Christoph Feinauer

Christoph Feinauer
Politecnico di Torino | polito · DISAT - Department of Applied Science and Technology

Diplom

About

7
Publications
2,249
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
322
Citations
Additional affiliations
January 2013 - October 2015
Politecnico di Torino
Position
  • PhD Student

Publications

Publications (7)
Article
Full-text available
Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein i...
Article
Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein i...
Article
Full-text available
In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring p...
Article
Full-text available
Author Summary Proteins are large molecules that living cells make by stringing together building blocks called amino acids or peptides, following their blue-prints in the DNA. Freshly made proteins are typically long, structure-less chains of peptides, but shortly afterwards most of them fold into characteristic structures. Proteins execute many f...
Article
Zinc finger domains are one of the most common structural motifs in eukaryotic cells, which employ the motif in some of their most important proteins (including TFIIIA, CTCF, and ZiF268). These DNA binding proteins contain up to 37 zinc finger domains connected by flexible linker regions. They have been shown to be important organizers of the 3D st...
Article
Modular proteins are one of the most commonly found disordered protein motifs. An example is CTCF, a protein that has been named the master waver of the genome i.e., the organizer of the 3D structure of the chromosomes. Using NMR and numerical simulations, much progress has been made in understanding their various functions and ways of binding. Mod...

Network

Cited By