Chrissa Kioussi

Chrissa Kioussi
Oregon State University | OSU

Doctor of Philosophy

About

115
Publications
21,933
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,398
Citations
Citations since 2017
22 Research Items
1247 Citations
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250

Publications

Publications (115)
Article
Full-text available
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differ...
Article
Full-text available
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evol...
Article
Full-text available
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metaboli...
Preprint
Full-text available
Soleus and tibialis anterior are two well-characterized skeletal muscles commonly utilized in skeletal muscle-related studies. Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify the gene expression patterns between soleus and tibialis anterior and analyze those genes’ functions based on past lit...
Article
Full-text available
Vitamin E (VitE) is essential for vertebrate embryogenesis, but the mechanisms involved remain unknown. To study embryonic development, we fed zebrafish adults (>55 days) either VitE sufficient (E+) or deficient (E–) diets for >80 days, then the fish were spawned to generate E+ and E– embryos. To evaluate the transcriptional basis of the metabolic...
Article
Full-text available
Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain...
Article
Mol. Nutr. Food Res . 2020, 64 , 2000341 DOI: 10.1002/mnfr.202000341 Xanthohumol (XN), a flavonoid from hops (Humulus lupulus), and its hydrogenated derivatives, α,β‐dihydroxanthohumol (DXN) and tetrahydroxanthohumol (TXN) decrease hepatic cholesterol by enhancing de novo synthesis of bile acids and decrease ceramide content in liver and hippocampu...
Article
Scope Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro‐inflammatory and neurotoxic ceramide accumulation prevents obesity‐mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide...
Article
Objectives Vitamin E (VitE) deficiency causes vertebrate embryonic lethality. The alpha-tocopherol transfer protein (Ttpa) likely regulates VitE distribution in the early zebrafish embryo because Ttpa knockdown causes impaired nervous system development and embryonic death by 15–18 hours post-fertilization (hpf). We propose that VitE is necessary f...
Chapter
Mouse embryonic stem cells (mESC) have the ability to self-renew due to their rapid proliferation and high telomerase activity while maintaining their pluripotency. Depending on the environment, mESC can differentiate into a broad range of cell types. These characteristics have established mESC as a tool for modeling human disease, genetic engineer...
Book
This volume looks at a collection of stem cell and regenerative techniques used by both novice and expert scientists. Chapters cover topics such as tissue repaired by expansion and reprogramming; induced pluripotent stem cells driven in neuronal or vascular differentiation; using mesenchymal stem cells to derive skeletal muscle, osteoblasts, and sp...
Article
Embryonic vitamin E (VitE) deficiency causes fetal death in humans, rodents and zebrafish, but the molecular mechanisms still remain unknown. Based on our previous investigations using lipidomics and metabolomics approaches in zebrafish, embryonic VitE deficiency results in increased lipid peroxidation, glucose and choline depletion, metabolic repr...
Article
Skeletal muscle is generated by the successive incorporation of primary (embryonic), secondary (fetal), and tertiary (adult) fibers into muscle. Conditional excision of Pitx2 function by an MCKCre driver resulted in animals with histological and ultrastructural defects in P30 muscles and fibers, respectively. Mutant muscle showed severe reduction i...
Article
Full-text available
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and l...
Article
Full-text available
Skeletal muscle in the forelimb develops during embryonic and fetal development and perinatally. While much is known regarding the molecules involved in forelimb myogenesis, little is known about the specific mechanisms and interactions. Migrating skeletal muscle precursor cells express Pax3 as they migrate into the forelimb from the dermomyotome....
Article
Full-text available
Gene regulatory networks, in which differential expression of regulator genes induce differential expression of their target genes, underlie diverse biological processes such as embryonic development, organ formation and disease pathogenesis. An archetypical systems biology approach to mapping these networks involves the combined application of (1)...
Article
Full-text available
Xanthohumol (XN), a prenylated flavonoid from hops, improves dysfunctional glucose and lipid metabolism in animal models of metabolic syndrome (MetS). However, its metabolic transformation into the estrogenic metabolite, 8-prenylnaringenin (8-PN), poses a potential health concern for its use in humans. To address this concern, we evaluated two hydr...
Article
Craniofacial muscles, muscles that move the eyes, control facial expression and allow food uptake and speech, have long been regarded as a variation on the general body muscle scheme. However, evidence has accumulated that the function of head muscles, their developmental anatomy and the underlying regulatory cascades are distinct. This article rev...
Article
Background Genome-wide mapping reveals chromatin landscapes unique to cell states. Histone marks of regulatory genes involved in cell specification and organ development provide a powerful tool to map regulatory sequences. H3K4me3 marks promoter regions; H3K27me3 marks repressed regions, and Pol II presence indicates active transcription. The prese...
Article
Phenotypic screening enables the discovery of new drug leads with novel targets. ES cells differentiate into different lineages by successively making use of different subsets of the genome's possible macromolecular interactions. If a compound effectively targets just one of these interactions, it derails the developmental pathway to produce a phen...
Article
Full-text available
Background: Cell types are defined at the molecular level during embryogenesis by a process called pattern formation and created by the selective utilization of combinations of sequence-specific transcription factors. Developmental programs define the sets of genes that are available to each particular cell type, and real-time biochemical signaling...
Article
Pluripotent embryonic stem (ES) cells have been used extensively for over 20 years for creating mouse mutants as models for developmental biology and humans diseases. The genetic manipulations of the ES cells have revolutionized our understanding of organ development and abilities to genetically manipulate the mouse embryo. Understanding the ES cel...
Article
Full-text available
Grp1-associated scaffold protein (Grasp), the product of a retinoic acid-induced gene in P19 embryonal carcinoma cells, is expressed primarily in brain, heart, and lung of the mouse. We report herein that Grasp transcripts are also found in mouse skin in which the Grasp gene is robustly induced following acute ultraviolet-B (UVB) exposure. Grasp(-/...
Book
Stem Cells and Tissue Repair: Methods and Protocols presents in-depth methods for the three major approaches of rejuvenating an aging or sick body: latent regenerative capacity stimulated in a targeted way, replacement organs grown de novo and surgically implanted, and tissue surgically implanted and coaxed to integrate and restore problem areas. T...
Article
Background: Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. Results: Pitx2-null mice are characterized by cardiac septational def...
Article
Full-text available
Mammalian skeletal muscles are derived from mesoderm segments flanking the embryonic midline. Upon receiving inductive cues from the adjacent neural tube, lateral plate mesoderm, and surface ectoderm, muscle precursors start to delaminate, migrate to their final destinations and proliferate. Muscle precursor cells become committed to the myogenic f...
Article
Full-text available
Chmp2b is closely related to Vps2, a key component of the yeast protein complex that creates the intralumenal vesicles of multivesicular bodies. Dominant negative mutations in Chmp2b cause autophagosome accumulation and neurodegenerative disease. Loss of Chmp2b causes failure of dendritic spine maturation in cultured neurons. The homeobox gene Lbx1...
Data
Red Channel Image of Figure 8a , C and E in Greyscale. (TIF)
Data
Single Channel Images and Double Labeled Enlargements of Figure 7E. (TIF)
Data
Single Channel Images of Figure 5I and 5K. (A,B) Red and Green channels of Panel 5I in greyscale. (C, D Red and Green channels of Panel 5K in greyscale.) (TIF)
Data
Single Channel Images for Panels C, D, G, and H of Figure 6 . (TIF)
Data
Close Apposition of Chmp2b with Nestin in VLF. Nestin marks the endfeet of radial glial cells that traverse the VLF. Chmp2b labeling was observed in close apposition to the Nestin label, but was not colcalized. (TIF)
Data
Relative expression levels of RXRα and genes involved in Notch signaling pathway. The expression level of (A) Notch1, (B) Notch2, (C) Rbp-j and (D) RXRα was studied with RT-qPCR in 1-month and 4-month-old wildtype and Ctip2ep−/− dorsal skin. Values represent relative transcript level after normalization with GAPDH transcripts. Statistical analyses...
Data
Expression of Ctip2 in RXRαep−/− mouse model. (A) Immunohistochemical staining of dorsal skin biopsies with antibody against Ctip2 (red). Sections were counterstained with DAPI (blue). NE, normal epidermis; HPE, hyperfroliferative epidermis. Scale bar: 100 µm. (B) Bar graph indicates the percentage of Ctip2 positive cells in the dorsal skin of norm...
Data
Immunological abnormalities of spleen and lymph node in Ctip2ep−/− adult mice. (A, D) Hemotoxylin & Eosin stained 5 µm thick paraffin sections from spleen of WT and Ctip2ep−/− mice at 4 m. (B, C, E, F) C.E.M staining for eosinophils (pink) and mast cells (blue) in 4 month-old mice spleen sections. (G, J) Hemotoxylin & Eosin stained 5 µm thick paraf...
Data
List of primers used for RT-qPCR. (DOCX)
Data
Characterization of inflammatory cell infiltrates in dorsal skin of WT and Ctip2ep−/− adult mice. (A) Toluidine blue stained dorsal paraffin skin sections of WT and Ctip2ep−/− mice. Mast cells stain intensive blue color. Scale bar: 100 µm. (B) Immunohistochemical staining of dorsal skin biopsies with antibody against CD45 (green). Scale bar: 100 µm...
Article
Full-text available
Background Ctip2 is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Selective ablation of Ctip2 in epidermis leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation, terminal differentiation, as well as altered lipid composition during development. However, little is know...
Article
Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression an...
Article
Full-text available
The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in...
Article
Full-text available
Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of P...
Article
The ventrolateral dermomyotome gives rise to all muscles of the limbs through the delamination and migration of cells into the limb buds. These cells proliferate and form myoblasts, withdraw from the cell cycle and become terminally differentiated. The myogenic lineage colonizes pre-patterned regions to form muscle anlagen as muscle fibers are asse...
Data
Full-text available
(PDF)
Article
Full-text available
Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BC...
Data
Expression patterns of selected genes in Bcl11b−/− incisor at early bud stage. RNA ISH using the indicated probes in sections of wild-type and Bcl11b−/− mice at E12.5. The epithelium is outlined by red dots. Scale bar, 100 µm. (TIF)
Data
Expression patterns of selected genes in Bcl11b−/− incisor at cap stage. RNA ISH using the indicated probes in sections of wild-type and Bcl11b−/− mice at E14.5. The epithelium is outlined by red dots. Scale bar, 200 µm. (TIF)
Data
Morphology and mineralization of Bcl11bep−/− incisors at P21. Micro-CT analysis of Bcl11bL2/L2 and Bcl11bep−/− jaws at P21. (TIF)
Data
Expression patterns of ameloblast markers and signaling molecules in Bcl11bmes/− incisors at E16.5. (A-B) BCL11B immunostaining (red) in sections of Bcl11bL2/L2 and Bcl11bmes−/− mice at E16.5. The epithelium is outlined by white dots. White asterisks denote BCL11B staining in the posterior mesenchyme. (C-J) RNA ISH using the indicated probes in sec...
Data
Delay in the initiation of apoptosis in Bcl11b−/− enamel knot at cap stage. TUNEL immunostaining in sections of wild-type and Bcl11b−/− mice at indicated stages. The epithelium is outlined by white dots. White arrows denote apoptosis in the enamel knot. Scale bars: (A-B) 200 µm; other panels, 500 µm. (TIF)
Data
Expression pattern of Lfrn and Notch1 in Bcl11b−/− incisors. RNA ISH using the indicated probes in sections of wild-type and Bcl11b−/− mice at indicated stages. The epithelium is outlined by red dots. Red arrows and arrowheads denote labial and lingual epithelial staining, respectively. Scale bars: (A-B, E-F) 500 µm; other panels, 200 µm. (TIF)
Data
BCL11B expression in Fgf3−/−; Fgf10+/− incisors. BCL11B immunostaining in sections of wild-type and Fgf3−/−; Fgf10+/− mice at E16.5. The epithelium is outlined by white dots. Scale bar, 500 µm. (TIF)
Data
Expression of Bcl11b at early bell stage. (A) RNA ISH using Bcl11b probe in sections of wild-type mice at E16.5. (B-D) Sections of wild-type mice stained with DAPI and immunostained for BCL11B. Scale bar, 500 µm. (TIF)
Data
Size difference between wild-type and Bcl11b−/− incisors of newborn mice. Alizarin red staining of wild-type and Bcl11b−/− mandibular incisors at P0. Blue brackets indicate the posterior end of the incisor. Scale bar, 500 µm. (TIF)
Data
Labial to lingual reversal of expression of Gli1 in Bcl11b−/− incisors. RNA ISH using a Gli1 probe in sections of wild-type and Bcl11b−/− mice at indicated stages. The epithelium is outlined by red dots. Black and red arrows denote labial mesenchymal and epithelial staining, respectively, and red arrowheads indicate lingual epithelial staining. Sca...
Data
Expression of ameloblast markers in Bcl11bep−/− and Bcl11bmes/− incisors at E18.5. RNA ISH using the indicated probes in sections of Bcl11bL2/L2, Bcl11bep−/−, and Bcl11bmes−/− mice at E18.5. The epithelium is outlined by red dots. Red arrowheads denote lingual epithelial staining. Scale bar, 200 µm. (TIF)
Data
Labial to lingual reversal of expression of Tbx1 in Bcl11b−/− incisors. RNA ISH using a Tbx1 probe in sections of wild-type and Bcl11b−/− mice at indicated stages. The epithelium is outlined by red dots. Red arrows and arrowheads denote labial and lingual epithelial staining, respectively. Scale bars: (A-B) 500 µm; other panels, 200 µm. (TIF)
Data
Summary of direct or indirect BCL11B target genes at E16.5. This model is based on RNA ISH studies presented in Figs. 5,6,7 and Suppl. Figs. S5, S6, and S10. The red staining of the incisor is a pseudo-color representation of BCL11B immunohistochemical staining experiment. The epithelium is outlined by black dots. Green and red arrows indicate indu...
Article
Full-text available
Cells of the ventrolateral dermomyotome delaminate and migrate into the limb buds where they give rise to all muscles of the limbs. The migratory cells proliferate and form myoblasts, which withdraw from the cell cycle to become terminally differentiated myocytes. The myogenic lineage colonizes pre-patterned regions to form muscle anlagen as muscle...
Data
Motility Defects in Pax3+ Myogenic Cells in Pitx2 Mutants. Live cell tracking assay of muscle progenitors (n = 5) isolated from E12.5 forelimb tissue of Pax3cre/+|ROSAEGFP|Pitx2+/+ (WT), Pax3cre/+|ROSAEGFP|Pitx2LacZ/+ (HET), or Pax3cre/+|ROSAEGFP|Pitx2LacZ/LacZ (MUT) embryos. Migration pathways recorded for WT (A), HET (B) and MUT (C). (D) Mean tot...
Data
Decrease in Number of EGFP+ cells in Pitx2 Mutant Forelimbs. Flow cytometry of dissociated forelimb tissue isolated from E12.5 Pax3cre/+|ROSAEGFP|Pitx2LacZ/+ (HET, n = 8) and Pax3cre/+|ROSAEGFP|Pitx2LacZ/LacZ (MUT, n = 7) embryos (A) Mean (± SEM) number of cells (EGFP+ and EGPF− cells combined) from HET tissue was 5,237,143±482,445 cells and MUT ti...
Article
Full-text available
Whole-mount in situ hybridization (WISH) is a reliable and specific method to study three-dimensional patterns of gene expression. A labeled nucleic acid probe anneals to a complementary target sequence and is visualized and localized in the embryo. This chapter describes a sensitive method for WISH on mouse embryos using digoxigenin-labeled RNA pr...
Article
Full-text available
In recent years, in situ RNA hybridization technique has found a widespread application in developmental biology. This method has frequently been used to determine gene expression patterns, which is a first step toward understanding of a gene function. Here, we provide a reliable and sensitive method for in situ RNA hybridization on frozen sections...
Article
Full-text available
Immunohistochemistry is a classic technique used for the localization of antigenic target molecules in -tissue. The method exploits the principle that the target antigen is recognized by specific antibody and is visualized using different detection systems. The subject of this chapter is simultaneous immunohistochemical detection of protein antigen...
Article
Full-text available
Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay has been designed to detect apoptotic cells that undergo extensive DNA degradation during the late stages of apoptosis. The method is based on the ability of TdT to label blunt ends of double-stranded DNA breaks independent of a template. This chapter describes an assa...
Article
Sequence specific transcription factors are essential for pattern formation and cell differentiation processes in mammals. The formation of the abdominal wall depends on a flawless merge of several developmental fields in time and space. The absence of Pitx2 leads to an open abdominal wall in mice, while mutations in humans result in umbilical defe...
Article
Multiple drug resistance protein 1 (MDR1) is composed of two homologous halves separated by an intracellular linker region. The linker has been reported to bind myosin regulatory light chain (RLC), but it is not clear how this can occur in the context of a myosin II complex. We characterized MDR1-RLC interactions and determined that binding occurs...
Article
Full-text available
The homeodomain transcription factor Pitx2 and the T-box transcription factors are essential for organogenesis. Pitx2 and T-box genes are induced by growth factors and function as transcriptional activators or repressors. Gene expression analyses on abdominal tissue were used to identify seven of the T-box genes of the genome as Pitx2 target genes...
Article
Full-text available
The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) plays key roles in development and homeostasis. A tandem affinity purification procedure revealed that COUP-TFI associated with a number of transcriptional regulatory proteins in HeLa S3 cells, including the nuclear receptor corepressor (NCoR), TIF1bet...
Article
Full-text available
The transcription factor Ctip2/Bcl11b plays essential roles in developmental processes of the immune and central nervous systems and skin. Here we show that Ctip2 also plays a key role in tooth development. Ctip2 is highly expressed in the ectodermal components of the developing tooth, including inner and outer enamel epithelia, stellate reticulum,...
Article
Full-text available
Excitatory synapses contain multiple members of the myosin superfamily of molecular motors for which functions have not been assigned. In this study we characterized the molecular determinants of myosin regulatory light chain (RLC) binding to two major subunits of the N-methyl-d-aspartate receptor (NR). Myosin RLC bound to NR subunits in a manner t...
Data
Tracking of Flow Sorting and RNA Preparation (0.07 MB DOC)