
Christian SchwatkeTechnische Universität München | TUM · Deutsches Geodätisches Forschungsinstitut
Christian Schwatke
M.Sc.
About
74
Publications
20,283
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,225
Citations
Introduction
Additional affiliations
October 2008 - present
Publications
Publications (74)
Atmospheric delay corrections for satellite altimetry measurements are essential for deriving highly accurate sea surface heights and reliable global mean sea level (GMSL) trend estimates. A commonly used method to correct for ionospheric path delays are the usage of GNSS‐based Global Ionospheric Maps (GIM). The different orbit heights of GNSS and...
This report summarises the main results, conclusions and recommendations of the “HYDROSPACE-GEOGLOWS 2021” Workshop organised by the European Space Agency (ESA), in collaboration with the French Space Agency (CNES) and the GEO Global Water Sustainability Initiative (GEOGloWS) (Fig. 1). This Workshop is a sequel to the ones held in Toulouse (F) in 2...
• Ecosystems in the Omo-Turkana Basin (OTB) provide a host of provisioning, regulating, supporting and cultural services to people. They enable the rearing of 20% of the Ethiopian cattle population, 5% of the Kenyan fish production, and support drinking water, sediment retention and soil fertility for millions of people dependent on subsistence agr...
Satellite altimetry observations have provided a significant contribution to the understanding of global sea surface processes, particularly allowing for advances in the accuracy of ocean tide estimations. Currently, almost three decades of satellite altimetry are available which can be used to improve the understanding of ocean tides by allowing f...
EOT20 is the latest in a series of empirical ocean tide (EOT) models derived using residual tidal analysis of multi-mission satellite altimetry at DGFI-TUM. The amplitudes and phases of 17 tidal constituents are provided on a global 0.125∘ grid based on empirical analysis of seven satellite altimetry missions and four extended missions. The EOT20 m...
Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle ov...
This dataset contains gridded Sea Level Anomalies (SLA) for the North Sea, computed from multi-mission satellite altimetry at DGFI-TUM. SLA are provided in monthly temporal resolution between May-1995 and May-2019. The high-frequency cross-calibrated SLA observations are gridded by a least-squares approach on an unstructured triangular mesh with a...
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and mo...
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and mo...
Study Region
The Great Rift Valley lakes of Kenya have recently experienced significant increases in their water levels, negatively impacting the local communities. This has provoked renewed concerns about the causations, with various geological, anthropogenic and hydro-climatic influences hypothesized as potential causes of the water level rises....
Coastal studies of wave climate and evaluations of wave energy resources are mainly regional and based on the use of computationally very expensive models or a network of in-situ data. Considering the significant wave height, satellite radar altimetry provides an established global and relatively long-term source, whose coastal data are nevertheles...
The absolute sea level trend from May 1995 to May 2019 in the Baltic Sea is analyzed by means of a regional monthly gridded dataset based on a dedicated processing of satellite altimetry data. In addition, we evaluate the role of the North Atlantic Oscillation and the wind patterns in shaping differences in sea level trend and variability at a sub-...
Observations of changes in terrestrial water storage (TWS) obtained from the satellite mission GRACE (Gravity Recovery and Climate Experiment) have frequently been used for water cycle studies and for the improvement of hydrological models by means of calibration and data assimilation. However, due to a low spatial resolution of the gravity field m...
Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal and economic issues. This article reports about a new sea level dataset for the North Sea (named NorthSEAL) of monthly sea level anomalies (SLA), absolute sea level trends and sea level mean annual amplitudes over the period 199...
EOT20 is the latest in a series of empirical ocean tide (EOT) models derived using residual tidal analysis of multi-mission satellite altimetry at DGFI-TUM. The amplitudes and phases of seventeen tidal constituents are provided on a global 0.125-degree grid based on empirical analysis of seven satellite altimetry missions and four extended missions...
Our earlier work on assessment of altimeter significant wave height (SWH) algorithms [...]
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK softw...
Vertical land motion (VLM) at the coast is a substantial contributor to relative sea level change. In this work, we present a refined method for its determination, which is based on the combination of absolute satellite altimetry (SAT) sea level measurements and relative sea level changes recorded by tide gauges (TGs). These measurements complement...
Observations of changes in terrestrial water storage obtained from the satellite mission GRACE (Gravity Recovery and Climate Experiment) have frequently been used for water cycle studies and for the improvement of hydrological models by means of calibration and data assimilation. However, due to a low spatial resolution of the gravity field models...
Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes caused by non-uniform ocean thermal expansion and salinity changes, and by the solid Earth response to current water mass redistribution and associated gravity change, plus small...
Remote sensing data are essential for monitoring the Earth's surface waters, especially since the amount of publicly available in-situ data is declining. Satellite altimetry provides valuable information on the water levels and variations of lakes, reservoirs and rivers. In combination with satellite imagery, the derived time series allow the monit...
In the context of the ESA Climate Change Initiative project, we are engaged in a regional reprocessing of high-resolution (20 Hz) altimetry data of the classical missions in a number of the world's coastal zones. It is done using the ALES (Adaptive Leading Edge Subwaveform) retracker combined with the X-TRACK system dedicated to improve geophysical...
Despite increasing interest in monitoring the global water cycle, the availability of in situ gauging and discharge time series is decreasing. However, this lack of ground data can partly be compensated for by using remote sensing techniques to observe river stages and discharge. In this paper, a new approach for estimating discharge by combining w...
Abstract. Vertical land motion (VLM) at the coast is a substantial contributor to relative sea level change. In this work, we present a refined method for its determination, which is based on the combination of absolute satellite alimetry (SAT) sea level measurements and relative sea level changes recorded by tide gauges (TG). These measurements co...
In this study, a new approach for estimating volume variations of lakes and reservoirs using water levels from satellite altimetry and surface areas from optical imagery is presented. Both input data sets, namely water level time series and surface area time series, are provided by the Database of Hydrological Time Series of Inland Waters (DAHITI),...
In this paper, a new approach for estimating the discharge of large rivers based on long-term remote sensing data and using the Manning equation is presented. The key idea is to observe the river’s cross-sectional geometry from the combination of satellite altimetry and water masks extracted from optical remote sensing imagery. The water surface he...
Radar altimeters have been measuring ocean significant wave height for more than three decades, with their data used to record the severity of storms, the mixing of surface waters and the potential threats to offshore structures and low-lying land, and to improve operational wave forecasting. Understanding climate change and long-term planning for...
Abstract. In the context of the ESA Climate Change Initiative project, we are engaged in a regional reprocessing of high-resolution (20 Hz) altimetry data of the classical missions in a number of coastal zones worldwide. It is done using the ALES (Adaptive Leading Edge Subwaveform) retracker combined with the X-TRACK system dedicated to improve geo...
Observations of changes in terrestrial water storage obtained from the satellite mission GRACE (Gravity Recovery and Climate Experiment) have frequently been used for water cycle studies and for the improvement of hydrological models by means of calibration and data assimilation. However, due to a low spatial resolution of the gravity field models...
A deeper knowledge about geostrophic ocean surface currents in the northern Nordic Seas supports the understanding of ocean dynamics in an area affected by sea ice and rapidly changing environmental conditions. Monitoring these areas by satellite altimetry results in a fragmented and irregularly distributed data sampling and prevents the computatio...
The data set contains combined Dynamic Ocean Topography (DOT) and geostrophic velocity components for the northern Nordic Seas between 1995 and 2012. It was produced in the frame of the DFG project NEG-OCEAN: Variations in ocean currents, sea-ice concentration, and sea surface temperature along the North-East coast of Greenland. The data is provide...
The updated Empirical Ocean Tide model (EOT19p) currently available on limited regions is presented in this paper. Its implementation is focused on improving the accuracy of tidal estimation at the coast. EOT19p is derived using circa 27 years of coast-dedicated altimetric data and the FES2014 tide model, and it is based on a multi-mission, weighte...
In recent years, there has been a large focus on the Arctic due to the rapid changes of the region. Arctic sea level determination is challenging due to the seasonal to permanent sea-ice cover, lack of regional coverage of satellites, satellite instruments ability to measure ice, insufficient geophysical models, residual orbit errors, challenging r...
A deeper knowledge about geostrophic ocean surface currents in the northern Nordic Seas supports the understanding of ocean dynamics in an area affected by sea ice and rapidly changing environmental conditions. Monitoring these areas by satellite altimetry results in a fragmented and irregularly distributed data sampling and prevents the computatio...
In this study, a new approach for the automated extraction of high-resolution time-variable water surfaces is presented. For that purpose, optical images from Landsat and Sentinel-2 are used between January 1984 and June 2018. The first part of this new approach is the extraction of land-water masks by combining five water indexes and using an auto...
Lakes and reservoirs are crucial elements of the hydrological and biochemical cycle and are a valuable resource for hydropower, domestic and industrial water use, and irrigation. Although their monitoring is crucial in times of increased pressure on water resources by both climate change and human interventions, publically available datasets of lak...
The inter-mission cross-calibration is a basic prerequisite for long-term sea level change studies on all spatial scales. Especially, for climate studies the consistent combination of successive missions is essential. This study uses a global multi-mission crossover analysis in order to investigate the performance of the Copernicus Sentinel-3A alti...
The International Laser Ranging Service (ILRS) through its permanent components (Tracking Stations, Operations Centers, Data Centers, Analysis Centers, Central Bureau, and Governing Board) distributes satellite and lunar laser ranging data and derived products to support global, multidisciplinary scientific research. The ILRS Data Centers and Centr...
The advantages of reprocessing the data from pulse-limited altimetry with the Adaptive Leading Edge Subwaveform Retracking (ALES) algorithm have been already demonstrated at the coast. We demonstrate in this talk that the same strategy improves the precision of satellite altimetry in the global ocean, presenting the new global ALES dataset, which i...
Since the launch of the first altimetry satellites, ocean tide models have been improved dramatically for deep and shallow waters. However, issues are still found for areas of great interest for climate change investigations: the coastal regions. The purpose of this study is to analyze the influence of the ALES coastal retracker on tide modeling in...
Lakes and reservoirs are crucial elements of the hydrological and biochemical cycle and are a valuable resource for hydropower, domestic and industrial water use and irrigation. Although their monitoring is crucial in times of increased pressure on water resources by both climate change and human interventions, publically available datasets of lake...
In this study, reliable water levels for four lakes are estimated based on an innovative
processing strategy using a semi-automatic CryoSat-2 Synthetic Aperture Radar (SAR) multi-looked
waveform classification. The selection of valid water returns is an essential step in inland altimetry
applications. In order to identify reliable observations allo...
Wetlands are important ecosystems playing an essential role for continental water regulation and the hydrologic cycle. Moreover, they are sensitive to climate changes as well as anthropogenic influences, such as land-use or dams. However, the monitoring of these regions is challenging as they are normally located in remote areas without in situ mea...
This study investigates the potential of satellite altimetry for water level time series estimation of smaller inland waters where only very few measurements above the water surface are available. A new method was developed using off-nadir measurements to estimate the parabola generated by the hooking effect. For this purpose, a new waveform retrac...
Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, for some years, this technology has also been used to retrieve water levels from reservoirs, wetlands and in general any inland water body, although the radar altimetry technique has been especially applied to rivers and lakes. In this paper, a new approa...
SARAL/AltiKa completed its first year in orbit in March 2014. The 1 Hz GDR-T data of the first 10 cycles of the mission are used to perform a comprehensive quality assessment by means of a global multi-mission crossover analysis. Within this approach, SARAL sea surface heights are compared with data from other current missions, mainly Jason-2 and C...
Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, since some years, this technology is also used for observing inland water levels of lakes and rivers. In this paper, a new approach for the estimation of inland water level time series is described. It is used for the computation of time series available...
In this poster, we present our methodology for estimating water level time series over lakes, reservoirs, and rivers. Furthermore, an error assessment of the resulting water level time series is demonstrated. For computing the water level time series multi-mission satellite altimetry data is used. The estimation is based on altimeter data from Tope...
SARAL uses the same orbit as ERS and Envisat and can be used to extend inland water height time series derived from these missions. This paper investigates the potential of SARAL for this application over the Great Lakes and the Amazon basin. SARAL/AltiKa is the first altimeter using Ka-band which is rarely influenced by ionospheric effects but sus...
The Open Altimeter Database (OpenADB) holds satellite altimeter data and high-level products developed by the Deutsches Geodätisches Forschungs-institut, DGFI (German Geodetic Research Institute). Currently, OpenADB contains the following products: Sea Surface Heights (SSH), Sea Level Anomalies (SLA), Global and Regional Mean Sea Level Time Series,...
Since many years satellite altimetry is becoming increasingly important for hydrology. The fact, that satellite altimetry, originally designed for open ocean application, can also contribute reliable results over inland waters helps to understand the
water cycle of the system earth and makes altimetry to a very useful sensor for hydrology. In this...