
Christian SchoenenbergerUniversity of Basel | UNIBAS · Department of Physics
Christian Schoenenberger
Prof. Dr.
About
336
Publications
44,726
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
20,029
Citations
Publications
Publications (336)
Decoherence of a charge qubit is usually credited to charge noise in the environment. Here we show that charge noise may not be the limiting factor for the qubit coherence. To this end, we study coherence properties of a crystal-phase defined semiconductor nanowire double quantum dot (DQD) charge qubit strongly coupled to a high-impedance resonator...
When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the...
As part of a circuit QED architecture, we investigate photon emission from a Cooper pair splitter composed of two double quantum dots, each coupled to a microwave transmission line. We demonstrate the capability to generate frequency-entangled photon pairs in the left and right transmission lines, specifically a superposition of two photon wavepack...
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfac...
Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction...
Qubits require a compromise between operation speed and coherence. Here, we demonstrate a compromise-free singlet-triplet (ST) qubit, where the qubit couples maximally to the driving field while simultaneously coupling minimally to the dominant noise sources. The qubit is implemented in a crystal-phase defined double-quantum dot in an InAs nanowire...
Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic...
Superconducting qubits with intrinsic noise protection offer a promising approach to improve the coherence of quantum information. Crucial to such protected qubits is the encoding of the logical quantum states into wavefunctions with disjoint support. Such encoding can be achieved by a Josephson element with an unusual charge-4e supercurrent emergi...
Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction...
In a superconducting weak link, the supercurrent is carried by Andreev bound states (ABSs) formed by the phase-coherent reflection of electrons and their time-reversed partners. A single, highly transmissive ABS can serve as an ideal, compact two-level system, due to a potentially large energy difference to the next ABS [1]. While the coherent mani...
High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. Often, the fabrication of spin qubits relies on the use of gate dielectrics which are detrimental to the quality of the resonator. Here, we investigate loss mechanisms of high-impedance NbTiN resonators in the vicinity of thermally...
Three-dimensional topological Dirac semimetals have recently attracted significant attention since they possess exotic quantum states. When Josephson junctions are constructed utilizing these materials as the weak link, the fractional ac Josephson effect emerges in the presence of a topological supercurrent contribution. We investigate the ac Josep...
Dephasing of a charge qubit is usually credited to charge noise in the environment. Here we show that charge noise may not be the limiting factor for the qubit coherence. To this end, we study coherence properties of a crystal-phase defined semiconductor nanowire double quantum dot (DQD) charge qubit strongly coupled to a high-impedance resonator u...
The Josephson diode (JD) is a nonreciprocal circuit element that supports a larger critical current in one direction compared to the other. This effect has gained growing interest because of promising applications in superconducting electronic circuits with low power consumption. Some implementations of a JD rely on breaking the inversion symmetry...
Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. Howev...
Hybridization is one of the most fundamental quantum mechanical phenomena, with the text book example of binding two hydrogen atoms in a hydrogen molecule. Here we report tunnel spectroscopy experiments illustrating the hybridization of another type of discrete quantum states, namely of superconducting subgap states that form in segments of a semic...
Spin qubits in germanium are a promising contender for scalable quantum computers. Reading out of the spin and charge configuration of quantum dots formed in Ge/Si core/shell nanowires is typically performed by measuring the current through the nanowire. Here, we demonstrate a more versatile approach on investigating the charge configuration of the...
Superconducting qubits with intrinsic noise protection offer a promising approach to improve the coherence of quantum information. Crucial to such protected qubits is the encoding of the logical quantum states into wavefunctions with disjoint support. Such encoding can be achieved by a Josephson element with an unusual charge-4e supercurrent emergi...
Three-dimensional topological Dirac semimetals have recently gained significant attention, since they possess exotic quantum states. When constructing Josephson junctions utilizing these materials as the weak link, the fractional ac Josephson effect emerges in the presence of a topological supercurrent contribution. We investigate the ac Josephson...
When a topological insulator is incorporated into a Josephson junction, the system is predicted to reveal the fractional Josephson effect with a 4π-periodic current-phase relation. Here, we report the measurement of a 4π-periodic switching current through an asymmetric SQUID, formed by the higher-order topological insulator WTe2. Contrary to the es...
The Josephson diode (JD) is a non-reciprocal circuit element that supports a larger critical current in one direction compared to the other. This effect has gained a growing interest because of promising applications in superconducting electronic circuits with low power consumption. Some implementations of a JD rely on breaking the inversion symmet...
Tremendous progress in few-qubit quantum processing has been achieved lately using superconducting resonators coupled to gate voltage defined quantum dots. While the strong coupling regime has been demonstrated recently for odd charge parity flopping mode spin qubits, first attempts towards coupling a resonator to even charge parity singlet-triplet...
High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. As material system for the qubits, semiconductor nanowires with strong spin-orbit interaction are often employed, working towards a large-scale spin-qubit quantum processor. Inherently, the fabrication of nanowire based qubits relie...
Correlations are fundamental in describing many-body systems. However, in experiments, correlations are notoriously difficult to assess on a microscopic scale, especially for electron spins. Even though it is firmly established theoretically that the electrons in a Cooper pair of a superconductor form maximally spin-entangled singlet states with op...
Topological insulators host gapless boundary states that are protected by time-reversal symmetry against local perturbations. When incorporated into a Josephson junction, the system is predicted to demonstrate the fractional Josephson effect with a 4$\pi$-periodic current-phase relation. Here, we use an asymmetric SQUID device to study the current-...
Highly transparent superconducting contacts to a topological insulator (TI) remain a persistent challenge on the route to engineer topological superconductivity. Recently, the higher-order TI WTe2 was shown to turn superconducting when placed on palladium (Pd) bottom contacts, demonstrating a promising material system in pursuing this goal. Here, w...
We compare the adiabatic quantized charge pumping performed in two types of InAs nanowire double quantum dots (DQDs), either with tunnel barriers defined by closely spaced narrow bottom gates, or by well-separated side gates. In the device with an array of bottom gates of 100 nm pitch and 10 μm lengths, the pump current is quantized only up to freq...
Superconductivity in van der Waals materials, such as NbSe2 and TaS2, is fundamentally novel due to the effects of dimensionality, crystal symmetries, and strong spin-orbit coupling. In this work, we perform tunnel spectroscopy on NbSe2 by utilizing MoS2 or hexagonal boron nitride (hBN) as a tunnel barrier. We observe subgap excitations and probe t...
Superconductivity in van der Waals materials, such as NbSe$_{2}$ and TaS$_{2}$, is fundamentally novel due to the effects of dimensionality, crystal symmetries, and strong spin-orbit coupling. In this work we perform tunnel spectroscopy on NbSe$_{2}$ by utilizing MoS$_{2}$ or hexagonal Boron Nitride (hBN) as a tunnel barrier. We observe subgap exci...
Cooper pair splitting (CPS) is a way to create spatially separated, entangled electron pairs. To this day, CPS is often identified in experiments as a spatial current correlation. However, such correlations can arise even in the absence of CPS, when a quantum dot is strongly coupled to the superconductor, and a subgap Shiba state is formed. Here, w...
Correlations are fundamental in describing many body systems - not only in natural sciences. However, in experiments, correlations are notoriously difficult to assess on the microscopic scale, especially for electron spins. Here, we demonstrate a direct measurement of the spin cross-correlations between the currents of a Cooper pair splitter, an el...
Hybridization is a very fundamental quantum mechanical phenomenon, with the text book example of binding two hydrogen atoms in a hydrogen molecule. In semiconductor physics, a quantum dot (QD) can be considered as an artificial atom, with two coupled QDs forming a molecular state, and two electrons on a single QD the equivalent of a helium atom. He...
In quantum dot (QD) electron transport experiments, additional features can appear in the differential conductance dI/dV that do not originate from discrete states in the QD, but rather from a modulation of the density of states (DOS) in the leads. These features are particularly pronounced when the leads are strongly confined low-dimensional syste...
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPD) has delivered ex-cellent performance, and their increased adoption has had a great impact on a range of applications. One of the key characteristic of SNSPDs is their detection rate, which is typically higher than other types of free-running single-photon...
A supercurrent transistor is a superconductor–semiconductor hybrid device in which the Josephson supercurrent is switched on and off using a gate voltage. While such devices have been studied using DC transport, radio-frequency measurements allow for more sensitive and faster experiments. Here a supercurrent transistor made from a carbon nanotube i...
Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin–orbit coupling (SOC) allows to engineer a sizeable SOC in graphene via proximity effects. The strength of the proximity effect depends on the...
Cooper pair splitting (CPS) is a way to create spatially separated, entangled electron pairs. To this day, CPS is often identified in experiments as a spatial current correlation. However, such correlations can arise even in the absence of CPS, when a quantum dot is strongly coupled to the superconductor, and a subgap Shiba state is formed. Here, w...
The interlayer coupling, which has a strong influence on the properties of van der Waals heterostructures, strongly depends on the interlayer distance. Although considerable theoretical interest has been demonstrated, experiments exploiting a variable interlayer coupling on nanocircuits are scarce due to the experimental difficulties. Here, we demo...
Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in-situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittance of the junction, which can be probed by sensing an rf SQUID with a tank circuit. Here, we investi...
By mechanically distorting a crystal lattice it is possible to engineer the electronic and optical properties of a material. In graphene, one of the major effects of such a distortion is an energy shift of the Dirac point, often described as a scalar potential. We demonstrate how such a scalar potential can be generated systematically over an entir...
We demonstrate superconducting vertical interconnect access (VIA) contacts to a monolayer of molybdenum disulfide (MoS2), a layered semiconductor with highly relevant electronic and optical properties. As a contact material we use MoRe, a superconductor with a high critical magnetic field and high critical temperature. The electron transport is mos...
Hybrid circuit QED involves the study of coherent quantum physics in solid-state systems via their interactions with superconducting microwave circuits. Here we present a crucial step in the implementation of a hybrid superconducting qubit that employs a carbon nanotube as a Josephson junction. We realize the junction by contacting a carbon nanotub...
In quantum dot (QD) electron transport experiments additional features can appear in the differential conductance $dI/dV$ that do not originate from discrete states in the QD, but rather from a modulation of the density-of-states (DOS) in the leads. These features are particularly pronounced when the leads are strongly confined low dimensional syst...
A supercurrent transistor is a superconductor-semiconductor hybrid device in which the Josephson supercurrent is switched on and off using a gate voltage. While such devices have been studied using DC transport, radio-frequency measurements allow for more sensitive and faster experiments. Here a supercurrent transistor made from a carbon nanotube i...
The interlayer coupling, which has a strong influence on the properties of van der Waals heterostructures, strongly depends on the interlayer distance. Although considerable theoretical interest has been demonstrated, experiments exploiting a variable interlayer coupling on nanocircuits are scarce due to the experimental difficulties. Here, we demo...
Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin orbit coupling (SOC) allows to engineer a sizeable SOC in graphene via proximity effects. The strength of the proximity effect depends on the...
WT e 2 is a material with rich topological properties: it is a 2D topological insulator as a monolayer and a Weyl-semimetal and higher-order topological insulator in a bulk form. Inducing superconductivity in topological materials is a way to obtain topological superconductivity, which lays at the foundation for many proposals of fault tolerant qua...
We demonstrate superconducting vertical interconnect access (VIA) contacts to a monolayer of molybdenum disulfide (MoS$_2$), a layered semiconductor with highly relevant electronic and optical properties. As a contact material we use MoRe, a superconductor with a high critical magnetic field and high critical temperature. The electron transport is...
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPD) has delivered excellent performance, and their increased adoption has had a great impact on a range of applications. One of the key characteristic of SNSPDs is their detection rate, which is typically higher than other types of free-running single-photon...
Two-dimensional (2D) materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this paper, we show that graphene flakes encapsulated between insulating crystals (hexagonal boron nitride, WSe2), although having large mobilities, surprisingly contain out-of-plane corruga...
Raman spectroscopy is one of the most extended experimental techniques to investigate thin-layered 2D materials. For a complete understanding and modeling of the Raman spectrum of a novel 2D material, it is often necessary to combine the experimental investigation to density-functional-theory calculations. We provide the experimental proof of the f...
By mechanically distorting a crystal lattice it is possible to engineer the electronic and optical properties of a material. In graphene, one of the major effects of such a distortion is an energy shift of the Dirac point, often described as a scalar potential. We demonstrate how such a scalar potential can be generated systematically over an entir...
2D systems that host 1D helical states are advantageous from the perspective of scalable topological quantum computation when coupled to a superconductor. Graphene is particularly promising for its high electronic quality, its versatility in van der Waals heterostructures, and its electron- and hole-like degenerate 0th Landau level. Here we study a...
A most fundamental goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics and superconducting elements. These functionalities can be obtained using semiconductor quantum dots, spin-polarized by a ferromagnetic split-gate, which we demonstrate in a double quantum do...
WTe$_2$ is a material with rich topological properties: it is a 2D topological insulator as a monolayer and a Weyl-semimetal and higher-order topological insulator (HOTI) in the bulk form. Inducing superconductivity in topological materials is a way to obtain topological superconductivity, which lays at the foundation for many proposals of fault to...
Subgap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically nontrivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process...
Two-dimensional systems that host one-dimensional helical states are exciting from the perspective of scalable topological quantum computation when coupled with a superconductor. Graphene is particularly promising for its high electronic quality, versatility in van der Waals heterostructures and its electron and hole-like degenerate 0$th$ Landau le...
Raman spectroscopy is one of the most extended experimental techniques to investigate thin-layered 2D materials. For a complete understanding and modeling of the Raman spectrum of a novel 2D material, it is often necessary to combine the experimental investigation to density functional theory calculations. We provide the experimental proof of the f...
Various promising qubit concepts have been put forward recently based on engineered superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor strongly depends on their spatial extension and is an essential next step for future quantum...
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WSe2), although having large mobilities, surprisingly contain out-of-plane corrugations. The height fl...
We demonstrate a controllable p-n junction in a three-dimensional Dirac semimetal (DSM) Cd3As2nanowire with two recessed bottom gates. The device exhibits four different conductance regimes with gate voltages, the unipolar (n-n and p-p) and bipolar (n-p and n-p) regimes, where p-n junctions are formed. The conductance in the p-n junction regimes de...
Sub-gap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically non-trivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth proces...
We present a comprehensive electrical characterization of an InAs/InP nanowire heterostructure, comprising two InP barriers forming a quantum dot (QD), two adjacent lead segments (LSs) and two metallic contacts, and demonstrate how to extract valuable quantitative information of the QD. The QD shows very regular Coulomb blockade (CB) resonances ove...
A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (QDs), individually spin-polarized by ferromagnetic split-gates (FSGs). As a proof of principle, we fa...
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) has delivered excellent performance and has had a great impact on a range of research fields. The timing jitter, which denotes the temporal resolution of the detection, is a crucial parameter for many applications. Despite extensive work since their appa...
Microscopic corrugations are ubiquitous in graphene even when placed on atomically flat substrates. These result in random local strain fluctuations limiting the carrier mobility of high quality hBN-supported graphene devices. We present transport measurements in hBN-encapsulated devices where such strain fluctuations can be in situ reduced by incr...