Evolutionary Freight Transportation Planning

Thomas Weise
Kurt Geihs
University of Kassel

Alexander Podlich
Kai Reinhard
Micromata

Christian Gorlitz
BIBA

http://www.it-weise.de/
Contents

- The *in.west* Project
- Freight Transportation Challenge
- Optimization Problem
- Approach
- Experiments
- Online Re-Planning
- Conclusions
Freight traffic is steadily increasing.

- **in.west** is a research project funded by German Fed. Minist. of Econ. a. Tech.
- Goal: Reduce freight traffic by 10%
- Focus on container-based freight transportation
• Holistic Approach
• Sensor Nodes
• Web-based GUI
• Transportation Planner
• Middleware
Freight Transportation Challenge

- Freight transportation for real-world logistics company
- Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for...
Freight Transportation Challenge

- Freight transportation for real-world logistics company
- Orders/Containers/Trucks/Trains/Routes for …
- Multiple depots and pickup and delivery locations
Freight Transportation Challenge

- Freight transportation for real-world logistics company
- Orders/Containers/Trucks/Trains/Routes for …
- Multiple depots and pickup and delivery locations
- Vehicles (trucks and trains) have capacity limits
Freight Transportation Challenge

- Freight transportation for real-world logistics company
- Orders/Containers/Trucks/Trains/Routes for …
- Multiple depots and pickup and delivery locations
- Vehicles (trucks and trains) have capacity limits
- Time windows for pickup and delivery
Freight Transportation Challenge

- Freight transportation for real-world logistics company
- Orders/Containers/Trucks/Trains/Routes for …
- Multiple depots and pickup and delivery locations
- Vehicles (trucks and trains) have capacity limits
- Time windows for pickup and delivery
- Constraints, laws, time limit: 1d
Optimization Problem

- Goal of optimization is to find a freight transportation plan
- Minimize no. of undelivered orders, distance, spare capacity

Optimization Problem Diagram

- **Location**: startLocationID, endLocationID
- **Order**: startLocationID, endLocationID, minStartTime, maxStartTime, minEndTime, maxEndTime
- **Tour**: startLocationID, endLocationID, startTime, endTime, orderIDs[], swapBodyIDs[], vehicleID, 1..*
- **Plan**: 1..*
- **SwapBody**: *
- **Vehicle**: *

Optimization Problem Equations

- f_1: Minimize undelivered orders
- f_2: Minimize distance
- f_3: Minimize spare capacity
Approach: Genotype/Phenotype

- Evolutionary Algorithm
- Transportation Plan = Phenotype = Genotype
Approach: Search Operations

- Always create valid and physically correct phenotypes
- 16 mutation operations
- 3 recombination operators
- Each operation dedicated to one specific constellation in the solution candidates
- Reproduction: randomly choose operation, if not applicable choose another one (and so on)
Approach: Search Operations

- Mutation: Add new tours for undelivered freight to plan
Approach: Search Operations

- Mutation: Integrate delivery in existing tour
Approach: Search Operations (trucks meet)

- Mutation: Freight exchange / Truck-meets-Truck

\[\text{Diagram showing a before and after state of trucks meeting and exchanging freight.} \]
Approach: Search Operations

• Mutation: Transport freight via trains

• For each operation, there is an inverse operation
Approach: Search Operations

- Crossover: Combine tours from parents
Experiments: Test Data

- Original data from the DHL

- 4th quarter 2007
- 800 swap bodies
- 11 depots
- 801 pickup/delivery locations
- 169...2980 orders/day
- 76% fill rate, lean flow of goods
Experiments: Find Good Settings

- Data set of 2007-12-02, 189 orders, original: 19019 km

- Tested settings
 - steady state / generational
 - elitism / no elitism
 - population sizes: 200, 500, 1000
 - Pareto ranking with and without sharing
 - muta. rate: 0.6/0.8 crosso. rate: 0.2/0.4
 - convergence prevention (clearing) 0.0/0.3

- 192 configurations à 10 runs
Experiments: Find Good Settings

- Data set of 2009-12-02, 189 orders, original: 19,019 km

- Tested settings

 - steady state / generational
 - elitism / no elitism
 - population sizes: 200, 500, 1000
 - Pareto ranking with and without sharing
 - muta. rate: 0.6/0.8 crosso. rate: 0.2/0.4
 - convergence prevention (clearing) 0.0/0.3

- 192 configurations à 10 runs: 172 configs better than original

- Best configuration: 80% mutation, 40% crossover, ps = 1000, steady state, elitism, sharing, cp = 0.3
 15,883 km in total or 16% saved

better in two-tailed significance tests with $\alpha = 2\%$
Experiments: Tests with various data sets

Fri, 2007-12-07

1987 orders

original: 174924 km

A assign all orders
B improve solutions
new 173916 km

Distance in km

original performance
first time a complete plan was found

Generations
Experiments: Tests with various data sets

Mon, 2007-12-24
642 orders
original: 63812 km
A assign all orders
B improve solutions
new: 54993 km
Experiments: Tests with various data sets

Sat, 2007-11-03
1016 orders
original: 82013 km
A assign all orders
B improve solutions
100%: 79463 km
99%: 74435 km
Online Re-Planning

[10:00,11:30]
[08:00,09:00]
[11:00,13:00]
[14:30,15:30]
[15:30,16:15]
[17:00,19:00]

[10:00,11:30]
Online Re-Planning

A

13:00

B

11:00

C

8:30

D

12:00

E

16:00

F

18:30

G

15:00

H

7:00

[x:11:30]

[y:15:30]

[z:19:00]
Online Re-Planning

A 13:00
D 12:00+1h
E 16:00

B [x:11:30] 11:00+1h

C 8:30

F [z:19:00] 18:30

G 15:00+1h

H 7:00

[x:11:30] [y:15:30]
Conclusions

• Planning in real-world logistics companies is hard
• Evolutionary approach with dedicated representation and search operations has been provided
• Extensive tests have been performed
• Improvement: never < 1%, normally ≈ 5%, best ≥ 15%
• Offline and online optimization
• Field test of complete in.west system this fall
• Distribution, further improvements
Thank you very much for your attention!

Any questions?

Corresponding authors:

Thomas Weise
University of Kassel
tweise@gmx.de

Alexander Podlich
Micromata
a.podlich@micromata.de

Christian Gorld
BIBA
gor@biba.uni-bremen.de
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit?</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-assi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>3 0785 00</td>
<td>15 883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>5 7465 00</td>
<td>15 908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4 831 000</td>
<td>15 929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5 934 000</td>
<td>15 970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6 236 500</td>
<td>15 971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5 466 000</td>
<td>16 003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5 691 500</td>
<td>16 008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6 186 500</td>
<td>16 018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4 880 000</td>
<td>16 060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2 862 500</td>
<td>16 071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5 604 000</td>
<td>16 085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4 770 500</td>
<td>16 093 km</td>
</tr>
</tbody>
</table>
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit?</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-assi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>3 0785 00</td>
<td>15 883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>5 7465 00</td>
<td>15 908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4 831 000</td>
<td>15 929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5 934 000</td>
<td>15 970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6 236 500</td>
<td>15 971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5 466 000</td>
<td>16 003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5 691 500</td>
<td>16 008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6 186 500</td>
<td>16 018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4 880 000</td>
<td>16 060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2 862 500</td>
<td>16 071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5 604 000</td>
<td>16 085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4 770 500</td>
<td>16 093 km</td>
</tr>
</tbody>
</table>
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit?</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-assi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>3 0785 000</td>
<td>15 883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>5 7465 000</td>
<td>15 908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4 831 000</td>
<td>15 929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5 934 000</td>
<td>15 970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6 236 500</td>
<td>15 971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5 466 000</td>
<td>16 003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5 691 500</td>
<td>16 008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6 186 500</td>
<td>16 018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4 880 000</td>
<td>16 060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2 862 500</td>
<td>16 071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5 604 000</td>
<td>16 085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4 770 500</td>
<td>16 093 km</td>
</tr>
</tbody>
</table>
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-ssi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>3 0785 00</td>
<td>15 883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>5 7465 00</td>
<td>15 908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4 831 000</td>
<td>15 929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5 934 000</td>
<td>15 970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6 236 500</td>
<td>15 971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5 466 000</td>
<td>16 003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5 691 500</td>
<td>16 008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6 186 500</td>
<td>16 018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4 880 000</td>
<td>16 060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2 862 500</td>
<td>16 071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5 604 000</td>
<td>16 085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4 770 500</td>
<td>16 093 km</td>
</tr>
</tbody>
</table>
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit?</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-assi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>30785000</td>
<td>15883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>57465000</td>
<td>15908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4831000</td>
<td>15929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5934000</td>
<td>15970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6236500</td>
<td>15971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5466000</td>
<td>16003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5691500</td>
<td>16008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6186500</td>
<td>16018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4880000</td>
<td>16060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2862500</td>
<td>16071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5604000</td>
<td>16085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4770500</td>
<td>16093 km</td>
</tr>
</tbody>
</table>
Experiments: Find Good Settings

<table>
<thead>
<tr>
<th>#</th>
<th>mut</th>
<th>cross</th>
<th>clear</th>
<th>elit?</th>
<th>pop</th>
<th>ss/ge</th>
<th>f-assi</th>
<th>solv-t</th>
<th>bett-t</th>
<th>end-t</th>
<th>no. evals</th>
<th>total dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>341</td>
<td>609</td>
<td>3078</td>
<td>3 0785 00</td>
<td>15 883 km</td>
</tr>
<tr>
<td>2</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>502</td>
<td>770</td>
<td>5746</td>
<td>5 7465 00</td>
<td>15 908 km</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>360</td>
<td>626</td>
<td>4831</td>
<td>4 831 000</td>
<td>15 929 km</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>468</td>
<td>736</td>
<td>5934</td>
<td>5 934 000</td>
<td>15 970 km</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>20%</td>
<td>on</td>
<td>elit</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>429</td>
<td>713</td>
<td>6236</td>
<td>6 236 500</td>
<td>15 971 km</td>
</tr>
<tr>
<td>6</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>share</td>
<td>375</td>
<td>674</td>
<td>5466</td>
<td>5 466 000</td>
<td>16 003 km</td>
</tr>
<tr>
<td>7</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>370</td>
<td>610</td>
<td>5691</td>
<td>5 691 500</td>
<td>16 008 km</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>222</td>
<td>450</td>
<td>6186</td>
<td>6 186 500</td>
<td>16 018 km</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>40%</td>
<td>off</td>
<td>no el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>220</td>
<td>463</td>
<td>4880</td>
<td>4 880 000</td>
<td>16 060 km</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td>20%</td>
<td>off</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>plain</td>
<td>277</td>
<td>506</td>
<td>2862</td>
<td>2 862 500</td>
<td>16 071 km</td>
</tr>
<tr>
<td>11</td>
<td>80%</td>
<td>40%</td>
<td>on</td>
<td>no el</td>
<td>1000</td>
<td>stead</td>
<td>plain</td>
<td>412</td>
<td>734</td>
<td>5604</td>
<td>5 604 000</td>
<td>16 085 km</td>
</tr>
<tr>
<td>12</td>
<td>80%</td>
<td>20%</td>
<td>on</td>
<td>el</td>
<td>1000</td>
<td>gene</td>
<td>share</td>
<td>214</td>
<td>442</td>
<td>4770</td>
<td>4 770 500</td>
<td>16 093 km</td>
</tr>
</tbody>
</table>