About
36
Publications
6,912
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
356
Citations
Publications
Publications (36)
In the equilibrium range of the wave spectrum’s high frequency tail, energy levels are proportional to the wind friction velocity. As a consequence of this intrinsic coupling, spectral tail energy levels can be used as proxy observations of surface stress and wind speed when direct observations are unavailable. Proxy observations from drifting wave...
Infragravity waves are key components of the hydro‐sedimentary processes in coastal areas, especially during extreme storms. Accurate modeling of coastal erosion and breaching requires consideration of the effects of infragravity waves. Here, we present InWave, a new infragravity wave driver of the Coupled Ocean‐Atmopshere‐Waves‐Sediment Transport...
Despite recent advancements in ocean-wave observations, how a tropical cyclone's (TC's) track, intensity, and translation speed affect the directional wave spectra evolution is poorly understood. Given the scarcity of available wave spectral observations during TCs, there are few studies about the performance of spectral wave models, such as Simula...
Total water levels (TWLs), including the contribution of wind waves, associated with tropical cyclones (TC) are among the most damaging hazards faced by coastal communities. According to the report of the Intergovernmental Panel on Climate Change (IPCC; Masson-Delmotte et al., 2021), TC–induced damages are expected to increase because of stronger T...
An ensemble-based method for wave data assimilation is implemented using significant wave height observations from the globally distributed network of Sofar Spotter buoys and satellite altimeters. The Local Ensemble Transform Kalman Filter (LETKF) method generates skillful analysis fields resulting in reduced forecast errors out to 2.5 days when us...
An ensemble-based method for wave data assimilation is implemented using significant wave height observations from the globally distributed network of Sofar Spotter buoys and satellite altimeters. The Local Ensemble Transform Kalman Filter (LETKF) method generates skillful analysis fields resulting in reduced forecast errors out to 2.5 days when us...
Barrier islands are especially vulnerable to hurricanes and other large storms, owing to their mobile composition, low elevations, and detachment from the mainland. Conceptual models of barrier‐island evolution emphasize ocean‐side processes that drive landward migration through overwash, inlet migration, and aeolian transport. In contrast, we foun...
Hurricane‐induced compound flooding is a combined result of multiple processes, including overland runoff, precipitation, and storm surge. This study presents a dynamical coupling method applied at the boundary of a processes‐based hydrological model (the hydrological modeling extension package of the Weather Research and Forecasting model) and the...
Historically, the sparseness of in situ open-ocean wave and weather observations has severely limited the forecast skill of weather over the ocean with major social and economic consequences for coastal communities and maritime industries. Ocean surface waves, specifically, are important for the interaction between atmosphere and ocean, and thus ke...
Physical processes driving barrier island change during storms are important to understand to mitigate coastal hazards and to evaluate conceptual models for barrier evolution. Spatial variations in barrier island topography, landcover characteristics, and nearshore and back‐barrier hydrodynamics can yield complex morphological change that requires...
Hurricanes are known to play a critical role in reshaping coastlines, particularly on the open ocean coast in cases of overwash, but storm induced seaward-directed flow and responses are often ignored or un-documented. Subaerial evidence for seaward sediment transport (outwash, return-flow) increases our understanding of the impact hurricanes have...
This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash, collision, overwash, and inundation. Models are becoming both wider (...
Hurricanes are known to play a critical role in reshaping coastlines, but often only impacts on the open ocean coast are considered, ignoring seaward-directed forces and responses. The identification of subaerial evidence for storm-induced seaward transport is a critical step towards understanding its impact on coastal resiliency. The visual featur...
Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir-Simpson Category 4 to Category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several...
Hurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm...
Deterministic dynamical modeling of future climate conditions and associated hazards, such as flooding, can be computationally-expensive if century-long time-series of waves, sea level variations, and overland flow patterns are simulated. To alleviate some of the computational costs, local impacts of individual coastal storms can be explored by fir...
Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-genera...
Characterization of multimodal directional wave spectra is important for many offshore and
coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave
energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate
variability makes this complex problem tractable usin...
Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are of...
Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs we...
Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters f...