Christian Micheloni

Christian Micheloni
University of Udine | UNIUD · Department of Mathematical and Computer Science

Ph.D. Computer Science

About

224
Publications
27,973
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,076
Citations
Citations since 2016
101 Research Items
2874 Citations
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
Additional affiliations
February 2007 - March 2015
University of Udine
Position
  • Researcher

Publications

Publications (224)
Article
Convolutional neural networks (CNNs) applied to magnetic resonance imaging (MRI) have demonstrated their ability in the automatic diagnosis of knee injuries. Despite the promising results, the currently available solutions do not take into account the particular anatomy of knee disorders. Existing works have shown that injuries are localized in sma...
Preprint
Full-text available
The current existing deep image super-resolution methods usually assume that a Low Resolution (LR) image is bicubicly downscaled of a High Resolution (HR) image. However, such an ideal bicubic downsampling process is different from the real LR degradations, which usually come from complicated combinations of different degradation processes, such as...
Article
Full-text available
The understanding of human-object interactions is fundamental in First Person Vision (FPV). Visual tracking algorithms which follow the objects manipulated by the camera wearer can provide useful information to effectively model such interactions. In the last years, the computer vision community has significantly improved the performance of trackin...
Preprint
Full-text available
The understanding of human-object interactions is fundamental in First Person Vision (FPV). Visual tracking algorithms which follow the objects manipulated by the camera wearer can provide useful information to effectively model such interactions. In the last years, the computer vision community has significantly improved the performance of trackin...
Article
Full-text available
Several recent person re-identification methods are focusing on learning discriminative representations by designing efficient metric learning loss functions. Other approaches design part based architectures to compute an informative descriptor based on local features from semantically coherent parts. Few efforts learn the relationship between dist...
Preprint
How to combine the complementary capabilities of an ensemble of different algorithms has been of central interest in visual object tracking. A significant progress on such a problem has been achieved, but considering short-term tracking scenarios. Instead, long-term tracking settings have been substantially ignored by the solutions. In this paper,...
Article
Several different algorithms have been studied to combine the capabilities of baseline trackers in the context of short-term visual object tracking. Despite such an extended interest, the long-term setting has not been taken into consideration by previous studies. In this paper, we explicitly consider long-term tracking scenarios and provide a fram...
Article
Smart cities and smart mobility come from intelligent systems designed by humans. Artificial Intelligence (AI) is contributing significantly to the development of these systems, and the automotive industry is the most prominent example of "smart" technology entering the market: there are Advanced Driver Assistance System (ADAS), Radar/LIDAR detecti...
Preprint
Full-text available
Trajectories are fundamental in different skiing disciplines. Tools enabling the analysis of such curves can enhance the training activity and enrich the broadcasting contents. However, the solutions currently available are based on geo-localized sensors and surface models. In this short paper, we propose a video-based approach to reconstruct the s...
Article
Full-text available
This study introduces a machine learning approach based on Artificial Neural Networks (ANNs) for the prediction of Marshall test results, stiffness modulus and air voids data of different bituminous mixtures for road pavements. A novel approach for an objective and semi-automatic identification of the optimal ANN’s structure, defined by the so-call...
Preprint
Full-text available
Modern digital cameras and smartphones mostly rely on image signal processing (ISP) pipelines to produce realistic colored RGB images. However, compared to DSLR cameras, low-quality images are usually obtained in many portable mobile devices with compact camera sensors due to their physical limitations. The low-quality images have multiple degradat...
Preprint
Full-text available
Person re-identification (re-id) aims to retrieve images of same identities across different camera views. Resolution mismatch occurs due to varying distances between person of interest and cameras, this significantly degrades the performance of re-id in real world scenarios. Most of the existing approaches resolve the re-id task as low resolution...
Preprint
Full-text available
Understanding human-object interactions is fundamental in First Person Vision (FPV). Tracking algorithms which follow the objects manipulated by the camera wearer can provide useful cues to effectively model such interactions. Visual tracking solutions available in the computer vision literature have significantly improved their performance in the...
Article
Full-text available
Improving pedestrian safety at urban intersections requires intelligent systems that should not only understand the actual vehicle-pedestrian (V2P) interaction state but also proac-tively anticipate the event's future severity pattern. This paper presents a Gated Recurrent Unit-based system that aims to predict, up to 3 s ahead in time, the severit...
Preprint
Full-text available
Recently, most of state-of-the-art single image super-resolution (SISR) methods have attained impressive performance by using deep convolutional neural networks (DCNNs). The existing SR methods have limited performance due to a fixed degradation settings, i.e. usually a bicubic downscaling of low-resolution (LR) image. However, in real-world settin...
Conference Paper
Full-text available
This paper presents MRPyrNet, a new convolutional neural network (CNN) architecture that improves the capabilities of CNN-based pipelines for knee injury detection via magnetic resonance imaging (MRI). Existing works showed that anomalies are localized in small-sized knee regions that appear in particular areas of MRI scans. Based on such facts, MR...
Preprint
Full-text available
This paper reviews the NTIRE2021 challenge on burst super-resolution. Given a RAW noisy burst as input, the task in the challenge was to generate a clean RGB image with 4 times higher resolution. The challenge contained two tracks; Track 1 evaluating on synthetically generated data, and Track 2 using real-world bursts from mobile camera. In the fin...
Article
Full-text available
We have developed and demonstrated an intelligent auto-organizing aerial robotic sensor network system composed of cameras installed on UAVs and ground fixtures for urban surveillance using the decentralised control paradigm. The system can auto-organize to meet user requirements, changes to user requirements and when new UAVs or ground cameras are...
Article
Deep regression trackers are among the fastest tracking algorithms available, and therefore suitable for real-time robotic applications. However, their accuracy is inadequate in many domains due to distribution shift and overfitting. In this paper we overcome such limitations by presenting the first methodology for domain adaption of such a class o...
Preprint
Deep regression trackers are among the fastest tracking algorithms available, and therefore suitable for real-time robotic applications. However, their accuracy is inadequate in many domains due to distribution shift and overfitting. In this paper we overcome such limitations by presenting the first methodology for domain adaption of such a class o...
Article
Vehicle reidentification has seen increasing interest, thanks to its fundamental impact on intelligent surveillance systems and smart transportation. The visual data acquired from monitoring camera networks come with severe challenges, including occlusions, color and illumination changes, as well as orientation issues (a vehicle can be seen from th...
Chapter
Full-text available
Visual object tracking was generally tackled by reasoning independently on fast processing algorithms, accurate online adaptation methods, and fusion of trackers. In this paper, we unify such goals by proposing a novel tracking methodology that takes advantage of other visual trackers, offline and online. A compact student model is trained via the...
Preprint
Image colourisation is an ill-posed problem, with multiple correct solutions which depend on the context and object instances present in the input datum. Previous approaches attacked the problem either by requiring intense user interactions or by exploiting the ability of convolutional neural networks (CNNs) in learning image level (context) featur...
Preprint
Human beings can imagine the colours of a grayscale image with no particular effort thanks to their ability of semantic feature extraction. Can an autonomous system achieve that? Can it hallucinate plausible and vibrant colours? This is the colourisation problem. Different from existing works relying on convolutional neural network models pre-train...
Conference Paper
Visual object tracking was generally tackled by reasoning independently on fast processing algorithms, accurate online adaptation methods, and fusion of trackers. In this paper, we unify such goals by proposing a novel tracking methodology that takes advantage of other visual trackers, offline and online. A compact student model is trained via the...
Preprint
Understanding human-object interactions is fundamental in First Person Vision (FPV). Tracking algorithms which follow the objects manipulated by the camera wearer can provide useful information to effectively model such interactions. Despite a few previous attempts to exploit trackers in FPV applications, a systematic analysis of the performance of...
Conference Paper
Human beings can imagine the colours of a grayscale image with no particular effort thanks to their ability of semantic feature extraction. Can an autonomous system achieve that? Can it hallucinate plausible and vibrant colours? This is the colourisation problem. Different from existing works relying on convolutional neural network models pre-train...
Article
Full-text available
With new architectures providing astonishing performance on many vision tasks, the interest in Convolutional Neural Networks (CNNs) has grown exponentially in the recent past. Such architectures, however, are not problem-free. For instance, one of the many issues is that they require a huge amount of labeled data and are not able to encode pose and...
Preprint
Full-text available
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020. This challenge involves three tracks to super-resolve an input image for $\times$2, $\times$3 and $\times$4 scaling factors, respectively. The goal is to attract more attention...
Preprint
Full-text available
This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor x4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces on...
Preprint
Full-text available
Recent deep learning based single image super-resolution (SISR) methods mostly train their models in a clean data domain where the low-resolution (LR) and the high-resolution (HR) images come from noise-free settings (same domain) due to the bicubic down-sampling assumption. However, such degradation process is not available in real-world settings....
Preprint
Full-text available
Deep convolutional neural networks (CNNs) have recently achieved great success for single image super-resolution (SISR) task due to their powerful feature representation capabilities. The most recent deep learning based SISR methods focus on designing deeper / wider models to learn the non-linear mapping between low-resolution (LR) inputs and high-...
Conference Paper
Full-text available
We conducted real proof-of-concept demonstrations of an auto-organizing sensor network composed of UAVs and ground cameras, for urban surveillance. We adopted a decentralised paradigm with tightly coupled perception and tactical behaviour algorithms. The network would reconfigure when cameras are added or removed so that high priority tasks are alw...
Preprint
Visual object tracking is the problem of predicting a target object's state in a video. Generally, bounding-boxes have been used to represent states, and a surge of effort has been spent by the community to produce efficient causal algorithms capable of locating targets with such representations. As the field is moving towards binary segmentation m...
Preprint
Full-text available
Visual object tracking was generally tackled by reasoning independently on fast processing algorithms, accurate online adaptation methods, and fusion of trackers. In this paper, we unify such goals by proposing a novel tracking methodology that takes advantage of other visual trackers, offline and online. A compact student model is trained via the...
Article
Learning discriminative, view-invariant and multi-scale representations of object appearance with different semantic levels is of paramount importance for person Re-Identification (ReID). Recently, the community has focused on learning deep Re-ID models to capture a single holistic representation. To improve the achieved results, additional visual...
Preprint
Full-text available
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired...
Preprint
Full-text available
Most current deep learning based single image super-resolution (SISR) methods focus on designing deeper / wider models to learn the non-linear mapping between low-resolution (LR) inputs and the high-resolution (HR) outputs from a large number of paired (LR/HR) training data. They usually take as assumption that the LR image is a bicubic down-sample...
Preprint
Full-text available
Modern Unmanned Aerial Vehicles equipped with state of the art artificial intelligence (AI) technologies are opening to a wide plethora of novel and interesting applications. While this field received a strong impact from the recent AI breakthroughs, most of the provided solutions either entirely rely on commercial software or provide a weak integr...
Article
Classification of high dimensional data suffers from curse of dimensionality and over-fitting. Neural tree is a powerful method which combines a local feature selection and recursive partitioning to solve these problems, but it leads to high depth trees in classifying high dimensional data. On the other hand, if less depth trees are used, the class...
Chapter
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020. This challenge involves three tracks to super-resolve an input image for \(\times \)2, \(\times \)3 and \(\times \)4 scaling factors, respectively. The goal is to attract more a...
Chapter
Recent deep learning based single image super-resolution (SISR) methods mostly train their models in a clean data domain where the low-resolution (LR) and the high-resolution (HR) images come from noise-free settings (same domain) due to the bicubic down-sampling assumption. However, such degradation process is not available in real-world settings....
Chapter
This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor \(\times \)4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that...
Chapter
Full-text available
The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusin...
Chapter
Visual object tracking is the problem of predicting a target object’s state in a video. Generally, bounding-boxes have been used to represent states, and a surge of effort has been spent by the community to produce efficient causal algorithms capable of locating targets with such representations. As the field is moving towards binary segmentation m...
Article
The tracking of the knee femoral condyle cartilage during ultrasound-guided minimally invasive procedures is important to avoid damaging this structure during such interventions. In this study, we propose a new deep learning method to track, accurately and efficiently, the femoral condyle cartilage in ultrasound sequences, which were acquired under...