key ligand–residue interactions resp...
In this contribution to the special software-centered issue, the ORCA program package is described. We start with a short historical perspective of how the project began and go on to discuss its current feature set. ORCA has grown into a rather comprehensive general-purpose package for theoretical research in all areas of chemistry and many neighbo...
In this work, a detailed study of spin-state splittings in three spin crossover model compounds with DLPNO-CCSD(T) is presented. The performance in comparison to canonical CCSD(T) is assessed in detail. It was found that spin-state splittings with chemical accuracy, compared to the canonical results, are achieved when the full iterative triples T1...
The coupled cluster method with single-, double-, and perturbative triple excitations [CCSD(T)] is considered to be one of the most reliable quantum chemistry theories. However, the steep scaling of CCSD(T) has limited its application to small or medium-sized systems for a long time. In our previous work, the linear scaling domain based local pair...
We present a multilayer implementation of the EOM-CCSD for the computation of ionization potentials of atoms and molecules in the presence of their environment. The method uses local orbitals to partition the system into a number of hypothetical fragments and treat different fragments of the system at different levels of theory. This approach signi...
In this work, a domain-based local pair natural orbital (DLPNO) version of the equation of motion coupled cluster theory with single and double excitations for ionization potentials (IP-EOM-CCSD) equations has been formulated and implemented. The method uses ground state localized occupied and pair natural virtual orbitals and applies the DLPNO mac...
Hybrid methods that combine quantum mechanics (QM) and molecular mechanics (MM) can be applied to studies of reaction mechanisms in locations ranging from active sites of small enzymes to multiple sites in large bioenergetic complexes. By combining the widely used molecular dynamics and visualization programs NAMD and VMD with the quantum chemistry...
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calcu...
The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core...
The linear-scaling local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while reproducing canonical CCSD(T) energies typically with chemical accuracy (< 1 kcal/mol). The accuracy of the method is determined by two main truncation thresholds that control the number of electron pairs i...
In this work, we present a linear scaling formulation of the coupled-cluster singles and doubles with perturbative inclusion of triples (CCSD(T)) and explicitly correlated geminals. The linear scaling implementation of all post-mean-field steps utilizes the SparseMaps formalism [P. Pinski et al., J. Chem. Phys. 143, 034108 (2015)]. Even for conserv...
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N⁶) with system size N, has limited its practical...
We have tried to calculate the free energy for the binding of six small ligands to two variants of the octa-acid deep cavitand host in the SAMPL5 blind challenge. We employed structures minimised with dispersion-corrected density-functional theory with small basis sets and energies were calculated using large basis sets. Solvation energies were cal...
The local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while typically reproducing canonical CCSD(T) energies with chemical accuracy. In this work, we present a scheme for decomposing the DLPNO-CCSD(T) interaction energy between two molecules into physical meaningful contributions,...
We present a formulation of the explicitly correlated second-order Møller-Plesset (MP2-F12) energy in which all nontrivial post-mean-field steps are formulated with linear computational complexity in system size. The two key ideas are the use of pair-natural orbitals for compact representation of wave function amplitudes and the use of domain appro...
Determining the strength of lithium (Li) binding to molybdenum (Mo) is critical to assessing the survivability of Li as a potential first wall material in fusion reactors. We present the results of a joint experimental and theoretical investigation into how Li desorbs from Mo(110) surfaces, based on what can be deduced from temperature-programmed d...
Domain based local pair natural orbital coupled clustertheory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with sever...
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a...
Surface-bound species on GaP(110) formed upon interaction with water were investigated through experiment and theory. These studies are motivated by and discussed in the context of electrocatalytic and photo-electrocatalytic schemes for solar fuel production, including especially observations of selective CO 2 reduction to methanol in acidified aqu...
Water adsorption on solid surfaces plays a part in a variety of processes, including renewable energy applications. Water adsorption can occur either dissociatively, monomolecularly, or as clusters. In contrast to metal surfaces, the compositional and structural complexity of metal oxide surfaces has inhibited atomic-scale understanding of their in...
[Re(bpy)(CO)3]− and [Mn(bpy)(CO)3]− are homogeneous electrocatalysts for the reduction of CO2 to CO. Their turnover frequencies depend on the type of Brønsted acid used, with the Mn catalyst exhibiting no catalytic turnover without added Brønsted acid. In this work, we use density functional theory together with continuum solvation and microkinetic...
[Re(bpy)(CO)3]− is a well-established homogeneous electrocatalyst for the reduction of CO2 to CO. Recently, substitution of the more abundant transition metal Mn for Re yielded a similarly active electrocatalyst, [Mn(bpy)(CO)3]−. Compared to the Re catalyst, this Mn catalyst operates at a lower applied reduction potential but requires the presence...
We report the observation and molecular-scale scanning probe electronic structure (dI/dV) mapping of hydrogen-bonded cyclic water clusters nucleated on an oxide surface. The measurements are made on a new type of cyclic water cluster that is characterized by simultaneous and cooperative bonding interactions among molecules as well as with both meta...
Since the development of chiral phosphino-oxazoline iridium catalysts, which hydrogenate unfunctionalized alkenes enantioselectively, the asymmetric hydrogenation of prochiral olefins has become important in the production of chiral compounds. For the last 10 years, details of the mechanism, including formal oxidation state assignment of the metal...
Cytochrome P450 NO reductase is an unusual member of the cytochrome P450 superfamily. It catalyzes the reduction of nitric oxide to nitrous oxide. The reaction intermediates were studied in detail by a combination of experimental and computational methods. They have been characterized experimentally by UV/Vis, EPR, Mössbauer, and MCD spectroscopy....
In this work, the extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster (DLPNO-CCSD) method to perturbatively include connected triple excitations is reported. The development is based on the concept of triples-natural orbitals that span the joint space of the three pair nat...
In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method ha...
Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y(122)(•)) cofactor required to generate a thiyl radical (C(439)(•)) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the...
α-Ketoglutarate (αKG)-dependent nonheme iron enzymes utilize a high-spin (HS) ferrous center to couple the activation of oxygen to the decarboxylation of the cosubstrate αKG to yield succinate and CO(2), and to generate a high-valent ferryl species that then acts as an oxidant to functionalize the target C-H bond. Herein a detailed analysis of the...
A detailed QM/MM study on the reaction mechanism of Cytochrome P450 NO reductase is reported. Two reaction pathways connecting the two well-characterized intermediates as well as two putative intermediates that represent the unknown third intermediate are explored, with emphasis on the unusual direct reduction of the enzymatic active site by the co...
The binding of NO to reduced myoglobin in solution results in the formation of two paramagnetic nitrosyl myoglobin (MbNO) complexes: one with a rhombic g-factor and the other with an axial one, referred to as the R- and A-forms. In spite of past extensive studies of MbNO by crystallography, spectroscopy and quantum chemical calculations it is still...
The validity of the popular point-dipole approximation for interpretation of the zero-field splitting (ZFS) parameter (D-value) in EPR spectroscopy is studied. This approximation is of central importance for the determination of distances by analysis of EPR data. In this work, a detailed experimental (EPR spectroscopy and X-ray crystallography) and...
Electron spin echo envelope modulation (ESEEM) investigations were carried out on samples of the low-pH (lpH) form of vertebrate sulfite oxidase (SO) prepared with (35)Cl- and (37)Cl-enriched buffers, as well as with buffer containing the natural abundance of Cl isotopes. The isotope-related changes observed in the ESEEM spectra provide direct and...
In this article, we discuss some aspects of the combined quantum mechanics/molecular mechanics (QM/MM) method for the calculation of energetics and spectroscopic parameters of protein-bound cofactors. Following a brief introduction to the theory of the QM/MM approach, some selected examples are discussed that illustrate the use of this methodology...
Inelastic neutron scattering and high-field electron paramagnetic resonance data are presented for [Mn(bpia)(OAc)(OCH(3))](PF(6)), where bpia is bis(picolyl)(N-methylimidazole-2-yl)amine. Modeling of the data to the conventional fourth-order spin-Hamiltonian yielded the following parameters: D = 3.526(3) cm(-1), E = 0.588(6) cm(-1), B(0)(4) = -0.00...