Fault Diagnosis in Discrete Event Systems modeled by Petri Nets with Outputs

Yu Ru and C. N. Hadjicostis

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

May 2008
Fault Diagnosis in Discrete Event Systems – Overview

Fault model

- Faults modeled as unobservable events
- Faults classified into fault types F_1, F_2, \ldots, F_q
- Need to identify the occurrence of fault of type F_i

Approaches

- Diagnoser approach based on automata (Sampath, 1995)
- Extension of the diagnoser approach to Petri nets (Ushio, 1998; Chung, 2005; Genc, 2007)
- Basis reachability tree approach (Giua, 2005)
- Faults modeled as unobservable events with unknown structure (Cabasino, 2008)
Motivation for Refined Diagnosis Results

Diagnosis results about the occurrence of fault of type F_i traditionally consists of

- ‘N’: no fault of type F_i has occurred
- ‘F_i’: a fault of type F_i must have occurred
- ‘A’: a fault of type F_i may or may not have occurred

The results can be made more precise if likelihood information about events is available

- Refined diagnosis results by introducing the notion of belief
- Belief captures the likelihood of fault types in individual execution paths
Petri Net Notation

- Petri net structure $N = (P, T, F, W)$
 $P = \{p_1, \ldots, p_4\} \& T = \{t_1, \ldots, t_5\}$
- Marking $M : P \leftrightarrow N_0$:
 $M_0 = (2 \ 0 \ 0 \ 0)^T$
- Petri net $G = \langle N, M_0 \rangle$
- t is enabled at M if $M(p) \geq W(p, t)$ for
 $p \in P$ (e.g., t_2 is enabled at M_0)
- State equation: $M = M_0 + D\sigma$

$$D = (D_{ij}) = (W(t_j, p_i) - W(p_i, t_j)) = \begin{pmatrix}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 \\
-1 & 0 & 0 & 1 & 1
\end{pmatrix}$$
Petri Net Notation

Petri Net with Outputs

- Petri net with outputs $Q = (G, \Sigma, L, P_s)$
- $G = \langle N, M_0 \rangle$
- Σ is a given alphabet
- Labeling function $L : T \mapsto \Sigma \cup \{\varepsilon\}$
- $P_s \subseteq P$ is a set of places with sensors
- Note: (G, Σ, L) is a labeled Petri net

For the above Petri net
- $\Sigma = \{a, b, c\}$
- $L(t_1) = a, L(t_2) = L(t_3) = b, L(t_4) = L(t_5) = \varepsilon$
- $P_s = \{p_2\}$ (p_2 is drawn with a red, thick circle)
Outline of the Talk

Part I: Fault diagnosis problem formulation in the context of Petri nets with outputs

Part II: Definition of belief and online monitor construction to obtain beliefs in the context of labeled Petri nets

Part III: Adaptation of the solution from Petri nets with outputs to labeled Petri nets
Part I: Fault diagnosis in Petri nets with outputs
Information from Sensors

- Petri net with outputs $Q = (G, \Sigma, L, P_s)$
- Transition sensors specified by L: each transition firing emits a label, except t_4 and t_5
- P_s includes places with sensors that provide the number of tokens at those places: $P_s = \{p_2\}$ in this case

Assume transition t_5 is a fault transition and the (unknown) system trajectory is

$$[2 \ 0 \ 0 \ 0]^T \xrightarrow{t_2} [1 \ 1 \ 0 \ 0]^T \xrightarrow{t_5} [1 \ 0 \ 0 \ 1]^T$$

\Rightarrow The observation from sensors is $[0] \xrightarrow{b} [1] \xrightarrow{} [0]$

\Rightarrow Fault transition t_5 must have occurred because of the observation $[1] \xrightarrow{} [0]$
Problem Formulation

Given Information

- System Model: $Q = (G, \Sigma, L, P_s)$ whose unobservable subnet is deadlock structurally bounded, and a given weight function $wt(M, t)$
- Fault Model: T_{F_i} (set of transitions of type F_i for $i = 1, \ldots, q$) such that $T_{F_i} \subseteq T_{uo} := \{ t \in T \mid L(t) = \epsilon \}$ and $T_{F_i} \cap T_{F_j} = \emptyset$ if $i \neq j$
- Observation: $M^0_{P_s} \xrightarrow{d_1} M^1_{P_s} \xrightarrow{d_2} \cdots M^{k-1}_{P_s} \xrightarrow{d_k} M^k_{P_s}$ where $d_i \in \Sigma \cup \{\epsilon\}$ and $M^i_{P_s}$ denotes information from place sensors regarding M_i

Goal

- Determine the occurrence of each fault type and its belief

Definitions: Unobservable subnet is obtained by removing observable transitions and related arcs; a Petri net is deadlock structurally bounded if $\exists y$ with positive integer entries such that $y^T D < 0^T_m$ (Ru, 2008)
Part II: Notion of belief and online monitor construction (to obtain beliefs) for labeled Petri nets
Weight Function

\[wt(M, t) : R(G, M_0) \times T_M \mapsto R_0^+ \]

- \(R(G, M_0) \): set of reachable markings; \(T_M \): set of transitions enabled at \(M \)
- Nonnegative weight can capture, for example, the probability of occurrence of a particular transition at a particular state
- Assume the function can be extended for \(S = t_{s_1} t_{s_2} \cdots t_{s_k} \) enabled at \(M \) by taking the product of the weights of individual transition

Examples of weight functions

- \(wt(M, t) = 1, \forall M \in R(G, M_0), \forall t \in T_M \)
- \(wt(M, t) = \frac{1}{|T_M|}, \forall M \in R(G, M_0), \forall t \in T_M \) (shown in the right figure)

- Weight function can also be defined based on probabilistic models
Given \((G, \Sigma, L)\) and a sequence of observed labels \(\omega\), the belief on the occurrence of fault of type \(F_i\) is

\[
b(\omega, F_i) = \frac{\sum_{S \in S(\omega)} \text{ and } \exists t \in T_{F_i} \text{ appearing in } S \text{ wt}(M_0, S)}{\sum_{S \in S(\omega)} \text{ wt}(M_0, S)}
\]

- \(S(\omega) = \{S | S \in T^* T_0 : M_0[S] \text{ and } L(S) = \omega\}\), where \(T_0 = T \setminus T_{uo}\)
- \(b(\omega, F_i)\) is closer to 1 (or 0), we are more (or less) confident about the occurrence of a fault of type \(F_i\)
- For example, the observation is \(a\) and \(t_f\) is a fault transition of type \(F\) (shown in the right figure)

\[
b(a, F) = \frac{1}{5} \text{ if } \text{ wt}(M, t) = 1
\]

\[
b(a, F) = \frac{1}{3} \text{ if } \text{ wt}(M, t) = \frac{1}{|T_M|}
\]
Recursive Updating of Weight Function: Intuition

Key Idea: compute $wt(M_0, S)$ for $S \in S(\omega)$ recursively to calculate $b(\omega, F_i)$

- Given $\omega = e_1 \cdots e_j$ and $\omega' = \omega e_{j+1}$, let $S = t_{s_1} \cdots t_{s_k} \in S(\omega)$ (i.e., $M_0[t_{s_1}]M_1 \cdots [t_{s_k}]M_k$, t_{s_k} is observable and $L(S) = \omega$), and let $S' = St_{s_{k+1}} \cdots t_{s_l} \in S(\omega')$. Then

 $$wt(M_0, S') = wt(M_0, S) \times wt(M_k, t_{s_{k+1}}) \times \cdots \times wt(M_{l-1}, t_{s_l})$$

- Store $wt(M_0, S)$ at $M_k \in C(\omega) := \{M | \exists S \in S(\omega) : M_0[S]M\}$

- For example, if $S = \varepsilon$ and $S' = t_1t_2t_3$,

 $$wt(M_0, S') = wt(M_0, S) \times wt(M_0, t_1) \times wt(M_{11}, t_2) \times wt(M_2, t_3) = 1 \times \frac{1}{3} \times \frac{1}{2} \times 1$$

- Similarly, if $S'' = t_2t_1t_3$, we can store $wt(M_0, S') + wt(M_0, S'')$ at M_3 because S' and S'' share the same future behavior.
Monitor Construction

Representation of Weight Function

Structure \((M, K)\) to hold marking and weight function information

- \(M\) is a marking reachable from \(M_0\)
- \(K\) is a \((q + 1)\)-dimensional row vector: i) \(K(i)\) for \(i = 1, \ldots, q\) represents the weighted sum of consistent paths that drive the system from \(M_0\) to \(M\) and also contain faults of type \(F_i\); ii) \(K(q + 1)\) represents the weighted sum of all consistent paths that drive the system from \(M_0\) to \(M\)

Let \(C'(\omega) = \bigcup_{M \in C(\omega)} \{(M, K)\}\), then for \(i = 1, \ldots, q\)

\[
b(\omega, F_i) = \frac{\sum_{(M, K) \in C'(\omega)} K(i)}{\sum_{(M, K) \in C'(\omega)} K(q + 1)}
\]

- To compute \(C'(\omega)\) recursively, we need update each node \((M, K)\) if a fault transition or a normal transition fires; there are four rules (Cases I-IV) on updating node \((M, K)\) (for more details, refer to the paper)
Algorithm

1. \(\omega_0 = \varepsilon, C'(\omega_0) = \{(M_0, K_0)\} \) where \(K_0 = [0_{1 \times q} \ 1] \).
2. Let \(i = 0 \).
3. Wait until a new event \(e \) is observed.
4. Let \(i = i + 1, \omega_i = \omega_{i-1}e, C'(\omega_i) = \emptyset \).
5. Let \(C_{uo} = \bigcup_{(M,K) \in C'(\omega_{i-1})} UR(M,K) \)
6. For all \((M,K) \in C_{uo} \)
 For all \(t \) such that \(L(t) = e \) and \(M[t) \)
 Compute \(M' = M + D(:,t) \): (i) if \(M' \) does not appear in any node of \(C'(\omega_i) \), calculate \(K' \) using the rules in Cases I-II and add \((M',K')\) into \(C'(\omega_i) \); (ii) if \(M' \) exists in node \((M',K')\) of \(C'(\omega_i) \), update \(K' \) using the rules in Cases III-IV.
7. Output the belief \(b(\omega_i,F_i) \) for \(i = 1, \ldots, q \).

\[UR(M,K) = \{(M',K') | \exists S = t_{s_1} \cdots t_{s_j} \in T^*, M[S]M' \} \], where \(K' \) is computed using updating rules sequentially to each \(S \) (such that \(M[S]M' \)).
Part III: Transformation from Petri nets with outputs to labeled Petri nets
Intuition via Example

- Firing of t_2 generates $(b, 1)$, where 1 is the token change at place p_2
- Firing of t_3 generates $(b, -1)$
- Firing of t_4 does not generate any label or visible token change
- Firing of t_5 generates $(\varepsilon, -1)$

- Equivalent labeled Petri net
- The observation

$$0 \xrightarrow{b} 1 \xrightarrow{} 0$$

gets translated into $b_1\varepsilon_1$
Problem Formulation and Basic Idea

Problem

- Given $Q = (G, \Sigma, L, P_s)$ and $M_{P_s}^0 \xrightarrow{d_1} M_{P_s}^1 \xrightarrow{d_2} \cdots M_{P_s}^{k-1} \xrightarrow{d_k} M_{P_s}^k$, construct (G, Σ', L') and translate the sequence to $\omega \in \Sigma'^*$ of length k such that the set of states consistent with Q and the observation sequence is the same as the set of states consistent with (G, Σ', L') and ω

Basic Idea

- Use token changes of places with sensors to refine transition labels
- An observation unit $x \xrightarrow{e} y$ is translated to a label in Σ' based on e and $y - x$
Example: Communication Protocol

- Petri net model is adapted from (Giua, 2005) by adding t_8 and related arcs (so that the system is deadlock-free)

- t_6 is a fault transition of type F; place p_4 has a sensor and all other places do not

- Equivalent labeled Petri net model

- t_4 becomes observable with label ε_1 but t_6 is still unobservable
Assume $wt(M, t) = 1$, $\forall M \in R(G, M_0)$, $\forall t \in T_M$.

Assume the observation is $0 \xrightarrow{a} 0 \rightarrow 1 \rightarrow 2$, which is translated to $\omega = a_1 \epsilon_1 \epsilon_1$.

After observing a_1, there is one consistent marking N_1 and $K = (0 1 1)$; thus, $b(a_1, F) = 0$.

After observing ϵ_1, the belief $b(a_1 \epsilon_1, F) = 0.4$.

After observing another ϵ_1, the belief $b(a_1 \epsilon_1 \epsilon_1, F) = 1$.
Conclusions

Fault Diagnosis in DES modeled by Petri nets with outputs

- Beliefs regarding fault types are introduced to enhance diagnosis results and are calculated recursively using online monitor
- Transformation scheme to handle information from place sensors

Future Directions

- Notion of diagnosability for infinite state systems
- Ways to determine the diagnosability of (certain classes of) Petri nets with unobservable transitions
References

