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ABSTRACT

It is now recognized that contracting skeletal muscle may synthesize and release
interleukin-6 (IL-6) into the interstitium as well as into the systemic circulation in
response to a bout of exercise. Although several sources of IL-6 have been demon-
strated, contracting muscles contributes to most of the IL-6 present in the circula-
tion in response to exercise. The magnitude of the exercise-induced IL-6 response
is dependent on intensity and especially duration of the exercise, while the mode
of exercise has little effect. Several mechanisms may link muscle contractions to
IL-6 synthesis: Changes in calcium homeostasis, impaired glucose availability,
and increased formation of reactive oxygen species (ROS) are all capable of acti-
vating transcription factors known to regulate IL-6 synthesis. Via its effects on
liver, adipose tissue, hypothalamic-pituitary-adrenal (HPA) axis and leukocytes,
IL-6 may modulate the immunological and metabolic response to exercise. How-
ever, prolonged exercise involving a significant muscle mass in the contractile
activity is necessary in order to produce a marked systemic IL-6 response. Fur-
thermore, exercise training may reduce basal IL-6 production as well as the mag-
nitude of the acute exercise IL-6 response by counteracting several potential stim-
uli of IL-6. Accordingly, a decreased plasma IL-6 concentration at rest as well as
in response to exercise appears to characterize normal training adaptation.
(Exerc. Immunol. Rev. 12, 2006: 6-33)

INTRODUCTION

Since the first study in 1991 (115), several studies have consistently reported that
the plasma interleukin-6 (IL-6) concentration increases in response to exercise
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(Table 1 & Fig. 1). Although
the plasma concentration of
several other cytokines may
be affected by exercise, IL-6
increases more dramatically
than any other cytokine inves-
tigated to date (120, 126). But
what determines the magni-
tude and time course of the
increase of IL-6 with exer-
cise? What is the effect of
exercise training on IL-6?
And what is the possible bio-
logical relevance of IL-6 in
acute and chronic physical
activity? These are some of
questions addressed in this
review.

Two decades ago, IL-6
was first sequenced and
described as a cytokine facili-
tating the differentiation of B-
lymphocytes into immu-
noglobulin-secreting plasma
cells (55, 56). Later, several
other immunological proper-
ties was ascribed to this
pleiotropic cytokine, which
received its present name in
1987 (139). IL-6 belongs to a
family of cytokines that also
includes leukemia inhibitory
factor, interleukin-11, ciliary
neurotrophic factor, car-
diotrophin-1, and oncostatin
M. In addition to structural
similarities, these cytokines
share the gp130 receptor sub-
unit (76).

Transcription and trans-
lation of the human gene
encoding IL-6 – consisting of
a ~5 kilobase long sequence
containing 5 exons located on
chromosome 7 (155) – leads
to the synthesis of a propep-
tide containing 212 amino
acids, which is cleaved in
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Fig. 1. Effect of mode and duration of exercise on
post-exercise plasma IL-6.
Different modes of exercise (dynamic knee-extensor,
bicycling, running, eccentric) and the corresponding
increase in plasma IL-6 (fold change from pre-exercise
level), based on the 67 exercise trials listed in Table 1 as
well as 7 trials representing various eccentric exercise
protocols (17, 53, 90, 144, 182, 194). Accordingly, the
graphs represent approximately 800 subjects. Each dot
represents one exercise trial, while the corresponding
bars show geometric means with 95% confidence inter-
vals (A). The overall log10-log10 linear relation (straight
solid line) between exercise duration and increase in
plasma IL-6 (fold change from pre-exercise level) indi-
cates that 51% of the variation in fold plasma IL-6
increase can be explained by the duration of exercise (B).



order to obtain the mature IL-6 peptide containing 184 amino acids (56). Interest-
ingly, a variant IL-6 peptide lacking the sequence encoded by exon II – thus
unable to signal via the gp130 receptor – may be released from stimulated lym-
phocytes and monocytes in concert with the full-length IL-6 (74). Further post-
translational modifications include varying degrees of glycosylation and phos-

8 •   Interleukin-6 in acute exercise and training

Exercise mode 
Knee-extensor Bicycling Running 
n Duration 

(h)
IL-6
(fold change) 

Ref n Duration 
(h)

IL-6
(fold change) 

Ref n Duration 
(h)

IL-6
(fold change) 

Ref 

7 3.0 3 (38) 9 0.4 1 (33) 12 0.2 1 (195) 
7 0.8 3 (52) 9 0.3 1 (188) 19 6.0 4 (30) 
7 3.0 6 (127) 16 0.7 1 (96) 7 1.0 4 (113) 
6 3.0 11 (71) 7 1.0 2 (12) 8 1.5 4 (178) 
7 3.0 12 (37) 17 1.0 2 (186) 6 9.1 6 (132) 
6 3.0 15 (168) 6 2.0 2 (59) 8 1.5 8 (179) 
6 5.0 19 (172) 9 0.5 2 (17) 30 2.5 8 (102) 
7 5.0 36 (165) 8 1.0 2 (87) 7 1.0 9 (163) 

9 1.5 2 (86) 12 0.9 9 (114) 
7 0.3 2 (42) 10 1.6 10 (159) 
7 0.3 2 (42) 16 3.0 10 (107) 
8 0.4 2 (33) 10 1.5 20 (134) 
8 1.5 2 (177) 10 2.5 25 (119) 
6 2.0 3 (59) 13 9.8 28 (108) 
11 1.5 3 (181) 7 9.9 29 (110) 
6 0.8 3 (189) 7 2.5 29 (170) 
8 2.0 4 (11) 9 2.5 30 (169) 
8 1.0 5 (89) 50 4.5 42 (112) 
7 1.0 5 (163) 18 3.7 43 (21) 
9 1.0 5 (146) 6 3.0 50 (84) 
7 1.5 6 (164) 10 2.5 52 (109) 
6 2.0 8 (31) 16 3.3 63 (121) 
18 3.0 8 (128) 10 2.6 80 (175) 
8 1.0 9 (118) 18 3.5 88 (18) 
8 2.0 11 (60) 10 3.5 92 (183) 
8 3.0 13 (69) 16 2.5 109 (176) 
15 2.5 16 (106) 60 26.3 126 (111) 
6 2.0 20 (162) 10 3.5 128 (120) 
10 2.5 24 (109) 
6 3.0 26 (117) 
8 2.0 38 (47) 

Table 1. Effect of acute exercise on plasma IL-6 in humans.
Shown is the relation between exercise mode (dynamic knee-extensor, bicycling, and run-
ning), exercise duration, and plasma IL-6 increase (fold change from pre-exercise level). In
studies investigating the effect of an intervention on the IL-6 response to exercise, e.g. car-
bohydrate supplementation, only the result from the control group (exercise without inter-
vention) is presented. Hence, the n value may be lower than the n value presented in the
original study.



phorylation, and several isoforms ranging from 21-30 kDa have been described
(7, 46, 51, 95). Whether the biological effects in vivo of these isoforms differ is
not established.

The plasma IL-6 concentration is ~1 pg/ml or even lower in resting healthy
subjects (17, 121). In contrast, the plasma IL-6 concentration may reach 10000
pg/ml in response to severe systemic infections (40). Less dramatic increases of
plasma IL-6 are found in numerous inflammatory and infectious diseases. A path-
ogenic role for IL-6 in the development of the metabolic syndrome has been sug-
gested, in part because the presence of a chronic low-level increase of plasma IL-
6 (usually <10 pg/ml) is associated with obesity (6), low physical activity (36,
123), insulin-resistance (13), type 2 diabetes (67), cardiovascular disease (39) and
may serve as a predictor of mortality (15).

Downstream signaling requires that IL-6 binds to the heterodimeric receptor
complex consisting of the ubiquitously expressed gp130 receptor and the specific
receptor IL-6Rα (50). This event triggers tyrosine-phosphorylation of gp130 by
Janus-activated kinases (Jak) on the intracellular domain, whereby at least two
distinct signalling pathways are activated: 1) the signal transducers and activators
of transcription (STAT) 1 and 3, and 2) the mitogen-activated protein kinases
(MAPK) (49). The two pathways are characterized by distinct effects; thus, the
effect of IL-6 may vary in different tissues depending on the balance between the
two pathways (54). A negative feedback mechanism of STAT activation involves
transcription and translation of the suppressor of cytokine signaling 3 (SOCS3).

THE IL-6 RESPONSE TO ACUTE EXERCISE

Following exercise, the basal plasma IL-6 concentration may increase up to 100
fold, but less dramatic increases are more frequent (Table 1, Fig. 1A). Thus, the
8000-fold increase of plasma IL-6 following a 246 km “Spartathlon” race (92)
represents an atypical and extreme response. Of note, the exercise-induced
increase of plasma IL-6 is not linear over time; repeated measurements during
exercise show an accelerating increase of the IL-6 in plasma in an almost expo-
nential manner (37, 119, 172). Furthermore, the peak IL-6 level is reached at the
end of the exercise or shortly thereafter (37, 119), followed by a rapid decrease
towards pre-exercise levels.

Where does the exercise-induced IL-6 come from?
Importantly, the contracting skeletal muscle per se appears to be one of the main
sources of the IL-6 in the circulation in response to exercise: In resting human
skeletal muscle, the IL-6 mRNA content is very low, while small amounts of IL-6
protein predominantly in type I fibers may be detected using sensitive immuno-
histochemical methods (137). In response to exercise, an increase of the IL-6
mRNA content in the contracting skeletal muscle is detectable after 30 minutes of
exercise, and up to 100-fold increases of the IL-6 mRNA content may be present
at the end of the exercise bout (71, 168). Recently, further evidence that contract-
ing muscle fibers themselves are a source of IL-6 mRNA and protein has been
achieved by analysis of biopsies from the human vastus lateralis using in situ
hybridization and immunohistochemistry (58, 128). In addition, assessment of the
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interstitial IL-6 concentration using microdialysis indicates that the concentration
of IL-6 within the contracting skeletal muscle may be 5-100 fold higher than the
levels found in the circulation (84, 147). Accordingly, IL-6 appears to accumulate
within the contracting muscle fibers as well in the interstitium during exercise.
However, it has been the simultaneous measurement of arterio-venous IL-6 con-
centrations and blood flow across the leg that has demonstrated that large
amounts of IL-6 can be released from the exercising leg (172). In the same study,
the authors also estimated that the net release from the exercising leg could
account for the systemic increase of plasma IL-6, assuming that IL-6 is distrib-
uted in the extracellular compartment and that IL-6 content in blood is the same in
plasma and the cellular fraction. Since IL-6 appears to be transported solely in the
non-cellular fraction of the blood (20), the net release of IL-6 from the exercising
leg probably was overestimated. Yet, a simpler approach based on the close log-
log linear relationship between recombinant human IL-6 (rhIL-6) dose and result-
ing steady state plasma IL-6 concentration (Fig. 2) supports the concept that IL-6
released from the exercising limb may account for systemic plasma IL-6 increase
following exercise: At the end of the exercise, the average release of IL-6 from the
contracting leg was 15 ng/min, while the systemic plasma IL-6 concentration was
14 pg/ml (172). Based on the dose-response relationship, the expected systemic
plasma IL-6 concentration corresponding to an IL-6 dose of 15 ng/min is 16
pg/ml (antilog10[1.05 · log10[15 ng/ml] + 0.07]), which corresponds well to the
observed value.

However, although IL-6 released from the contracting muscles may account
for most of the IL-6 found in the circulation, other studies have demonstrated that
skeletal muscle is not the sole source of exercise-induced IL-6. Using oral supple-
mentation with vitamins C and E for 4 weeks, the IL-6 net release from the exer-
cising legs was almost blocked completely, yet the systemic increase of plasma
IL-6 was only reduced by 50% (37). Very high concentrations of IL-6 along the
Achilles’ tendon has been detected using microdialysis in response to prolonged
running (84), but since the muscle mass involved in exercise is much higher than
the mass comprised by tendons, the mutual contribution of peritendinous versus
muscle-derived IL-6 to the systemic IL-6 is unclear. In addition, a small net
release of IL-6 from the internal jugular vein has been reported, suggesting that
the central nervous system may contribute to the IL-6 found in the circulation
(118). In contrast, a contribution from peripheral blood mononuclear cells to the
IL-6 found in the circulation of healthy subjects is detected consistently neither at
rest nor in response to exercise (121, 162, 186, 189). The adipose tissue may con-
tribute markedly to IL-6 in the circulation at rest (98, 160), but measurement of
arterio-venous plasma IL-6 differences across the abdominal subcutaneous adi-
pose tissue bed shows that this compartment does not contribute to the exercise-
induced IL-6 in the circulation until the recovery phase (88). However, since
almost any cell type may synthesize IL-6 upon adequate stimulation (3), further
studies may discover other sites contributing to the IL-6 in the circulation in
response to exercise.

How is the exercise-induced IL-6 response regulated?
Overall, the combination of mode, intensity and duration of the exercise deter-
mines the magnitude of the exercise-induced increase of plasma IL-6. However,
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although it was suggested that the IL-6 response was related to muscle damage
(17), it now has become clear that eccentric exercise is not associated with more
marked increases of plasma IL-6 than compared to exercise involving concentric
muscle contractions (Fig 1A). Thus, muscle damage is not required in order to
increase plasma IL-6 during exercise. Rather, eccentric exercise may result in a
delayed peak and a slower decrease of plasma IL-6 during recovery (53, 90, 194).

In contrast, the IL-6 response is sensitive to the exercise intensity (122),
which again indirectly represents the muscle mass involved in the contractile
activity. Since contracting skeletal muscle per se is an important source of IL-6
found in the plasma (37, 172), it is therefore not surprising that exercise involving
a limited muscle mass, e.g. the muscles of the upper extremities, may be insuffi-
cient in order to increase plasma IL-6 above pre-exercise level (8, 57, 116). In
contrast, running – which involves several large muscle groups – is the mode of
exercise where the most dramatic plasma IL-6 increases have been observed
(Table 1, Fig. 1A).

Regardless, exercise duration is the single most important factor determining
the post-exercise plasma IL-6 amplitude (Table 1, Fig. 1B); more than 50% of the
variation in plasma IL-6 following exercise can be explained by exercise duration
alone (P < 10-12). Since exercise at high intensity often is associated with shorter
duration of the exercise and vice versa, the relationship between the plasma IL-6
increase and the duration may be even more pronounced if adjusted for the exercise
intensity. In accordance, 6 minutes of maximal rowing ergometer exercise may
increase plasma IL-6 two-fold (105), but more than 10-fold increases of plasma IL-6
has not been observed in response to exercise lasting less than 
1 h (Fig. 1B). Based on the log-log linear relationship between time and fold increase
of plasma IL-6 (Fig. 1B), a 10-fold increase of plasma IL-6 requires exercise for 1.9
h (95% confidence interval, CI, 1.6 - 2.9 h, P < 0.0001) of exercise, while a 100-fold
increase of plasma IL-6 requires exercise lasting 6.0 h (CI 4.5 - 8.1 h, P < 0.0001).
This relationship is remarkably insensitive to the mode of exercise, although the
highest increases of plasma IL-6 generally are found in response to running.

�, increase; �, decrease; �, no effect of the intervention.

Intervention Effect on exercise-induced IL-6 References 
Reduction of pre-exercise glycogen content Muscle IL-6 mRNA �

Plasma IL-6 �
(24, 71, 171) 

Supplementation with carbohydrates Muscle IL-6 mRNA �
Plasma IL-6 �

(37, 179, 189) 

Hyperglycemia in Type 1 diabetes Plasma IL-6 � (42) 

Nicotinic acid (inhibits lipolysis) Muscle IL-6 mRNA �
Adipose tissue IL-6 mRNA �
Plasma IL-6 �

(62) 

Hot environment Plasma IL-6 � (164) 
Indomethacin (NSAID) Plasma IL-6 � (143) 
O2 supplementation to COPD patients Plasma IL-6 � (188) 
Supplementation with antioxidants Muscle IL-6 mRNA �

Plasma IL-6 �
(37, 179, 189) 

Table 2. Some interventions influencing the exercise-induced IL-6 response.
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What mechanisms may explain why contractile activity leads to increased
synthesis of IL-6? Since IL-6 is synthesized and released only from the contract-
ing muscles and not from the resting muscles exposed to the same hormonal
changes  (66, 172), circulating systemic factors alone does not explain why con-
tracting muscles synthesize and release IL-6. Instead, local factors seem neces-
sary, although systemic factors may modulate the response.

The promoter region of the IL-6 gene contains binding sites for the nuclear
factor kappa B (NF-κB) and nuclear factor interleukin-6 (NFIL6) (93). Additional
transcription factors such as the nuclear factor of activated T cells (NFAT) (1) and
heat shock factors 1 and 2 (HSF1 and HSF2) (141) may contribute to the activa-
tion of IL-6 gene transcription. In vitro, calcium activates both NFAT and NF-κB
(29, 83), and incubation of muscle cell cultures with a calcium ionophore (iono-
mycin) increases IL-6 secretion in a p38 MAPK dependent manner (24). Human
studies have shown increased total and nuclear content of phosphorylated p38
MAPK, but unaltered nuclear content of NFAT in muscle biopsies after 1 h of
bicycling (97), while mRNA content of calcineurin A – which is involved in calci-
um signalling – is increased in muscle biopsies 6 h post 3 h of knee-extensor exer-
cise (136). Activation of NF-κB has been demonstrated in rat skeletal muscle after
exercise (65), but not consistently in humans (97). Noteworthy, NF-κB is a redox-
sensitive transcription factor (154) that may be activated by reactive oxygen
species (ROS). Increased ROS formation in exercising skeletal muscle following
exercise has been demonstrated directly in animals (27, 63) and indirectly in
humans (4). In vitro, murine skeletal myotubes release IL-6 when exposed to
oxidative stress in a NF-κB-dependent way (81). In addition, supplementation
with different antioxidants attenuates the systemic increase of IL-6 in response to
exercise (179, 189). Using arterio-venous differences of IL-6 across the leg, we
observed that the reduced systemic increase of IL-6 during exercise was due to an
almost complete inhibition of the net leg release of IL-6 in the group pre-treated
with vitamin C and E for 4 weeks (37). The observation that indomethacin – a
member of the non-steroid anti-inflammatory drugs (NSAID), which are known
to inhibit NF-κB activity – reduces the exercise-induced increase of IL-6 further
supports that NF-κB is likely to serve as a link between contractile activity and
IL-6 synthesis (80, 143). On the other hand, increased oxidative stress, as well as
low glucose availability, low glycogen content, catecholamines, increased intra-
cellular calcium levels, hyperthermia, ischemia-reperfusion are all features of
exercise capable of inducing heat shock proteins (HSPs) (9, 22, 34, 125, 190,
193), which may in turn activate IL-6 synthesis via HSF1 and HSF2 (141).
Accordingly, several regulators of IL-6 transcription are likely to be activated by
an altered intramuscular milieu in response to exercise (Fig. 4). This point of view
is supported by the various interventions that have demonstrated an effect on the
exercise-induced IL-6 response (Table 2). For instance, reduction of intramuscu-
lar glycogen content prior to exercise results increased accumulation of IL-6
mRNA within the contracting muscle as well as increased release of IL-6 from the
contracting muscle (24, 71, 171). This effect of glycogen reduction on the exer-
cise-induced IL-6 response may be mediated through activation of p38 MAPK
(24) and AMPK (89). In contrast, supplementation with carbohydrates during
exercise inhibits the exercise-induced increase of IL-6 in plasma, whereas IL-6
mRNA expression within the contracting muscle is unaffected (32, 102, 109,



163). While glucose availability may interfere with IL-6 gene expression through
AMPK (2), other mechanisms regulating IL-6 at a posttranslational level appear
to exist.

To make it even more complex, IL-6 appears to be capable of enhancing its
own transcription (72), which may partly explain the almost exponential increase
of IL-6 towards the end of exercise (Fig. 3). However, it should be noted that the
IL-6 released into the circulation is cleared very quickly, thus the ‘area under the
curve’ for plasma IL-6 in response is limited in particular in response to short
bouts of exercise (Fig. 3). In mice, the halflife of 125I-labelled IL-6 in the circula-
tion is 2 minutes (99), which is accordance with the rapid decline of plasma IL-6
following rhIL-6 infusion from human studies (187). Most of the IL-6 is cleared
by the kidneys and the liver (31, 99).

What are the effects of IL-6 in acute exercise?
Exercise is known to cause major physiological, hormonal, metabolic, and
immunological effects. The question is whether exercise-induced IL-6 mediates
some of these effects. Of note, IL-6 may act locally within the contracting muscle
during exercise or within the adipose tissue during recovery, while most other
cells and target organs are exposed only to IL-6 released into the systemic circula-
tion. Regarding the systemic effects of IL-6, the dose-response relationship and
timing has to be considered. First, it should be noted that marked increases of
plasma IL-6 only occur if the exercise involves a considerable muscle mass work-
ing for a considerable amount of time at a considerable intensity. Otherwise, a
systemic IL-6 increase may be small or absent. Regardless, the exercise-induced
peak plasma IL-6 concentration will usually not exceed 100 pg/ml. Second, the
peak plasma IL-6 concentration occurs at the cessation of the exercise (or shortly
after), thus the systemic effects induced by IL-6 are for the most part expected to
occur during recovery from exercise.

Metabolic and hormonal effects of exercise-induced IL-6. Whole body oxy-
gen consumption and carbondioxide production increases in response to rhIL-6
infusion in the postabsorptive state as well as during a euglycemic hyperinsuline-
mic clamp (19, 184). This increase in energy turnover may occur without signifi-
cant changes in body temperature, though a moderate increase in body tempera-
ture – which occurs when the plasma IL-6 concentration is 300 pg/ml or higher
(174, 184, 185) – may per se be associated with an augmented energy turnover.
However, since a relatively high plasma IL-6 concentration apparently is required
in order to increase body temperature, it seems unlikely that the systemic increase
of IL-6 in response to exercise modulates metabolism through changes in body
temperature.

In rats, IL-6 injection may deplete hepatic glycogen content (173). In vitro
and in vivo in animals, several studies have indicated that IL-6 interferes with
insulin-signalling in hepatocytes and liver tissue (68, 77, 78, 156, 157), whereby
hepatic glucose output may increase. However, even marked elevations of plasma
IL-6 has little effect on glucose metabolism in resting humans: In subjects both
with and without type 2 diabetes, an acute elevation of plasma IL-6 has no effect
glucose rate of appearance (Ra), glucose disappearance (Rd) or plasma glucose in
the postabsorptive state (133, 167). When combined with a euglycemic hyperin-
sulinemic clamp, an acute increase of plasma IL-6 to ~50 pg/ml has no effect on
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plasma glucose, glucose
Ra or Rd (82), while an
acute increase of plasma
IL-6 to ~200 pg/ml
increases glucose Rd and
glucose oxidation (19).
However, a much lower
increase of plasma IL-6
increases both glucose Ra
and Rd during exercise
(35). The mechanism
behind the apparent dis-
crepancy between the
effect of IL-6 at rest and
during exercise is
unknown, but the presence
of additional “exercise
cofactors” capable of mod-
ulating the effect of IL-6
has been suggested (35).
Alternatively, the effect of
IL-6 on glucose metabo-
lism is only detectable
when glucose fluxes are
high as in response to
exercise or insulin stimula-
tion. Accordingly, a sys-
temic increase IL-6 in
response to exercise may
augment hepatic glucose output, while other tissues increase the uptake of glucose,
whereby the plasma glucose concentration is unaffected. Thus, it is possible that the
enhanced hepatic output is balanced by increased glucose uptake in the contracting
skeletal muscle during exercise. However, conflicting results regarding the effect of
IL-6 on glucose uptake in skeletal muscle exist: In mice, IL-6 decreases insulin-
mediated glucose uptake in skeletal muscle (75), while L6 myotubes exposed to IL-
6 in vitro demonstrate increased insulin-sensitivity (19).

Infusion of rhIL-6 increases lipolysis and fat oxidation after 2 h in healthy
subjects (187) and in subjects with type 2 diabetes (133). The lipolytic effect of
IL-6 is also observed in cultured adipocytes, suggesting a direct effect of IL-6 on
adipose tissue (133). Increased IL-6 mRNA content in the adipose tissue is
observed in response to exercise (69), and this increase appears to be mediated by
catecholamines (73). If the IL-6 mRNA is translated into protein, an additive
effect together with the IL-6 derived from the circulation is possible. Accordingly,
IL-6 and adrenaline may enhance the lipolytic capacity of each other in response
to exercise. As for the liver, the effect of IL-6 in adipocytes may partly be due to a
decrease in insulin-signalling (148, 158). Although adipose tissue mRNA expres-
sion of the hormone-sensitive lipase (HSL) is increased by rhIL-6 infusion, the
corresponding HSL protein is not affected (192).
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Fig. 2. Dose-response curve for rhIL-6.
Shown is the plasma IL-6 concentration in response to dif-
ferent infusion rates of rhIL-6 diluted in saline containing
human albumin. The equation describes the log10-log10
linear regression (straight solid line). The light grey circles
represent data from a pilot study, while the dark grey
squares represent published data: A, (72); B, (133); C,
(187). Although the shown dose-response relationship has
been established in resting subjects, it has been proven use-
ful also in exercise trials (35).



Does IL-6 affect other hormones, which in part may explain the apparent
metabolic effects of IL-6? Table 3 summarizes some of the effects of an acute
increase of plasma IL-6 on some major hormones in humans. IL-6 injection
increases adrenocorticotropic hormone (ACTH) in a corticotropin-releasing hor-
mone (CRH) dependent manner in rats (101), while injection of an anti-IL-6 anti-
body abrogate the endotoxin-induced increase of ACTH in mice (131). Since the
IL-6 receptor present in the human pituitary gland (48) and adrenal cortex (45),
alternative pathways by which IL-6 can stimulate cortisol release in humans may
exist. A dose-dependent relationship between the IL-6 and cortisol in humans has
been demonstrated (184). In fact, a consistent increase of cortisol has been report-
ed when plasma IL-6 is ~50 pg/ml or higher (Table 3). Conversely, the post-exer-
cise increase of cortisol is attenuated if the release of IL-6 from the exercising leg
is inhibited by supplementation with vitamins C and E (37). However, the
increase of cortisol by IL-6 is abrogated during a euglycemic hyperinsulinemic
clamp (19). Taken together, it seems likely that an exercise-induced systemic
increase of IL-6 may reach concentrations capable of inducing cortisol secretion,
although other factors contributing to an exercise-induced activation of the HPA
axis not should be excluded. Of note, an increase of cortisol may contribute fur-
ther to the increased lipolysis and hepatic glucose output induced by IL-6. Inter-
estingly, the increase of cortisol may be involved in a negative feedback regula-
tion of IL-6, at least when present in higher concentrations (124).

While cortisol is induced by even modest plasma IL-6 increases, somewhat
higher plasma IL-6 concentrations appear to be necessary in order to increase
plasma glucagon and growth hormone (GH) levels consistently (Table 3). During
exercise, a low-level increase of IL-6 has no effect on either glucagon or GH (35).
Plasma concentrations of both adrenaline and noradrenaline are increased when
plasma IL-6 is ~300 pg/ml or higher (187). In healthy subjects, even very high IL-
6 doses have no acute effect on fasting postabsorptive plasma insulin levels (Table
3). However, IL-6 infusion may decrease plasma insulin in subjects with type 2
diabetes without concomitant changes in glucose turnover (133). Of note, the
increase of catecholamines and the decrease of insulin in response to exercise
comprise two highly potent stimuli for lipolysis (28, 64), while GH and cortisol
may further enhance the lipolysis (43, 151). Accordingly, IL-6 per se may induce
lipolysis but more likely IL-6 may stimulate lipolysis in concert with cate-
cholamines and cortisol. In type 2 diabetes, an additional decrease of plasma
insulin may contribute to the lipolytic effect of IL-6 (133).

Immunoregulatory effects of exercise-induced IL-6. In humans, infusion of
rhIL-6 increases plasma cortisol, IL-1 receptor antagonist (IL-1ra), IL-10, soluble
TNF-α receptors (sTNF-R), and C-reactive protein (CRP) (149, 166, 180). Con-
versely, the increase of cortisol, IL-1ra and CRP after exercise is abrogated if the
release of IL-6 from the contracting muscles is reduced by supplementation with
antioxidants (37), suggesting that IL-6 from the contracting skeletal muscle in
part accounts for the increase of cortisol, IL-Ira and CRP. 

The anti-inflammatory properties of cortisol are well characterized (5). In
response to rhIL-6 infusion, a significant increase of cortisol occurs within one
hour (166). While moderate exercise increase number as well as antimicrobial
capacity of the neutrophils in the circulation, intense exercise is associated with a
reduced antimicrobial capacity of the neutrophils (126), which is likely to be
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mediated by cortisol (91). In addition, cortisol may reduce the number of lympho-
cytes by enhancing the apoptosis. Thus, higher systemic increases of IL-6 – as
observed after prolonged intense exercise – may in part be responsible for the
changes in leukocyte subpopulations and antimicrobial capacity.

IL-1ra is a cytokine produced primarily by macrophages, but a further con-
tribution may come from hepatocytes and monocytes (41, 180). IL-1ra attenuates
the effect of the pro-inflammatory cytokine IL-1 by reducing the signal transduc-
tion through the IL-1 receptor (41). Plasma IL-1ra is increased after rhIL-6 infu-
sion for one hour (166). In contrast to IL-1ra, IL-10 is capable of inhibiting the
LPS-stimulated production of several pro-inflammatory cytokines including
TNF-α, IL-1α and IL-1β (100, 140). The anti-inflammatory effect of IL-10 is
exerted at both the transcriptional and posttranslational level (10, 191). Lympho-
cytes and monocytes are the primary sources of IL-10, which increases in plasma
in response to rhIL-6 infusion for 2 hours (166).

IL-6 infusion also induces a delayed increase of CRP from the liver via acti-
vation of the STAT3 pathway (166, 196). CRP was originally characterized as an
acute phase protein involved in precipitation of the somatic C-polysaccharide of
Streptococcus pneumoniae (130). Whether CRP has pro-inflammatory effects or
not is being debated (129). When purified adequately, even high doses of recom-
binant CRP do not induce a pro-inflammatory response (129). Rather, CRP may
contribute to the increase of plasma IL-1ra during late recovery from exercise by
enhancing the release of IL-1ra from monocytes (142).

Furthermore, while the pro-inflammatory cytokine TNF-α can stimulate IL-
6 production (138), IL-6 does not stimulate the production of TNF-α (166).
Rather, IL-6 attenuates the LPS-stimulated production of TNF-α in cultured
monocytes (153) as well as in vivo in humans (161), while treatment with anti-IL-
6 antibodies augment the TNF-α response following challenge with staphylococ-
cal enterotoxin B in mice (94). In addition, IL-6 may attenuate the effect of TNF-
α by induction of sTNF-R (180).

Taken together, the release of IL-6 from the contracting muscles may facili-
tate a broad anti-inflammatory response via effects on liver as well as on different
leukocyte subpopulations.

IL-6 AND TRAINING ADAPTATION

Exercise training involves multiple adaptations including increased pre-exercise
skeletal muscle glycogen content, enhanced activity of key enzymes involved in
the beta-oxidation (152), increased sensitivity of adipose tissue to adrenaline-
stimulated lipolysis (26), increased oxidation of intramuscular triglycerides (135),
whereby the capacity to oxidize fat is increased (61, 150). As a consequence, the
trained skeletal muscle is less dependent on plasma glucose and muscle glycogen
as substrate during exercise (135). 

Several epidemiological studies have reported a negative association
between the amount of regular physical activity and the basal plasma IL-6 levels:
the more physical active, the lower basal plasma IL-6 (23, 25, 123). Basal plasma
IL-6 is closer associated with physical inactivity than other cytokines associated
with the metabolic syndrome (36).
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The epidemiologi-
cal data are supported by
findings from interven-
tion studies, although
these produce less con-
sistent results. Basal lev-
els of IL-6 are reduced
after training in patients
with coronary artery dis-
ease (44). Aerobic train-
ing of adults aged 64 ys
or more for 10 months
also decreases basal
plasma IL-6 (79). In
severely obese subjects,
the combination of a
hypocaloric diet and reg-
ular physical activity for
15 weeks reduces not
only plasma IL-6, but
also the IL-6 mRNA
content in subcutaneous
adipose tissue and in
skeletal muscle (14). In
addition, athlete skiers
have lower basal plasma
IL-6 during the training
season than off-season
(145). However, others
have not observed
changes in basal IL-6
levels in response to
training (16, 85, 104).

At present, evidence that the exercise-induced increase of plasma IL-6 is
affected by training is limited. Using knee-extensor exercise, 7 healthy men
trained for 1 hour 5 times a week for 10 weeks (38). Before and after the training,
the participants performed knee-extensor exercise for 3 h at 50% of the maximal
workload. Due to a marked training response, the absolute workload was much
higher after training compared to pre-training. Despite this, the increase in IL-6
mRNA content by acute exercise was 76-fold before training but only 8 fold after
training. In addition, the exercise-induced increase of plasma IL-6 was similar
before and after training, although the absolute workload was increased by 44%
with training. Accordingly, it could be speculated that differences in training sta-
tus may explain why elderly subjects release the same amount of IL-6 as young
subjects from the leg during knee-extensor exercise at the exact same relative –
but half the same absolute – workload (127).

Noteworthy, while IL-6 appears to be down-regulated by training, the IL-6
receptor appears to be up-regulated: In response to exercise training, the basal IL-
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Fig. 3. The effect of exercise duration and intensity on the
plasma IL-6 level.
Schematic presentation showing that in response to exercise,
plasma IL-6 increases in a non-linear fashion over time (37,
119, 172) and peaks shortly after the cessation of the exer-
cise (solid line). If the exercise intensity increases, plasma
IL-6 is likely to increase faster resulting in a higher peak
plasma IL-6 level (dotted line). If the exercise duration is
extended, the peak plasma IL-6 occurs later but is also aug-
mented (dashed line). From an “area under the curve” point
of view, the cumulative systemic effect of IL-6 in response to
exercise may accordingly be more prominent in response to
prolonged exercise compared to an intense but shorter bout
of exercise, even if the peak IL-6 values are similar.



6R mRNA content in trained skeletal muscle is increased by ~100% (70). Accord-
ingly, it is possible that the downregulation of IL-6 is partially counteracted by
enhanced expression of IL-6R, whereby the sensitivity to IL-6 is increased. How-
ever, it remains to be determined if the increased IL-6R mRNA content corre-
sponds to an increased expression of the IL-6R protein. Furthermore, it is not
known if the enhanced IL-6R expression following training occurs in several tis-
sues or only locally within the trained skeletal muscle. In the circulation, the IL-
6R concentration is affected neither by training nor acute exercise (70).

Thus, there is good evidence that low physical activity results in elevated
basal IL-6 levels, while a high level of physical activity results in low basal IL-6
levels. Yet, there is limited evidence indicating that the exercise-induced increase
of IL-6 in the contracting muscle as well as in the circulation is attenuated by
training. Since training adaptation includes changes known to counteract potential
stimuli for IL-6, it is, however, very likely that further studies will demonstrate
alterations in the exercise-induced IL-6 response by training.

SUMMARY AND CONCLUSION

Clearly, exercise may increase synthesis and subsequent release of IL-6 from con-
tracting muscles, and this release may induce multiple effects in multiple tissues.
IL-6 possesses somewhat catabolic features, indicated by the ability to increase
energy expenditure, increase lipolysis, increase fat oxidation, increase endoge-
nous glucose output (in part via reducing insulin-signalling in fat and liver), and
increase cortisol. On the other hand, this mobilization of glucose and FFA from
liver and fat to the circulation may result in enhanced substrate uptake by other
tissues, e.g., the contracting skeletal muscle. The apparent discrepancy between
tissues regarding the response to IL-6 may be due differences in downstream IL-6
signalling in different tissues. In addition, the IL-6 released from the contracting
muscles may induce an anti-inflammatory response reflected by increase of IL-
1ra, IL-10, CRP, and cortisol without concomitant increases in pro-inflammatory
mediators.
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�, increase; �, decrease; �, not affected by rhIL-6; GH, growth hormone; A, adrenaline; NA, noradrenaline.
a In response to rhIL-6 infusion, plasma insulin decreases in subjects with type 2 diabetes but not in healthy controls. 

Plasma IL-6 level 
(pg/ml)

Insulin Cortisol Glucagon GH A, NA References 

< 50 � � � � � (35, 59, 184, 
185) 

~50 � �    (82) 
~100 � �  (103) 
~150 � � � � (166, 167, 

187) 
~200 � /�a � � � � (133, 192) 
~300 � � � � � (167, 184, 

185, 187)
~500 � � � � (174) 
~4000 � � � �  (184, 185) 

Table 3. Acute effects of rhIL-6 on hormone levels in humans.



The time and intensity required in order to accumulate IL-6 protein within
the contracting muscle are not well characterized. In contrast, duration of exercise
is the single most important factor that determines the magnitude of the systemic
IL-6 response. The longer duration of the exercise, the more pronounced the sys-
temic IL-6 response will be. Accordingly, short bouts of exercise or exercise at
low intensity are not likely to increase IL-6 to an extent where systemic effects of
IL-6 are expected. Independent of mode, exercise for less than one hour induces a
peak plasma IL-6 concentration below 10 pg/ml (< 10 fold increase from pre-
exercise level, Fig. 1B), and this for only a short period of time (Fig. 2). Several
studies have demonstrated that pre-exercise glycogen depletion accelerates the
exercise-induced IL-6 response, while carbohydrate supplementation reduces the
increase of plasma IL-6. Thus, reduced availability of substrates fuelling the mus-
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Fig. 4. Possible effects of IL-6 released from contracting skeletal muscle in response to
exercise.
Several mechanisms may link muscle contractions to IL-6 synthesis. Changes in calcium
homeostasis, impaired glucose availability, and increased formation of reactive oxygen
species (ROS) are all capable of inducing transcription factors regulating IL-6 gene tran-
scription. The synthesized IL-6 may act locally within the contracting skeletal muscle in a
paracrine manner or be released into the circulation, thus able to induce systemic effects. In
liver, the circulating IL-6 may increase hepatic glucose output and production of C-reactive
protein (CRP). In adipose tissue, IL-6 produced locally and IL-6 from the circulation in
concert may increase lipolysis. Via activation of the hypothalamic-pituitary-adrenal (HPA)
axis, the circulating IL-6 may stimulate cortisol release, which may further enhance the
lipolysis. In lymphocytes, macrophages, and monocytes, the circulating IL-6 may stimu-
late the production of IL-1ra and IL-10.



cle contractile activity appears to be one of the main triggers of IL-6 production.
To reduce substrate availability, glycogen stores in liver and muscle have to be
reduced markedly, which is process that takes time, although dependent on the
intensity. 

Low physical activity is associated with increased plasma IL-6 at rest. Exer-
cise training dramatically reduces the exercise-induced accumulation of IL-6
mRNA within the contracting skeletal muscle. Training adaptation also includes
increased glycogen content in the resting skeletal muscle and enhanced capacity
to oxidize fat, whereby the contracting muscle becomes less dependent on plasma
glucose as well as capable of performing more mechanical work before glycogen
levels are reduced critically. Accordingly, exercise training may counteract sever-
al potential stimuli of IL-6 production. Therefore, a low plasma IL-6 concentra-
tion at rest as well as in response to exercise appears to characterize the IL-6
response after training adaptation. Interestingly, the training-induced downregula-
tion of IL-6 may to some extent be compensated by an enhanced sensitivity to IL-
6, at least within the trained skeletal muscle.
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