
ykemming X-iefson
J ffanne Riis !Niefon
Chris Hr-ankin"

Primnciples of
ProwQgvram Auulyisis

D ISTIR I BTIO0N STATE MENT A
Approved Tor RI~Gfecs

©Flemming Nielson nOtitOve
SHanne Rils Nielson w Lthoutp ewnii4ý-ov

@ Chris Hankin Da9t~l Nov.1998.

http:// ~aiiau.d(jk,/-hrnI/ PPA/ppa. htni

REPORT DOCUMENTATION PAGE iForm Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1999 Conference Proceedings

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

International Workshop on Principles of Program Analysis F61775-99-WF003

6. AUTHOR(S)

Conference Committee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Aarhus Univ (Bldg 540), Computer Science Department
Ny Munkegrade N/A
Aarhus C DK-8000
Denmark

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

EOARD
PSC 802 BOX 14 CSP 99-5003
FPO 09499-0200

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (Maximum 200 words)

The Final Proceedings for International Workshop on Principles of Program Analysis, 9 November 1998 - 13 November 1998

This is an international workshop to foster research in program analysis under the discipline of computer science. Topics include: data flow
analysis, control flow analysis, and abstract interpretation of computer programs.

14. SUBJECT TERMS 15. NUMBER OF PAGES

399
EOARD, Program Analysis, Computers 16. PRICE CODE

N/A

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

We wish to thank the following for their contribution to the success of this
conference:

9 United States Air Force European Office of Aerospace Research and

Development.

e Center for Information Technology.

o European Union: Training and Mobility of Researchers.

DTIC QUALITY INSP!E• D 4

Contents

Preface ix

1 Introduction 1

1.1 The Nature of Program Analysis 1

1.2 Setting the Scene 3

1.3 Data Flow Analysis 5

1.3.1 The Equational Approach 5

1.3.2 The Constraint Based Approach 8

1.4 Control Flow Analysis .-.......................... 10

1.5 Abstract Interpretation 13

1.6 Type and Effect Systems 17

1.6.1 Annotated Type Systems 18

1.6.2 Effect Systems 22

1.7 Algorithms 25

1.8 Transformations 26

Concluding Remarks 29

Mini Projects 29

Exercises 31

2 Data Flow Analysis 33

2.1 Intraprocedural Analysis 33

2.1.1 Available Expressions Analysis 37

2.1.2 Reaching Definitions Analysis 41

2.1.3 Very Busy Expressions Analysis 44

iii

iv CONTENTS

2.1.4 Live Variables Analysis 47

2.1.5 Derived Data Flow Information 50

2.2 Theoretical Properties 52

2.2.1 Structural Operational Semantics 52

2.2.2 Correctness of Live Variables Analysis 57

2.3 Monotone Frameworks 63

2.3.1 Basic Definitions 65

2.3.2 The Examples Revisited 68

2.3.3 A Non-distributive Example 70

2.4 Equation Solving 72

2.4.1 The MFP Solution 72

2.4.2 The MOP Solution 76

2.5 Interprocedural Analysis 80

2.5.1 Structural Operational Semantics 83

2.5.2 Intraprocedural versus Interprocedural Analysis 85

2.5.3 Making Context Explicit 88

2.5.4 Call Strings as Context 93

2.5.5 Assumption Sets -as Context 96

2.5.6 Flow-Sensitivity versus Flow-Insensitivity 98

2.6 Shape Analysis 101

2.6.1 Structural Operational Semantics 103

2.6.2 Shape Graphs 106

2.6.3 The Analysis 112

Concluding Remarks 127

Mini Projects 130

Exercises 134

3 Control Flow Analysis 139

3.1 Abstract 0-CFA Analysis 139

3.1.1 The Analysis 141

3.1.2 Well-definedness of the Analysis 148

3.2 Theoretical Properties 150

3.2.1 Structural Operational Semantics 150

CONTENTS v

3.2.2 Semantic Correctness 155

3.2.3 Existence of Solutions 159

3.2.4 Coinciuction versus Induction 162

3.3 Syntax Directed 0-CFA Analysis 165

3.3.1 Syntax Directed Specification 166

3.3.2 Preservation of Solutions 168

3.4 Constraint Based O-CFA Analysis 170

3.4.1 Preservation of Solutions 172

3.4.2 Solving the Constraints 173

3.5 Adding Data Flow Analysis 179

3.5.1 Abstract Values as Powersets 179

3.5.2 Abstract Values as Complete Lattices 182

3.6 Adding Context Information 186

3.6.1 Uniform k-CFA Analysis 188

3.6.2 Interprocedural Analysis Revisited 192

Concluding Remarks 193

Mini Projects 197

Exercises 199

4 Abstract Interpretation 205

4.1 A Mundane Approach to Correctnes 205

4.1.1 Correctness Relations 208

4.1.2 Representation Functions 210

4.1.3 A Modest Generalisation 213

4.2 Approximation of Fixed Points 215

4.2.1 Widening Operators 218

4.2.2 Narrowing Operators 223

4.3 Galois Connections 227

4.3.1 Properties of Galois Connections 231

4.3.2 Galois Insertions 235

4.4 Systematic Design of Galois Connections 239

4.4.1 Component-wise Combinations 242

4.4.2 Other Combinations 246

vi CONTENTS

4.5 Induced Operations 251

4.5.1 Inducing along the Abstraction Function 251

4.5.2 Application to Data Flow Analysis 254

4.5.3 Inducing along the Concretisation Function 260

Concluding Remarks 263

Mini Projects 266

Exercises 268

5 Type and E.Tect Systems 277

5.1 Control Flow Analysis 277

5.1.1 The Underlying Type System 278

5.1.2 The Analysis 281

5.2 Theoretical Properties 285

5.2.1 Natural Semantics 286

5.2.2 Semantic Correctness 288

5.2.3 Existence of Solutions 291

5.3 Inference Algorithms 294

5.3.1 An Algorithm for .he Underlying Type System 294

5.3.2 An Algorithm for Control Flow Analysis 300

5.3.3 Syntactic Soundness and Completeness 306

5.3.4 Existence of Solutions 311

5.4 Effects 313

5.4.1 Side Effect Analysis 313

5.4.2 Exception Analysis 319

5.4.3 Region Inference 324

5.5 Behaviours 333

5.5.1 Communication Analysis 333

Concluding Remarks 343

Mini Projects 347

Exercises 349

6 Algorithms 355

A Partially Ordered Sets 357

CONTENTS vii

A.1 Basic Definitions 357

A.2 Construction of Complete Lattices 361

A.3 Chains 362

A.4 Fixed Points 366

Concluding Remarks 368

B Induction and Coinduction 369

B.1 Proof by Induction 369

B.2 Introducing Coinduction 371

B.3 Proof by Coinduction 375

Concluding Remaxks 377

C Graphs and Regular Expressions 379

Index of Notation 381

Index 385

Bibliography 389

viii CONTENTS

Preface

(This material remains to be integrated.)

ix

x PREFACE

- ~

Chapter 1

Introduction

In this book we shall introduce four of the main approaches to program anal-
ysis: Data Flow Analysis, Control Flow Analysis, Abstract Interpretation,
and Type and Effect Systems. Each of Chapters 2 to 5 deals with one of
these approaches to some length and generally treats the more advanced ma-
terial in later sections. Throughout the book we aim at stressing the many
similarities between what may at a first glance appear to be very unrelated
approaches. To help getting this idea across, and to serve as a gentle intro-
duction, this chapter treats all of-the approaches at the level of examples.
The technical details are worked-6ut but it may be difficult to apply the
techniques to related examples until some of the material of later chapters
have been studied.

1.1 The Nature of Program Analysis

Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising
dynamically at run-time when executing a program on a computer. A main
application is to allow compilers to generate code avoiding redundant com-
putations, e.g. by reusing available results or by moving loop invariant com-
putations out of loops, or avoiding superfluous computations, e.g. of results
known to be not needed or of results known already at compile-time. Among
the more recent applications is the validation of software (possibly purchased
from sub-contractors) to reduce the likelihood of malicious or unintended be-
haviour. Common for these applications is the need to combine information
from different parts of the program.

A main aim of this book is to give an overview of a number of approaches to
program analysis, all of which have a quite extensive literature, and to show

2 INTRODUCTION

true answer

{di,.,dn- d.+

safe answer

Figure 1.1: The nature of approximation: erring on the safe side.

that there is a large amount of commonality among the approaches. This
should help in cultivating the ability to choose the right approach for the
right task and in exploiting insights developed in one approach to enhance
the power of other approaches.

One common theme behind all approaches to program analysis is that in
order to remain computable one can only provide approximate answers. As
an example consider a simple language of statements and the program

read~x); (if x>O then y:=1 else (y:=2;S)); z:=y

where S is some statement that does not contain an assignment to y. Intu-
itively, the values of y that can reach z: =y will be 1 or 2.

Now suppose an analysis claims that the only value for y that can reach z:=
is in fact 1. While this seems intuitively wrong, it is in fact correct in the
case where S is known never to terminate for x < 0 and y =2. But since
it is undecidable whether or not S terminates, we normally do not expect
our analysis to attempt to detect this situation. So in general, we expect the
program analysis to produce a possibly larger set of possibilities than what
will ever happen during execution of the program. This means that we shall
also accept a program analysis claiming that the values of y reaching z:=
are among 1, 2 or 27, although we will clearly prefer the analysis that gives
the more precise answer that the values are among 1 or 2. This notion of
safe approximation is illustrated in Figure 1.1. Clearly the challenge is not to

1.2 Setting the Scene 3

produce the safe "{d 1,.. , dN }" too often as the analysis will then be utterly
useless. Note, that although the analysis does not give precise information it
may still give useful information: knowing that the value of y is one of 1, 2
and 27 just before the assignment z: =y still tells us that z will be positive,
and that z will fit within 1 byte of storage etc. To avoid confusion it may
help to be precise in the use of terminology: it is better to say "the values
of y possible at z: =y are among 1 and 2" than the slightly shorter and more
frequently used "the values of y possible at z:=y are 1 and 2".

Another common theme, to be stressed throughout this book, is that all
program analyses should be semantics based: this means that the information
obtained from the analysis can be proved to be safe (or correct) with respect
to a semantics of the programming language. It is a sad fact that new program
analyses often contain subtle bugs, and a formal justification of the program
analysis will help finding these bugs sooner rather than later. However, we
should stress that we do not suggest that program analyses be semantics
directed: this would mean that the structure of the program analysis should
reflect the structure of the semantics and this will be the case only for a few
approaches which are not covered in this book.

1.2 Setting the Scene

Syntax of the WHILE language. We shall consider a simple im-
perative language called WHILE. `A program in WHILE is just a statement
which may be, and normally will be, a sequence of statements. In the interest
of simplicity, we will associate data flow information with single assignment
statements, the tests that appear in conditionals and loops, and skip state-
ments. We will require a method to identify these. The most convenient
way of doing this is to work with a labelled program - as indicated in the
syntax below. We will often refer to the labelled items (assignments, tests
and skip statements) as elementary blocks. In this chapter we will assume
that distinct elementary blocks are initially assigned distinct labels; we could
drop this requirement, in which case some of the examples would need to be
slightly reformulated and the resultant analyses would be less accurate.

We use the following syntactic categories:

a E AExp arithmetic expressions
b E BExp boolean expressions
S E Stmt statements

We assume some countable set of variables is given; numerals and labels will
not be further defined and neither will the operators:

x, y E Var variables
n E Num numerals
t E Lab labels

4 INTRODUCTION

I R~ntr~(I)RDez(t()
1 (x, ?), (y, ?), (z, ?) (x, (y, 1), (Z, ?)
2 (x,),(y, 1), (z, ?) (x,),(y, 1), (z, 2)

3 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 2), (z, 4)
4 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 4)
5 (x, ?), (y, 1), (y, 5), (z, 4) (x, 7), (y, 5), (z, 4)
6 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 6), (z, 2), (z, 4)

Table 1.1: Reaching Definitions information for the factorial program.

opa E Opa arithmetic operators
oPb E 0 Pb boolean operators
op, E Op, relational operators

The syntax of the language is given by the following abstract syntax-

a xInIal opaa2

b ::= true I false I not blI b Opb b2 I a, opr a 2

S ::= [x := a]t[skip]t I Sl;S2 I
if [b]' then S, else S2 I while [b]t do S

One way to think of the abstract syntax is as specifying the parse trees of
the language; it will then be the purpose of the concrete syntax to provide
sufficient information to enable uni-que parse trees to be constructed. In this
book shall not be concerned with concrete syntax: whenever we talk about
some syntactic entity we will always be talking about the abstract syntax so
there will be no ambiguity with respect to the form of the entity. We shall
use a textual representation of the abstract syntax and to disambiguate it
we shall use parentheses. For statements one often writes begin ... end or
{.--} for this but we shall feel free to use (...). Similarly, we use brackets
(.) to resolve ambiguities in other syntactic categories. To cut down on the
number of brackets needed we shall use the familiar relative precedences of
arithmetic, boolean and relational operators.

Example 1.1 An example of a program written in this language is the
following which computes the factorial of the number stored in x and leaves
the result in z:

[y:=x]'; [z:=1] 2 ; while [y>1] 3 do ([z:=z*y]4 ; [y:=y-1]5); [y:=0]6 ,

Reaching Definitions Analysis. The use of distinct labels allows
us to identify the primitive constructs of a program without explicitly con-
structing a flow graph (or flow chart). It also allows us to introduce a program
analysis to be used throughout the chapter: Reaching Definitions Analysis,
or as it more properly should be called, reaching assignments analysis:

• i a I r

1.3 Data Flow Analysis 5

An assignment (called a definition in classical literature) of the
form [x := a]' may reach a certain program point (typically the
entry or exit of an elementary block) if there is an execution of the
program where x was last assigned a value at I when the program
point is reached.

Consider the factorial program of Example 1.1. Here [y:=x]' reaches the
entry to [z:=1]2; to allow a more succinct presentation we shall say that
(y,l) reaches the entry to 2. Also we shall say that (x,?) reaches the entry to
2; here "?" is a special label not appearing in the program and it is used to
record the possibility of an uninitialised variable reaching a certain program
point.

Full information about reaching definitions for the factorial program is then
given by the pair RD = (RDentry, RDexit) of functions in Table 1.1. Careful
inspection of this table reveals that the entry and exit information agree for
elementary blocks of the form [b]t whereas for elementary blocks of the form
Ix := a]t they may differ on pairs (x, '). We shall come back to this when
formulating the analysis in subsequent sections.

Returning to the discussion of safe approximation note that if we modify
Table 1.1 to include the pair (z,2) in RD•,t,nt(5) and RDe 2,it(5) we still have
safe information about reaching definitions but the information is more ap-
proximate. However, if we remove (z,2) from RDntry(6) and RDexit(6) then
the information will no longer be safe - there exists a run of the factorial pro-
gram where the set { (x,?),(y,6),(z,4)} does not correctly describe the reaching
definitions at the exit of label 6.

1.3 Data Flow Analysis

In Data Flow Analysis it is customary to think of a program as a graph: the
nodes are the elementary blocks and the edges describe how control might
pass from one elementary block to another. Figure 1.2 shows the flow graph
for the factorial program of Example 1.1. We shall first illustrate an equa-
tional approach to Data Flow Analysis and then a constraint based approach.

1.3.1 The Equational Approach

The equation system. An analysis like Reaching Definitions can be
specified by extracting a number of equations from a program. There are two
classes of equations. One class of equations relate exit information of a node
to entry information for the same node. For the factorial programn

[y:=x]'; [z:=l]2 ; while [y>1] 3 do ([z:=z*y]a; [y:=y-1]5); [y:=O]6

6 INTRODUCTION

1yes I

I

Figure 1.2: Flow graph for the factorial program.

we obtain the following six equations:

RDe.xt(1) = (RDant,(i)\{(y,e) e Lab}) U {(y, 1)}

RD =.t(2) = (RDn, ,(2)\{(z,f) e E Lab}) U {(z, 2)}

RDaet(3) = RDe.ntr(3)

RDe.it(4) = (RDentv,(4)\{(z,e) f E Lab}) U {(z, 4)}

RDe,,t(5) = (RDent,-y(5)\{(y,e) I E Lab}) U {(y,5)}

RDeajt(6) = (RDenty(6)\{(y,e) t E Lab}) U {(y, 6)}

These are instances of the following schema: for an assignment [x a]
we exclude all pairs (x, e) from RDenty (e') and add (x, t') in order to obtain
RDezit(e') - this reflects that x is redefined at t. For all other elementary
blocks [...]' we let RD 7,jt(e') equal RD,,,t,(f' - reflecting that no variables
are changed.

The other class of equations relate entry information of a node to exit in-
formation of nodes from which there is an edge to the node of interest; that
is, entry information is obtained from all the exit information where control
could have come from. For the example program we obtain the following
equations:

RDet,.y(2) = RDezit(1)

4

1.3 Data Flow Analysis 7

RDe.ntty(3) = RDe.it(2) U RDe=it(5)

RDnt,-y(4) = RDý. 1t(3)

RD.e.tj(5) = RD,!.it(4)

RDentr.y(6) = RDexit(3)

In general, we write RDentr•(•e) = RDe.it(ti) U ... U RDetit(in) if e 1," n

are all the labels from which control might pass to f. We shall consider more
precise ways of explaining this in Chapter 2. Finally, let us consider the
equation

RD mt,,j(1) = {(x, ?) I x is a variable in the program}

that makes it clear that the label "?" is to be used for uninitialised variables;
so in our case

RDentr,.(1) = {(X, ?), (Y, ?), (Z,

The least solution. The above system of equations defines the twelve
sets

RDentr.(1),..., RDe..t(6)

in terms of each other. Writing R6 for this twelve-tuple of sets we can regard
the equation system as defining a function F and demanding that:

R6= F(R6)

To be more specific we can write

F(R-) = (Fentry (1)(R0), Fezit(1)(R-), f,!F t (6)(RW), Fe•it(6)(Rh))

where e.g.:

Fentry(3)(.-, RD.jt (2), .. , RDit•(5),..) = RDexit(2) U RDe=it(5)

It should be clear that F operates over twelve-tuples of sets of pairs of vari-
ables and labels; this can be written as

F: (P(Var. x Lab,))1
2 -+ (P(Var. x Lab,))12

where it might be natural to take Var, = Var and Lab. = Lab. However,
it will simplify the presentation in this chapter to let Var. be a finite subset
of Var that contains the variables occurring in the program S. of interest
and similarly for Lab,. So for the example program we might have Var. -

{x,y,z} and Lab, = {1, ..- ,6}.

It is immediate that (P(Var, x Lab,)) 12 can be partially ordered by setting

R _6 - iff Vi:RDICRDý

8 INTRODUCTION

where R6 = (RD 1,. ,RD 12) and similarly R--' = (RD ,.-, RD' 2). This
turns (P(Var, x Lab,))1 2 into a complete lattice (see Appendix A) with
least element 6 = (0,...,)

and binary least upper bounds given by:

R U R-'' = (RD, U RD•,. RD12 U RD'12)

It is easy to show that F is in fact a monotone function (see Appendix A)
meaning that:

RE_ R--' implies F(R--) _ F(R--')

This involves calculations like

RDeit(2) C RD'eit(2) and RDeit(5) C RD'exi(5)
imply

RDezit(2) U RD,.it(5) C RD'!,it(2) U RD'ext(5)

and the details are left to the reader.

Consider the sequence (Fn(6)),, and note that F E F(0). Since F is mono-
tone, a straightforward mathematical induction (see Appendix B) gives that

Fn(0) E F' (0) for all n. All the elements of the sequence will be in
(P(Var, x Lab,))12 and since this is a finite set it cannot be the case that
all elements of the sequence are distinct so there must be some n such that:

F'+1(0) = F"(n)

But since Fn+l (0) = F(Fn(6)) this just says that Fn(0) is a fixed point of F
and hence that Fn (0) is a solution to the above equation system.

In fact we have obtained the least solution to the equation system. To see
this suppose that R6 is some other solution, i.e. 0 = F(R---). Then a

straightforward mathematical induction shows that F'(0) E _R6. Hence
the solution F'(0) contains the fewest pairs of reaching definitions that is
consistent with the program, and intuitively, this is also the solution we want:
while we can add additional pairs of reaching definitions without making
the analysis semantically unsound, this will make the analysis less usable as
discussed in Section 1.1. In Exercise 1.7 we shall see that the least solution
is in fact the one displayed in Table 1.1.

1.3.2 The Constraint Based Approach

The constraint system. An alternative to the equational approach
above is to use a constraint based approach. The idea is here to extract a
number of inclusions (or in-equations or constraints) out of a program. We

1.3 Data Flow Analysis 9

shall present the constraint system for Reaching Definitions in such a way
that the relationship to the equational approach becomes apparent; however,
it is not a general phenomenon that the constraints are naturally divided into
two classes as was the case for the equations.

For the factorial program

[y:=x]'; [z:=1]2 ; while [y>1] 3 do ([z:=z*y]4 ; [y:=y-1]5); [y:=O]6

we obtain the following constraints for expressing the effect of elementary
blocks:

RDý.,t(1) ;? RDe,,t,-y(1)\{(y,t) I f E Lab}

RDexit(1) D {(y, 1)}

RDezit(2) _ RDe,,t,.y(2)\{(z,t) I t E Lab}

RDeztt(2) 2 {(z,2)}

RDe..t(3) D RDeý.t- (3)

RD.zit(4) D RDe..ty (4)\{(z,,e) t E Lab}

RDexit(4) {(z,4)}
RDezit(5) R Denty (5){(y,t)I t E Lab}
RDe!at(5) 1 {(y,5)}

RDeit(6) 2 RDý,tr,-(6)\{(y,e) Ie E Lab}

RD.eit(6) 1 {(y, 6)}

By considering this system a certahn methodology emerges: for an assignment
[x := a]t' we have one constraint that excludes all pairs (x, t) from RDn,,t, (f')
in reaching RD.it (f') and we have one constraint for incorporating (x, ');
for all other elementary blocks [...]t' we just have one constraint that allows
everything in RD etr (e') to reach RDexit (e').
Next consider the constraints for more directly expressing how control may
flow through the program. For the example program we obtain the con-
straints:

RDe•t,-y(2) 2 RDezit(1)

RDe.nt,-(3) 2 RDe,.it(2)

RDent,-(3) 2 RDeit(5)

RDeýnty(5) 2 RDe=it(4)

RD,.t,-y (6) 2 RDxit (3)

In general, we have a constraint RDenty(e) 2 RDexit(e') if it is possible for
control to pass from t' to t. Finally, the constraint

RDetry(1) 2 {(x, ?), (y,?), (z, ?)}

records that we cannot be sure about the definition point of uninitialised
variables.

10 INTRODUCTION

The least solution revisited. It is not hard to see that a solution
to the equation system presented previously will also be a solution to the
above constraint sy9tem. To make this connection more transparent we can
rearrange the constraints by collecting all constraints with the same left hand
side. This means that for example

RDeit(1) D RDenty,(1)\{(y,e) I fE Lab}
RD,!.it(1) _ {(y,l)}

will be replaced by

RDexit(1) _ (RDmntr.j(1)\{(y,f) I f E Lab}) U {(y, 1)}

and clearly this has no consequence for whether or not R6 is a solution. In
other words we obtain a version of the previous equation system except that
all equalities have been replaced by inclusions. Formally, whereas the equa-
tional approach demands that R6 = F(R--), the constraint based approach

demands that R6 _D F(RM) for the same function F. It is therefore immedi-
ate that a solution to the equation system is also a solution to the constraint
system whereas the converse is not necessarily the case.

Luckily we can show that both the equation system and the constraint system
have the same least solution. Recall that the least solution to R = F(R-6)

is constructed as Fn(0) for a value of n such that Fn(0) = Fn+1(6). If R-6

is a solution to the constraint system, that is R6 _ F(R--), then 0 C R-6 is
immediate and the monotonicity of F and mathematical induction then gives
Fn(0) C R6. Since Fn(6) is a solution to the constraint system this shows
that it is also the least solution to the constraint system.

In summary, we have thus seen a very strong connection between the equa-
tional approach and the constraint based approach. This connection is not
always as apparent as it is here: one of the characteristics of the constraint
based approach is that often constraints with the same left hand side are gen-
erated at many different places in the program and therefore it may require
serious work to collect them.

1.4 Control Flow Analysis

The purpose of Control Flow Analysis is to determine information about
what "elementary blocks" may lead to what other "elementary blocks". This
information is immediately available for the WHILE language unlike what is
the case for more advanced imperative, functional and object-oriented lan-
guages.

Consider the following functional program:

1.4 Control Flow Analysis 11

let f =fnx=>xl;
g = fn y => y+2;

h = fn z => z+3
in (f g) + (f h)

It defines a higher-order function f with formal parameter x and body x 1;
then it defines two functions g and h that are given as actual parameters to
f in the body of the let-construct. Semantically, x will be bound to each
of these two functions in turn so both g and h will be applied to 1 and the
result of the computation will be the value 7.

An application of f will transfer control to the body of f, i.e. to x 1, and
this application of x will transfer control to the body of x. The problem is
that we cannot immediately point to the body of x: we need to know what
parameters f will be called with. This is exactly the information that the
Control Flow Analysis gives us:

For each function application, which functions may be applied.

As is typical of functional languages, the labelling scheme used would seem
to have a very different character than the one employed for imperative lan-
guages because the "elementary blocks" may be nested. We shall therefore
label all subexpressions as in the following simple program that will be used
to illustrate the analysis.

Example 1.2 Consider the pro'ram:

[[fn x => [x]1] 2 [fn y => [y]']']'

It calls the identity function fn x => x on the argument fn y => y and
clearly evaluates to fn y => y itself (omitting all [-...]1).

We shall now be interested in associating information with the labels them-
selves, rather than with the entries and exits of the labels - thereby we exploit
that there are no side-effects in our simple functional language. The Control
Flow Analysis will be specified by a pair (C, p-) of functions where C(t) is sup-
posed to contain the values that the subexpression (or "elementary block")
labelled f may evaluate to and ý(x) contain the values that x can be bound
to.

The constraint system. One way to specify the Control Flow Anal-
ysis then is by means of a collection of constraints and we shall illustrate this
for the program of Example 1.2. There are three classes of constraints. One
class of constraints relate the values of function abstractions to their labels:

in x => [x]_} 9 t(2)

In y => [y]3 } C C(4)

12 INTRODUCTION

These constraints state that a function abstraction evaluates to a closure
containing the abstraction itself. So the general pattern is that an occurrence
of [fn x => e]t in the program gives rise to a constraint {fn x => e} _ C(f).

The second class of constraints relate the values of variables to their labels:

A(x) c CM()

ý(y) _ C(3)

The constraints state that a variable always evaluates to its value. So for
each occurrence of [x]t in the program we will have a constraint ;(x) C C(e).

The third class of c.onstraints concerns function application: for each applica-
tion point [ei e2]t, and for each possible function [f n x => elt' that could be
called at this point, we will have: (i) a constraint expressing that the formal
parameter of the function is bound to the actual parameter at the application
point, and (ii) a constraint expressing that the result obtained by evaluating
the body of the function is a possible result of the application.

Our example program has just one application [[-...]2 [...]4]5, but there are
two candidates for the function, i.e. C(2) is a subset of the set {fn x => [x]',
fn y => [y]3 }. If the function fn x => [x]' is applied then the two con-
straints are C(4) C p(x) and C(1) C C(5). We express this as conditional
constraints:

{fn x => [x]'} C C(2) t C(4) C '(x)

{fn x => [xi]} 1 C (2) C C(1) C .(5)

Alternatively, the function being applied could be fin y => [y] 3 and the cor-
responding conditional constraints are:

{fn y => [y] 3} C C(2) =• C(4) _C (y)

{fn y => [y]3 } C C(2) => C(3) C C(5)

The least solution. As in Section 1.3 we shall be interested in the
least solution to this set of constraints: the smaller the sets of values given
by C and ý, the more precise the analysis is in predicting which functions are
applied. In Exercise 1.2 we show that the following choice of C and • gives a
solution to the above constraints:

C(1) = {fn y => [y] 3}

C(2) = {fn x => [x]'}

C(3) = 0

C(4) = {fn y => [y]3 }
C(5) = {fn y => [y]3}
ý(x) = {fn y => [y]3 }

X(y) = 0

1.5 Abstract Interpretation 13

Among other things this tells us that the function abstraction fn y => y is
never applied (since ý(y) = 0) and that the program may only evaluate to
the function abstraction fn y => y (since C(5) = {fn y => [y]3 }).

Note the similarities between the constraint based approaches to Data Flow
Analysis and Control Flow Analysis: in both cases the syntactic structure of
the program gives rise to a set of constraints whose least solution is desired.
The main difference is that the constraints for the Control Flow Analysis
have a more complex structure than those for the Data Flow Analysis.

1.5 Abstract Interpretation

The theory of Abstract Interpretation is a general methodology for calculat-
ing analyses rather than just specifying them and then rely on a posteriori
validation. To some extent the application of Abstract Interpretation is in-
dependent of the specification style used for presenting the program analysis
and so applies not only to the Data Flow Analysis formulation to be used
here.

Collecting semantics. As a preliminary step we shall formulate a so-
called collecting semantics that records the set of traces tr that can reach a
given program point:

tr E Trac6 -= (Var x Lab)*

Intuitively, a trace will record where the variables have obtained their values
in the course of the computation. So for the factorial program

[y:=x]'; [z:=1]2 ; while [y>l]3 do ([z:=z*y]4 ; [y:=y-1]5); [y:=O]6

we will e.g. have the trace

((x, ?), (y, ?), (z, ?), (y, 1), (z, 2), (z, 4), (y, 5), (z, 4), (y, 5), (y, 6))

corresponding to a run of the program where the body of the while-loop is
executed twice.

The traces contain sufficient information that we can extract a set of seman-
tically reaching definitions:

SRD(tr)(x) = t iff the rightmost pair (x, t') in tr has t = t'

In order for the Reaching Definitions Analysis to be correct (or safe) we shall
require that it captures the semantic reaching definitions, that is, if tr is a
possible trace just before entering the elementary block labelled t then we
shall demand that

Vx E Var: (x, SRD(tr)(x)) E RDentry(t)

14 INTRODUCTION

in order to trust the information in RDen,-y(t) about the set of definitions
that may reach the entry to t. In later chapters, we will conduct proofs of
results like this.

The collecting semantics will specify a superset of the possible traces at the
various program points. We shall specify the collecting semantics CS in the
style of the Reaching Definitions Analysis in Section 1.3; more precisely, we
shall specify a twelve-tuple of elements from (P((Trace)) 1 2 by means of a set
of equations. First we have

CSex:it(1) = {tr : (y, 1) 1 tr E CSetr,.(1)}

CS,ý,t(2) = {tr: (z,2) 1 tr E CSe.try,(2)}

CS ýjt(3) = CS..tr,• (3)

CSe.zt(4) = {tr: (z,4) 1 tr E CS,,t,,r(4)}
CSe,ýt(5) = {tr: (y,5) 1 tr E CS,,try(5)}

CSerit(6) = {tr: (y,6) I tr E CSenwtrt(6)}

showing how the assignment statements give rise to extensions of the traces.
Here we write tr : (x, t) for appending an element (x, t) to a list tr, that
is ((xj,fl),"'., (x.,f.)): (x,e) equals ((xifl),. (x.,f.), (x,t)). Further-
more, we have

CSetrj(2) = CSý.xt(1)

CSe.try(3) CSex•t(2) U CSe..i(5)

CSetry,(4) = CS.eit(3)

CSentr,-(5) = CS•it (4)

CSe.try(6) = CSo=t (3)

corresponding to the flow of control in the program; more detailed infor-
mation about the value of the variables would allow us to define the sets
CSentry(4) and CSentry (6) more precisely but the above definitions are suffi-
cient for illustrating the approach. Finally, we take

Csentri(1) = 1((X,?),(y,?),(z,?))}

corresponding to the fact that all variables are uninitialised in the beginning.

In the manner of the previous sections we can rewrite the above system of
equations in the form

C = G(8)

where C1 is a twelve-tuple of elements from (P(Trace))1 2 and where G is a
monotone function of functionality:

G: (P1(Trace))12 -- (P(Trace))' 2

1.5 Abstract Interpretation 15

-Y(Y)

uI

a (X)

a

Figure 1.3: The adjunction (a, -y).

As is explained in Appendix A there is a body of general theory that ensures
that the equation in fact has a least solution; we shall write it as Ifp(G).
However, since (P(Trace))12 is not finite we cannot simply use the methods
of the previous sections in order to construct lfp(G).

Galois connectiens. As we have seen the collecting semantics operates
on sets of traces whereas the Reaching Definitions Analysis operates on sets of
pairs of variables and labels. To relate these "worlds" we define an abstraction
function a and a concretisation fuijetion -f as illustrated in:

7
P(Trace) 4-- P(Var x Lab)

a
The idea is that the abstraction function a extracts the reachability informa-
tion present in a set of traces; it is natural to define

a(X) = {(x, SRD(tr)(x)) I E Var A tr E X}

where we exploit the notion of semantically reaching definitions.

The concretisation function -y then produces all traces tr that are consistent
with the given reachability information:

y(Y) = {tr I Vx E Var : (x, SRD(tr)(x)) E Y}

Often it is demanded that a and y satisfy the condition

a(X) C Y <* X C y(Y)

and we shall say that (a, y) is an adjunction, or a Galois connection, whenever
this condition is satisfied; this is illustrated on Figure 1.3. We shall leave it
to the reader to verify that (a, y) as defined above does in fact fulfil this
condition.

16 INTRODUCTION

Induced analysis. We shall now show how the collecting semantics
can be used to calculate (as opposed to "guess") an analysis like the one in
Section 1.3; we shall say that the analysis is an induced analysis. For this we
define

(Xl, , X12) = (a(Xl),. ••,a(X1 2))
'Y(Y1," ", Y1) = (7(Yl) ",(Y12))

where a and -y are as above and we consider the function & o G o - of func-
tionality:

(6 o G o) (P(Var x Lab))12 -+ (P(Var x Lab))12

This function defines a Reaching Definitions analysis in an indirect way. Since
G is specified by a set of equations (over P(Trace)) we can use 5 o G o y to
calculate a new set of equations (over *P(Var x Lab)). We shall illustrate
this for one of the equations:

CSe,ýit(4) = {tr : (z,4) I tr E CSentr,-(4)}

The corresponding clause in the definition of G is:

Go ,(4)(...-, CS.t(4),...) = {tr: (z,4) 1 tr E CSentry(4)}

We can now calculate the corresponding clause in the definition of d o G o 1:

a(Gezit(4)(!(" , RDn.try(4),

= a({tr: (z,4) tr E "y(RDe.try (4))})
= {(x, SRD(tr: (z, 4))(x))

IxE Var,Vy E Var: (y, SRD(tr)(y)) E RDentry (4)}

- {(x,SRD(tr)(x))
I X E Var, x 0 z, (x, SRD(tr)(x)) E RDntry(4)} U {(z,4)}

- (RDent,tr(4) \ {(z,t) Ie E Lab}) U {(z, 4)}

This clause is equivalent to the equation for RDerit(4) in Section 1.3; similar
calculations can be performed for the other clauses.

The least solution. As explained in Appendix A the equation system

S= (.oGo'5)(R6)

has a least solution; we shall write it as lfp(d o G o Y). It is interesting to
note that if one replaces the infinite sets Var and Lab with finite sets Var,
and Lab, as before, then the least fixed point of 6 o G o I can be obtained
as (do G . 1)'n() just as was the case for F previously.

In Exercise 1.4 we shall show that 6 o G o I E. F and it follows that

5(l4(G)) C_ lfp(a o a o 1) E_ 1p(F)

1.6 Type and Effect Systems 17

where the second inclusion should not be surprising because mathematical
induction suffices for showing that (d o G o y)-(0) : F-(0). The above
inclusions just say that the least solution to the equation system defined by
do Go o is correct with respect to the collecting semantics, and similarly that
the least solution to the equation system of Section 1.3 is also correct with
respect to the collecting semantics. Thus it follows that we will only need to
show that the collecting semantics is correct - the correctness of the induced
analysis will follow for free.

For some analyses one is able to prove the stronger result d o G o,7 = F.
Then the analysis is optimal (given the choice of approximate properties it
operates on) and clearly lfp(d o G o '1) = l1p(F). In Exercise 1.4 we shall
study whether or not this is the case here.

1.6 Type and Effect Systems

A simple type system. The ideal setting for explaining Type and
Effect Systems is to consider a typed functional or imperative language.
However, even our simple toy language can be considered to be typed: a
statement S maps a state to a state (in case it terminates) and may therefore
be considered to have type E -+ E where E denotes the type of states; we
write this as the judgement:

One way to formalise this is by the following utterly trivial system of axioms

and inference rules:

[X := a]t : ' -+ •

[skip]t : E-- E

Sl; S2 : E-S1 E -$E 2 E-

if [b]t then S1 else S2 : E -E

S : E-+ E
while [b]t do S : E-+ E

Often a Type and Effect System can be viewed as the amalgamation of two
ingredients: an Effect System and an Annotated Type System. In an Effect
System we typically have judgements of the form S : E -4 E where the effect
p tells something about what happens when S is executed: this may for
example be which errors might occur, which exceptions might be raised, or
which files might be modified. In an Annotated Type System we typically

18 INTRODUCTION

[ass] [x := a]" : RD -+ ((RD\{(x, t) I t E Lab}) U {(x, ')})

[skip] [skip]" : RD -+ RD

$S : RD, -+ RD 2 S2 : RD 2 -RD 3

[seq] S 2;:2 RD1 -+ RD3

Sj:RD,-+RD2 S2 :RD--+RD2

if [b]) then S1 else S2 RD1 -+ RD2

[wh] S: RD -+ RD
while [b]t do S : RD -+ RD

[sub] S:RD2 - RD 3 ifRD,_CRD2 andRD3 CRD4S: RD, - RD4

Table 1.2: Reaching Definitions: annotated base types.

have judgements of the form S : El -+ E2 where the Ei describe certain
properties of states: this may for example be that a variable is positive or
that a certain invariant is maintained. We shall first illustrate the latter
approach for the WHILE language and then illustrate the Effect Systems
using the functional language.

1.6.1 Annotated Type Systems

Annotated base types. To obtain our first specification of Reaching
Definitions we shall focus on a formulation where the base types are anno-
tated. Here we will have judgements of the form

S: RD, -4 RD 2

where RD1 , RD 2 E P(Var x Lab) are sets of reaching definitions. Based
on the trivial axioms and rules displayed above we then obtain the more
interesting ones in Table 1.2.

To explain these rules let us first explain the meaning of S : RD1 -+ RD2 in
terms of the developments performed in Section 1.3. For this we first observe
that any statement S will have one elementary block at its entry, denoted
init(S), and one or more elementary blocks at its exit, denoted final(S); for a
statement like if [x<y]1 then [x:=y]2 else [y:=x]3 we thus get init(...) - 1
and final(...) = {2,3}.

Our first (and not quite successful) attempt at explaining the meaning of

1.6 Type and Effect Systems 19

S : RD1 -+ Rb 2 then is to say that:

RD, = RDet,-,(init(S))

U{RDezit(t) I t E final(S)} = RD 2

This suffices for explaining the axioms for assignment and skip: here the
formulae after the arrows correspond exactly to the similar equations in the
equational formulation of the analysis in Section 1.3. Also the rule for se-
quencing now seems rather natural. However, the rule for conditional is more
dubious: considering the statement if [x<y]1 then [x: =y]2 else [y: =x] 3 once
more, it seems impossible to achieve that the then-branch gives rise to the
same set of reaching definitions as the else-branch does.

Our second (and successful) attempt at explaining the intended meaning of
S : RD 1 -+ RD 2 then is to say that:

RDI C RDntr(init(S))

Ve E final(S) : RDexit(e) C RD2

This formulation is somewhat closer to the development in the constraint
based formulation of the analysis in Section 1.3 and it explains why tWe last
rule, called a subsumption rule, is unproblematic. Actually, the subsumption
rule will solve our problem with the conditional because even when the then-
branch gives a different set of reaching definitions than the else-branch we
can enlarge both results to a common set of reaching definitions. Finally,
consider the rule for the iterative e6nstruct. Here we simply express that RD
is a consistent guess concerning what may reach the entry and exits of S -
this expresses a fixed point property.

Example 1.3 To analyse the factorial program

[y:=x]l; [Z:=1]2 ; while [y>1] 3 do ([z:=z*y]4 ; [y:=y-1]5); [y:=0] 6

of Example 1.1 we will proceed as follows. We shall write RDf for the set
{(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} and consider the body of the while-loop.
The axiom [ass] gives

[z: =z*y]4 : RDf - {(x, ?), (y, 1), (y, 5), (z, 4)}

[y:=y-1]5 : {(x,?), (y, 1), (y,5), (z,4)} -+ {(x,?), (y,5), (z,4)}

so the rule [seq] gives:

([z: =z*y] 4 ; [y: =y-1]5): RDf - {(x, ?), (y, 5), (z, 4)}

Now {(x, ?), (y, 5), (z, 4)} C RDf so the subsumption rule gives:

([z:=z*y] 4 ; [y:=y-1]'): RDf -+ RDf

20 INTRODUCTION

[skip] [skip]' : E+

[seq] Si: E S2 : -1 D+ EX1UX2 F
Si; S2 : F, (RD7\X2)URD2"•

if [b]t then S, else S2 : •2 Xix 2 ,
RD~uRD 2 "

S :E -R 4 r
[whl R

while [b]t do S: E -RD

[sub] S:E R F, ifX' CX and RD C RD'
~' RD

Table 1.3: Reaching Definitions: annotated type constructors.

We can now apply the rule [wh] and get:

while [y>1] 3 do ([z:-•.*y] 4 ; [y::y-1]5): RDf -+ RDf

Using the axiom [ass] we get:

[y: =x]': {(x, ?),(y, ?), (z, ?)} -{(x, ?),(y, 1), (z, ?)}
[z: =11 2: I{(x, ? ,(y, 1), (z, ?)} -- (x, 7 ,(y, 1), (z, 2)}

[y:=0]6 : RDf I {(x,?), (y, 6), (z, 2), (z, 4)}

Since {(x, ?), (y, 1), (z, 2)}) RDf we can apply the rules [seq] and [sub] to get

([y:=x]'; [z:=1] 2 ; while [y>1] 3 do ([Z:=Z*y]4 ; [y:=y-1]5); [y:=0] 6):
{(x, ?), (y, ?), (z, ?)} -+ {(x, ?), (y, 6), (z, 2), (z, 4)}

corresponding to the result in Table 1.1.

The system in Table 1.2 suffices for manually analysing a given program. To
obtain an implementation it will be natural to extract a set of constraints
similar to those considered in Section 1.3, and then solve them in the same
way as before. This will be the idea behind the approach taken in Chapter
5.

1.6 Type and Effect Systems 21

Annotated type constructors. Another approach to Reaching Def-
initions has a little bit of the flavour of Effect Systems in that it is the type
constructors (arrow in our case) that are annotated. Here we will have judge-
ments of the form

RD

where X denotes the set of variables that definitely will be assigned in S and
RD denotes the set of reaching definitions that S might produce. The axioms
and rules are shown in Table 1.3 and are explained below.

The axiom for assignment simply expresses that the variable x definitely will
be assigned and that the reaching definition (x, t) is produced. In the rule
for sequencing the notation RD \ X means {(x,e) E RD I x V X}. The
rule expresses that we take the union of the reaching definitions after having
removed entries from S that are definitely redefined in S2 . Also we take the
union of the two sets of assigned variables. In the rule for conditional we
take the union of information about reaching definitions whereas we take the
intersection (rather than the union) of the assigned variables because we are
not completely sure what path was taken through the conditional. A similar
comment holds for the rule for the while-loop; here we can think of 0 as the
intersection between 0 (when the body is not executed) and X.

We have included a subsumption rule because this is normally the case for
such systems as we shall see in Chapter 5. However, in the system above there
is little need for it, and if one excludes it then implementation becomes very
straightforward: simply perform a-syntax directed traversal of the program
where the sets X and RD are computed for each subprogram.
Example 1.4 Let us once again consider the analysis of the factorial pro-

gram

[y:=x]l; [z:=1] 2 ; while [y>1] 3 do ([z:=z*y] 4 ; [y:=y-1]5); [y:=0] 6

For the body of the while-loop we get

[z:=z*y]4: E • •

[y:=y-l]5: E

so the rule [seq] gives:

(z:=z~y]4; [y:=y-1]5): E, I y'z , E,

We can now apply the rule [wh] and get:

while [y>1] 3 do ([z:=z*y]4 ; [y:=y-1]5): E 0J(y,5),(z,4)J0

In a similar way we get

22 INTRODUCTION

([y:=x] 1 ; [z:=1]2): E Ef{(y,_1),(z.,2)}T

[y: =O]6: F {

so using the rule [seq] we obtain

([y:=x]l; [z:=1] 2; while [y>1] 3 do ([z:=z*y]4 ; [y:=y-1] 5); [y:=0]6):

{(y,6),(z,2),(},4)}

showing that the program definitely will assign to y and z and that the final
value of y will be assigned at 6 and the final value of z at 2 or 4. 0

Compared with the previous specifications of Reaching Definitions analy-
sis the flavour of Table 1.3 is rather different: the analysis of a statement
expresses how information present at the entry will be modified by the state-
ment - we may therefore view the specification as a higher-order formulation
of Reaching Definitions analysis.

1.6.2 Effect Systems

A simple type system. To give the flavour of Effect Systems let
us once more turn to the functional language. As above, the idea is to
annotate a traditional type syste.i with analysis information, so let us start
by presenting a simple type system for a language with variables x, function
abstraction f n, x => e (where 7r is the name of the abstraction), and function
application el e2 . The judgements have the form

rFý-e:,r

where r is a type environment that gives types to all free variables of e and
T is the type of e. For simplicity we shall assume that types are either base
types as int and bool or they are function types written T1- -+ r2 . The type
system is given by the following axioms and rules:

r I- x: rx if r(x) = 7.,

r[x '-+ Trx] I- e : T

F F- fn., x => e : r., -4+T

' I-- el : T2 -+ r, F P- e2 : r2

F I- el e2 :r

So the axiom for variables just expresses that the type of x is obtained from
the assumptions of the type environment. The rule for function abstrac-
tion requires that we "guess" a type -r for the formal parameter x and we

1.6 Type and Effect Systems 23

determine the type of the body of the abstraction under that additional as-
sumption. The rule for function application requires that we determine the
type of the operator as well as the argument and it implicitly expresses that
the operator must have a function type by requiring the type of el to have
the form r2 -+ r. Furthermore the two occurrences of r 2 in the rule implicitly
express that the type of the actual parameter must equal the type expected
by the formal parameter of the function.

Example 1.5 Consider the following version of the program of Example
1.2

(fnx x => x) (fny y => y)

where we now have given fn x => x the name X and fn y => y the name
Y. To see that this program has type int -4 int we first observe that
[y ý-+ int] ý- y : int so:

[]F yfn y => y: int - int

Similarly, we have [x - int -+ int] I- x: int - int so:

[]I- fnx x => x: (int -+ int)-- (int -+ int)

The rule for application then gives:

[] - (fnx x => x) (fny y => y) :int -+ nt

Effects. The analysis we shall consider is a Call-tracking Analysis:

For each subexpression, which function abstractions may be ap-
plied during its evaluation.

The set of function names constitutes the effect of the subexpression. To
determine this information we shall annotate the function types with their

latent effect so we shall e.g. write int) int for the type of a function
mapping integers to integers and with effect {X} meaning that when execut-
ing the function it may apply the function named X. More generally, the
annotated types F will either be base types or they will have the form

F1 -4 F2

where ýo is the effect, i.e. the names of the function abstractions that we
might apply when applying a function of this type.

We specify the analysis using judgements of the form

Fe: Fp

24 INTRODUCTION

[var] it-x:F & 0 iff(x)-=-F

f Fel : F -2* F & ~ I-e 2 : F2 & ý 2app] F el e 2 : F & •Wi U 02 UW

Table 1.4: Call-tracking Analysis: Effect System.

where P is the type environment that now gives the annotated type of all
free variables, F is the annotated type of e, and V is the effect of evaluating
e. The analysis is specified by the axioms and rules in Table 1.4 which will
be explained below.

In the axiom [var] for variables we produce an empty effect because we as-
sume that the parameter mechanism is call-by-value so no evaluation takes
place when mentioning a variable. Similarly, in the rule [Vn] for function ab-
stractions we produce an empty effect: no evaluation takes place because we
only construct a closure. The body of the abstraction is analysed in order to
determine its annotated type and effect. This information is needed to anno-
tate the function arrow: all the names of functions in the effect of the body
and the name of the abstraction iAelf may be involved when this particular
abstraction is applied.

Next, consider the rule [app] for function application el e2 . Here we obtain
annotated types and effects from the operator el as well as the operand e 2.
The effect of the application will contain the effect V, of the operator (because
we have to evaluate it before the application can take place), the effect W2 of
the operand (because we employ a call-by-value semantics so this expression
has to be evaluated too) and finally we need the effect V of the function being
applied. But this is exactly the information given by the annotation of the
arrow in the type F2 -f+ F of the operand. Hence we produce the union of
these three sets as the overall effect of the application.

Example 1.6 Returning to the program of Example 1.5 we have:

[]F-fny y => y:int-- int&0

[]P fnx x => x:(int --+ int) 1--) (int --+ int) & 0

[]F- (fnx x => x) (fny y => y) :int -M) int & {X}

This shows that our example program may (in fact it will) apply the function
fn x => x but that it will not apply the function fn y => y.

1.7 Algorithms 25

INPUT: Example equations for Reaching Definitions

OUTPUT: The least solution:

METHOD: Step 1: Initialisation
RDI:=; .-.. ; RD12:=O

Step 2: Iteration
while RDj 0 Fj(RD1,..., RD 12) for some j
do RDj:=Fj(RDi,..., RD12)

Table 1.5: Chaotic Iteration for Reaching Definitions.

For a more general language we will also need to introduce some form of
subsumption rule in the manner of Tables 1.2 and 1.3; there are different
approaches to this and we shall return to this later. Effect Systems are
often implemented as extension of type inference algorithms and depending
on the form of the effects it may be possible to calculate them on the fly;
alternatively, sets of constraints can be generated and solved subsequently.
We refer to Chapter 5 for more details.

1.7 Algorithms -

Let us now reconsider the problem of computing the least solution to the
program analysis problems considered in Data Flow Analysis and Control
Flow Analysis.

Recall from Section 1.3 that we consider twelve-tuples R E (-P(Var, x
Lab,))12 of pairs of variables and labels where each label indicates an ele-
mentary block in which the corresponding variable was last assigned. The
equation or constraint system gives rise to demanding the least solution to an
equation R6 = F(R--) or inclusion R-6 _ F(R--) where F is a monotone func-
tion over (P(Var, x Lab,))12. Due to the finiteness of (P(Var, x Lab,))12

the desired solution is in both cases obtainable as F"(0) for any n such that

Fn+l(0) = Fn(0) and we know that such n does in fact exist.

Chaotic Iteration. Naively implementing the above procedure soon
turns out to require an overwhelming amount of work. In later chapters we
shall see much more efficient algorithms and in this section we shall illustrate
the principle of Chaotic Iteration that lies at the heart of many of them. For
this let us write

S= (RD1,.., RD12)

26 INTRODUCTION

F(R-6) = (F1(R-),..,F2(-)

and consider the non-deterministic algorithm in Table 1.5. It is immediate
that there exists j such that RDj $ Fj(RD1,.-, RD 12) if and only if R #4
F(R-). Hence if the algorithm terminates it will produce a fixed point of F;
that is, a solution to the desired equations or constraints.

Properties of the algorithm. To further analyse the algorithm we
shall exploit that

6C _R-6 _ F(R--) C: F-(ý)

holds at all points in the algorithm (where n is determined by Fn+1(0) -

Fn(0)): it clearly holds initially and as will be shown in Exercise 1.6 it is
maintained during iteration. This means that if the algorithm terminates we
will have obtained not only a fixed point of F but in fact the least fixed point(i.e. F 6)

To see that the algorithm terminates note that if j satisfies

RDj $ Fj(RDI,..', RD 12)

then in fact RDj C Fj(RDI,.-., RD 12) and hence the size of R6 increases by
at least one as we perform each iteration. This ensures termination since we
assumed that (P(Var, x Lab,))12 is finite.

The above algorithm is suitable for manually solving data flow equations and
constraint systems. To obtain aif. algorithm that is suitable for implemen-
tation we need to give more details about the choice of j so as to avoid an
extensive search for the value; we shall return to this in Chapters 2 and 6.

1.8 Transformations

A major application of program analysis is to transform the program (at the
source level or at some intermediate level inside a compiler) so as to obtain
better performance. To illustrate the ideas we shall show how Reaching Defi-
nitions can be used to perform a transformation known as Constant Folding.
There are two ingredients in this. One is to replace the use of a variable in
some expression by a constant if it is known that the value of the variable will
always be that constant. The other is to simplify an expression by partially
evaluating it: subexpressions that contain no variables can be evaluated.

Source to source transformation. Consider a program S, and let
RD be a solution (preferable the least) to the Reaching Definitions Analysis
for S,. For a sub-statement S of S, we shall now describe how to transform
it into a "better" statement S'. We do so by means of judgements of the
form

RD I-S > S'

1.8 Transformations 27

[ass1] RDF-[x:= a]t [x:=a[yý-+ n]] t

i f y E FV(a) A (y,?) € RDent,-y(e) A

[V(z,') fE RDet,t(e) (z = y • [...]t' is [y n]t')

[ass2] RD F- [x a]t > [x := n]t
if FV(a) = 0 A a V Num A a evaluates to n

RDF-S1 (>S
[seq1] RD F- S;S2 > 1

RD I-S 2 > S'

[seq2] RD F 1 ;S 2 t> S

RD SI;RS2-> Sj; S2

[if]
R D - S > Si

RD Hif [bit then S, else S2 > if [bit then S' else S2

[4f2] RD [-S2 >S2RD F if [b]t then S1 else S2 t> if [bit then S else S2

[wh RDF-S > S'

RD F- while [bit do S > while [b]t do S'

Table 1.6: Constant Folding transformation.

expressing one step of the transformation process. We may define the trans-
formation using the axioms and rules in Table 1.6; they are explained below.

The first axiom [ass,] expresses the first ingredient in Constant Folding as
explained above - the use of a variable can be replaced with a constant if it is
known that the variable always will be that constant; here we write a[y '-+ n]
for the expression that is as a except that all occurrences of y have been
replaced by n; also we write FV(a) for the set of variables occurring in a.

The second axiom [ass 2] expresses the second ingredient of the transformation
- expressions can be partially evaluated; it uses the fact that if an expression
contains no variables then it will always evaluate to the same value.

The five rules in Table 1.6 simply say that if we can transform a sub-statement
then we can transform the statement itself. Note that the rules (e.g. [seq1]
and [seq2]) do not prescribe a specific transformation order and hence many
different transformation sequences may exist. Also note that the relation
RD [- • > - is neither reflexive nor transitive because there are no rules that
forces it to be so. Hence we shall often want to perform an entire sequence
of transformations.

28 INTRODUCTION

Example 1.7 To illustrate the use of the transformation consider the pro-
gram: [x:=101; [y:=x+1O12 ; [z:=y+10]3

The least solution to the Reaching Definitions Analysis for this program is:

RDent,,y(1) = (x,?),(y,?(z,?)
RDý,jt(1) = (x, 1),(y,?(z,

RDentry(2) = (x,l),(y,?(z,
RDeit(2) = {(x, 1), (y, 2), (z,?)}

RDent,,y(3) = {(x, 1),(y, 2),(z,?)}
RDeit(3) = {(x, 1),(y, 2),(z,3)}

Let us now see how to transform the program. From the axiom [ass1] we
have

RD F- [y:=x+1O] 2 > [y:=10+1O] 2

and therefore the rules for sequencing gives:

RD F[[X:=1O]';[y:=x+10] 2 ; [z:=y+10]3 > [x:=10]1 ; [y:=10+1012 ; [z:=y+10]3

We can now continue and obtain the following transformation sequence:

RD I- [x:=10]1; [y:=x+1012; [z::y+10]3

"> [X:=10]l; [y:=10+10]2; [z: :y+10]3

"> [x:=l191; [y:=2o]2; [Z:=y+1O]3
"> [x:=10]1; [y:=2o]2;[fz:=20+ 1o]3
"> [x::=10]1; [y:=2o]2; [z.:=3o]3

after which no more steps are possible. Another transformation sequence is

RD I- [x:=1011; [y:=x+10]2 ; [z:=y+10]3

"t [x:0]1 ; [y:=10+1o] 2 ; [z:=y+10]3
"> [X: =1o]1; [y:=1o+1o]2; [Z:=1o+1o+1o]3
"> [X::=1o]1; [y:=1o+1o]2; [z::=3o]3
"> [x: =10]'; [y: =20]2; [z: :=30]3

which, in this particular case, yields the same resulting program.

Successive transformations. The above example shows that we
shall want to perform many successive transformations:

RD F- S, > S2 > ... > S,+,

This could be costly because once S1 has been transformed into S2 we might
have to recompute Reaching Definitions Analysis for S2 before the trans-
formation can be used to transform it into S 3 etc. It turns out that it is

Concluding Remarks 29

sometimes possible to use the analysis for S1 to obtain a reasonable analysis
for S2 without performing the analysis from scratch. In the case of Reaching
Definitions and Constant Folding this is very easy: if RD is a solution to
Reaching Definitions for Si and RD [Si t> Si+ then RD is also a solution to
Reaching Definitions for Si+1 - intuitively, the reason is that the transforma-
tion only changed things that were not observed by the Reaching Definitions
Analysis.

Concluding Remarks

In this chapter we have briefly illustrated a few approaches (but by no means
all) to program analysis. Clearly there are many differences between the four
approaches. However, the main aim of the chapter has been to suggest that
there are also more similarities than one would perhaps have expected at
first sight: in particular, the interplay between the use of equations versus
constraints. It is also interesting to note that some of the techniques touched
upon in this chapter have close connections to other approaches to reasoning
about programs; especially, some versions of Annotated Type Systems are
closely related to Hoare's logic for partial correctness assertions.

As mentioned earlier, the approaches to program analysis covered in this book
are semantics based rather than semantics directed. The semantics directed
approaches include the denotatioqfal based approaches [18, 66, 87, 89] and
logic based approaches [12, 13, 61, 62].

Mini Projects

Mini Project 1.1 Correctness of Reaching Definitions

In this mini project we shall increase our faith in the Type and Effect System
of Table 1.3 by proving that it is correct. This requires knowledge of regular
expressions and homomorphisms to the extent covered in Appendix C.

First we shall show how to associate a regular expression with each state-
ment. We define a function S such that S(S) is a regular expression for each
statement S E Strut. It is defined by structural induction (see Appendix B)
as follows:

S([x:=a]t) = !1

S([skip]t) = A

S(Sl; 2) = S(S-).S(S 2)
S(if [b]l then S1 else S2) = S(S1) +S(S 2)

30 INTRODUCTION

S(while b do S) = (S(S))*

The alphabet is {!Y I x E Var,,, t E Lab,} where Var,, and Lab, are finite
and non-empty sets that contain all the variables and labels, respectively, of
the statement S, of interest. As an example, for S,, being

if [x>O]1 then [x:=x+1] 2 else ([x:=x+2] 3; [x:=x+3]4)
we have S(S,) =I2 + (!3 . 11).

Correctness of X. To show the correctness of the X component in
S : E X E we shall for each y E Var,, define a homomorphism

SI x E Var., t E Lab*} -+ {!}*

as follows: !if y= X
ho(t)= A ify54x

As an example h.(S(S,)) = ! + (!. !) and hy(S(S,)) = A using that A. A = A
and A + A = A. Next we write

hy(S(S)) C r

to mean that the language L[hy(S(S))] defined by the regular expression
hy (S(S)) is a subset of the language Lj! !*] defined by!. !*; this is equivalent
to

-3w E L[hy(S(S))] : hy(w) = A

and intuitively says that y is always assigned in S. Prove that

ifS: E -* EandyEXthenh((S(S)) C I.!*

by induction on the shape of the inference tree establishing S : E W E
(see Appendix B for an introduction to the proof principle).

Correctness of RD. To show the correctness of the RD component
in S : E - E we shall for each y E Var, and t' E Lab, define a
homomorphism

h"': {!' I x E Var.,t E Lab,} -+ {!,?}*

as follows:
!ify=x A f=f'

hl'(l) = ? ify=x A totI'
A ify$x

As an example h2(S(S,)) = !+ (? • ?) and h(,(S(S,)) = A. Next

h" '(S(S)) C ((!+?)* +

Exercises 31

is equivalent to
-,3w E 1[S(S)] : ht (w) ends in!

and intuitively means than the last assignment to y could not have been
performed at the statement labelled t'. Prove that

if S: E - E and (y,e') • RD then ht (S(S)) C ((!+?)* ?) + A

by induction on the shape of the inference tree establishing S: E _R D. u

Exercises

Exercise 1.1 A variant of Reaching Definitions replaces RD E P(Var x
Lab) by RL E P(Lab); the idea is that given the program, a label should
suffice for finding the variables that may be assigned in some elementary
block bearing that label. Use this as the basis for modifying the equation
system given in Section 1.3 for R to an equation system for RL. (Hint:
It may be appropriate to think of RD = {(xl, ?),... , (x, ?)} as meaning
RD = {(xi,?,),." ", (x,?)} and then use RL = {?ý1 ,, -,?j}.)

Exercise 1.2 Show that the solution displayed for the Control Flow Anal-
ysis in Section 1.4 is a solution. Also show that it is in fact the least solution.
(Hint: Consider the demands on C(2), C(4), ý(x), C(1) and C(5).) 0

Exercise 1.3 Show that if (a, -y) is a Galois connection then a uniquely
determines -y (meaning that if also (a, -y) is a Galois connection then Y = -y')
and similarly that y uniquely determines a.

Exercise 1.4 For F as in Section 1.3 and G as in Section 1.5 show that

So G o ' _ F; this involves showing that

a(Gj ("y(RD 1), ... ,". (RD 1 2))) C Fj(RD 1,••, RD1 2)

for all j and (RDI,..., RD12). Determine whether or not F = 5 o G o 1. M

Exercise 1.5 Consider the Annotated Type System for Reaching Defini-
tions defined in Table 1.2 in Section 1.6 and suppose that we want to stick
to the first (and unsuccessful) explanation of what S : RD1 -+ RD2 means in
terms of Data Flow Analysis. Can you change Table 1.2 (by modifying or
removing axioms and rules) such that this becomes possible?

32 INTRODUCTION

Exercise 1.6 Consider the Chaotic Iteration algorithm of Section 1.7 and
suppose that

E_ R E F(R--) E F"(0') = F"+1(0)

holds immediately before the assignment to RDj; show that is also holds

afterwards. (Hint: Write R6' for (RD 1,...,Fj(R-),...,RD 12) and use the

monotonicity of F and R C F(R0) to establish that RE R-' C F(R--) gF(R6').) ,

Exercise 1.7 Use the Chaotic Iteration scheme of Section 1.7 to show
that the information displayed in Table 1.1 is in fact the least fixed point of
the function F defined in Section 1.3. u

Exercise 1.8 Consider the following program

[z:=1]1; while [x>0]2 do ([z: =z*y]3 ; [x: =x-1] 4)

computing the x-th power of the number stored in y. Formulate a system
of data flow equations in the manner of Section 1.3. Next use the Chaotic
Iteration strategy of Section 1.7 to compute the least solution and present it
in a table (like Table 1.1).

Exercise 1.9 Perform Constant Folding upon the program

[x: =10J1; [y :x+10]2 ; [z: =y+x]3

so as to obtain
[x: =10]'; [y: =20]2 ; [z: =30]3

How many ways of obtaining the result are there? m

Exercise 1.10 The specification of Constant Folding in Section 1.8 only
considers arithmetic expressions. Extend it to deal also with boolean expres-
sions. Consider adding axioms like

RDF ([skip]l; S) >' S

RD F- (if [true]l then S else S2) > SI

and discuss what complications arise.

Exercise 1.11 Consider adding the axiom

RD P- [x :a] > [x := a[y --+ a']]-
if y E FV(a) A (y,?) ý RDenty (f) A

V(z,f') E RDentri(e) : (y = z ý [-...]" is [y :=

to the specification of Constant Folding given in Section 1.8 and discuss
whether or not this is a good idea. u

Chapter 2

Data Flow Analysis

In this chapter we introduce techniques for Data Flow Analysis. Data Flow
Analysis is the traditional form of program analysis which is described in
many textbooks on compiler writing. We will present analyses for the simple
imperative language WHILE that was introduced in Chapter 1. This includes
a number of classical Data Flow Analyses: Available Expressions, Reaching
Definitions, Very Busy Expressions and Live Variables. We introduce an
operational semantics for WHILE and demonstrate the correctness of the Live
Variables Analysis. We then present the notion of Monotone Frameworks
and show how the examples may be recast as such frameworks. We continue
by presenting a worklist algorithm for solving flow equations and we study
its termination and correctness properties. The chapter concludes with a
presentation of some advanced topics, including Interprocedural Data Flow
Analysis and Shape Analysis.

2.1 Intraprocedural Analysis

In this section we present a number of example Data Flow Analyses for
the WHILE language. The analyses are each defined by pairs of functions
that map labels to the appropriate sets; one function in each pair specifies
information that is true on entry to the block, the second specifies information
that is true at the exit.

Initial and final labels. When presenting examples of Data Flow
Analyses we will use a number of operations on programs and labels. The
first of these is

init : Strnt -+ Lab

which returns the initial label of a statement:

33

34 DATA FLOW ANALYSIS

init([x := a]') = I

init([skipl') = t

init(SI;S 2) = init(S1)
init(if [b]' then S else S2) = f

init(while [b]' do S) = f

We will also need a function

final: Stmt -+ P(Lab)

which returns the set of final labels in a statement; whereas a sequence of
statements has a single entry, it may have multiple exits (as for example in
the conditional):

final([x := a]') = {I}
final([skip]') = It}

final(Si; S 2) = final(S2)

final(if [b]' then S1 else S2) = final(Sl) U final(S 2)

final(while [b]t do S) = It}

Note that the while-loop terminates immediately after the test has evaluated
to false.

Blocks. To access the statements or test associated with a label in a
program we use the function

blocks: Strut -+ P(Blocks)

where Blocks is the set of statements, or elementary blocks, of the form
[x: =a]' or [skip]t as well as the set of tests of the form [b]'. It is defined as
follows:

blocks([x := a]') = {[x := a]t}

blocks([skip]') = {[skip]'}
blocks(Si;S 2) = blocks(S1) U blocks(S2)

blocks(if [b]' then S, else S2) = {[b]t} U blocks(S1) U blocks(S2)

blocks(while [b]t do S) = {[b]'} U blocks(S)

Then the set of labels occurring in a program is given by

labels: Stmnt -4 P(Lab)

where
labels(S) = {I I [B]t E blocks(S)}

Clearly init(S) E labels(S) and final(S) C labels(S).

2.1 Intraprocedural Analysis 35

Flows and reverse flows. We will need to operate on edges, or flows,
between labels in a statement. We define a function

flow: Stint -+ P(Lab x Lab)

which maps statements to sets of flows:

flow([x := a]t) = 0

fow([skip]t) = 0

fow(Sl; S2) = Row(SI) U fow(S2)

U{(I, init(S2)) I f E flnal(SI)}
flow(if [b]t then Si else S2) = flow(S1) U flow(S 2)

U{(t, init(S1)), (f, init(S2))}

fiow(while [b]t do S) = flow(S) U {(I, init(S))}

u{(t',e) I I' E final(S)}

Thus labels(S) and flow(S) will be a representation of the flow graph of S.

Example 2.1 Consider the following program, power, computing the x-th
power of the number stored in y:

[z: =1]1; while [x>O] 2 do ([z: =z*y]3; [x: =x-1]4)

We have init(power) = 1, final(poiw.er) = {2} and labels(power) = {1, 2,3,4}.
The function flow produces the following set

{(1, 2), (2,3), (3,4), (4, 2)}

which corresponds to the flow graph in Figure 2.1.

The function flow is used in the formulation of forward analyses. Clearly
init(S) is the (unique) entry node for the flow graph with nodes labels(S)
and edges flow(S). Also

labels(S) = {init(S)} U {It I (t,t') E fow(S)} U {t' I (ff') E flow(S)}

and for composite statements (meaning those not simply of the form [B]t)
the equation remains true when removing the {init(S)} component.

In order to formulate backward analyses we require a function that computes
reverse flows:

flowa : Stint -+ P(Lab x Lab)

It is defined by:

flow"(S) - {(f, ') I (f',f) E flow(S)}

36 DATA FLOW ANALYSIS

S~no

Iyes

I[_z Z*y]3

I,

Figure 2.1: Flow graph for the power program.

Example 2.2 For the power program of Example 2.1, flowR produces

{(2, 1), (2,4), (3,2), (4, 3)}

which corresponds to a modified version of the flow graph in Figure 2.1 where
the direction of the arcs has been reversed. M

In case final(S) contains just one element that will be the unique entry node
for the flow graph with nodes labels(S) and edges flowR(S). Also

labels(S) = final(S) u {It (t, ') E fiowR(S)} U {t' I (f, f') E fiow'"(S)}

and for composite statements the equation remains true when removing the

final(S) component.

The program of interest. We will use the notation S, to repre-
sent the program that we are analysing (the "top-level" statement), Lab, to

represent the labels (labels(S)) appearing in S., Var, to represent the vari-
ables (FV(S.)) appearing in S., Blocks, to represent the elementary blocks

(blocks(S.)) occurring in S., and AExp. to represent the set of non-trivial
arithmetic subexpressions in S.; an expression is trivial if it is a single vari-
able or constant. We will also write AExp(a) and AExp(b) to refer to the
set of non-trivial arithmetic subexpressions of a given arithmetic, respectively
boolean, expression.

To simplify the presentation of the analyses, and to follow the traditions of
the literature, we shall frequently assume that the program S. has isolated

2.1 Intraprocedural Analysis 37

entries; this means that:

Ve E Lab : (t, init(S.)) V flow(S.)

This is the case whenever S, does not start with a while-loop. Similarly, we
shall frequently assume that the program S,. has isolated exits; this means
that:

ye1 E final(S.) Me2 E Lab: (ti, t 2) V flow(S.)

A statement, S, is label consistent if and only if:

[B1]t , [B2]' E blocks(S) implies B1 = B 2

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs
only once), then S is label consistent. When S is label consistent the clause
"where [B]t E blocks(S)" is unambiguous in defining a partial function from
labels to elementary blocks; we shall then say that f labels the block B. We
shall exploit this when defining the example analyses below.

Example 2.3 The power program of Example 2.1 has isolated entries but
not isolated exits. It is clearly label consistent as well as uniquely labelled. *

2.1.1 Available Expressions Analysis

The Available Expressions Analys iwill determine:

For each program point, which expressions must have already
been computed, and not later modified, on all paths to the pro-
gram point.

This information can be used to avoid the re-computation of an expression.
For clarity, we will concentrate on arithmetic expressions.

Example 2.4 Consider the following program:

[x: =a+b]'; [y: =a*b]2 ; while [y>a+b]3 do ([a: =a+l]4 ; [x: =a+b]5)

It should be clear that the expression a+b is available every time execution
reaches the test (label 3) in the loop; as a consequence, the expression need
not be recomputed. a

The analysis is defined in Table 2.1 and explained below. An expression is
killed in a block if any of the variables used in the expression are modified in
the block; we use the function

kiMIAE : Blocks, -+ P(AExp,)

38 DATA FLOW ANALYSIS

kill and gen functions

ki11AE([X := a]') = {a' E AExp, I x E FV(a')}
killAE([skip]') 0

kilIAE([bI') = 0

genAE[X := a]') = {a' E AExp(a) I x 0 FV(a')}
genAE([skip]t) = 0

genAE([b]') = AExp(b)

data flow equations: AE=

AEentry() 0J if f = init(S.)
n{AE..jt(t') I (•',) E flow(S,)} otherwise

AEeit(f) (AEetry(I)\killAE(B')) U genAE(Bt)
where B' E blocks(S,)

Table 2.1: Available Expressions Analysis.

to produce the set of non-trivial expressions killed in the block. Test and
skip blocks do not kill any expressions and assignments kill any expression
that uses the variable that appeafs in the left hand side of the assignment.
Note that in the clause for [x: =a]t we have used the notation a' E AExp.
to denote the fact that a' is a non-trivial arithmetic expression appearing in
the program.

A generated expression is an expression that is evaluated in the block and
where none of the variables used in the expression are later modified in the
block. The set of non-trivial generated expressions is produced by the func-
tion:

genAE : Blocks. -+ P(AExp.)

The analysis itself is now defined by the functions AEentry and AEezit that
each map labels to sets of expressions:

AEet,,AEe.it : Lab, -+ P(AExp,)

For a label consistent program S,, (with isolated entries) the functions can
be defined as in Table 2.1.

The analysis is a forward analysis and, as we shall see, we are interested
in the largest sets satisfying the equation for AEentj - an expression will
be considered available if no path kills it. No expression is available at the
start of the program. Subsequently, the expressions that are available at the
entry to a block are any expressions that are available at all of the exits

2.1 Intraprocedural Analysis 39

yes

Figure 2.2: A schematic flow graph.

from blocks that flow to the block; if there are no such blocks the formula
evaluates to AExp,. Given a set of expressions that are available at the
entry, the expressions available at the exit of the block are computed by
removing killed expressions and adding any new expression generated by the
block.

To see why we require the largest solution, consider Figure 2.2 which shows
the flow graph for a program in a schematic way. Such a flow graph might
correspond to the following progrba:

[z: =x+y]'; while [true]"' do [skip]"'

The set of expressions generated by the first assignment is {x+y}; the other
blocks do not generate expressions and no block kills any expressions. The
equations for AEenty and AE,.it are as follows:

AEenty(e) = 0

AEe,,,,t (t') = AE=,,t(t) n AEez,(e")

AE,,ety(I") = AEeit(e')

AEe=.t(e) = AEe,,.t.(e) U {x+y}

AE,,it(f') = AEet,,t,.(V')
A E .ýýt (f") = A E ,ý, t, -y. (e")

After some simplification, we find that:

AEe.ty (f') = {x+y} n AEenty(e')

There are two solutions to this equation: {x+y} and 0. Consideration of
the example and the definition of available expressions shows that the most

40 DATA FLOW ANALYSIS

informative solution is {x+y} - the expression is available every time we enter
t'. Thus we require the largest solution to the equations.

Example 2.5 For the program

[x: =a+b]'; [y: =a*b]2 ; while [y>a+b]3 do ([a: =a+ I]4 ; [x: =a+b]5)

of Example 2.4, killAE and genAE are defined as follows:

I killAE (f) genAE(e)
1 0 {a+b}
2 0 {a*b}
3 0 {a+b}
4 {a+b, a*b, a+l} 0
5 0 {a+b}

We get the following equations:

AEn,,vy(1) = 0

AEentr.y(2) = AEe.it(1)

AEe.trij-(3) = AEexit(2) n AE,,it(5)

AE.,tr,-(4) = AE,.it(3)

AEentr.y(5) = AE exit(4)

AExit (1) = AEentry(1) U {a+b}
AEextt(2) = AEentrj,(2) U {a*b}
AEeit(3) = AEentry(3) U {a+b}
AEe=it (4) = AEMtr,(4)\{a+b, a*b, a+l}
AEe•it(5) = Aentry(5) U {a+b}

Using an analogue of the Chaotic Iteration discussed in Chapter 1 (starting
with AExp, rather than 0) we can compute the following solution:

I AEentry () AEeit(t)
1 0 {a+b}
2 {a+b} {a+b, a*b}
3 {a+b} {a+b}
4 {a+b} 0

5 0 {a+b}

Note that, even though a is redefined in the loop, the expression a+b is re-
evaluated in the loop and so it is always available on entry to the loop. On
the other hand, a*b is available on the first entry to the loop but is killed
before the next iteration. M

2.1 Intraprocedural Analysis 41

kill and gen functions

kiIIRD([X := a]t) = {(x,?)}
U{(x, f') I B" is an assignment to x in S,}

kiIIRD([skip]') = 0
kIlRD([b]') = 0

genRD([X := a]) = {(X,)}
genRD([skip]') = 0

genRo([b]) = 0

data flow equations: RD=

RDent,iy(e) { {(x,?) I x E FV(S,)} if t = init(S,)

SU{RDeit(') I (t',f) E flow(S*)} otherwise

RDe.it() = (RDe.ntr,(i)\killRD(B')) U genRD(Bt)
where B' E blocks(S,)

Table 2.2: Reaching Definitions Analysis.

2.1.2 Reaching Definitions Analysis

As mentioned in Chapter 1, the Reaching Definitions Analysis should more
properly be called reaching assignments but we will use the traditional name.
This analysis is analogous to the previous one except that we are interested
in:

For each program point, which assignments may have been made
and not overwritten, when program execution reaches this point
along some path.

A main application of Reaching Definitions Analysis is in the construction
of direct links between blocks that produce values and blocks that use them;
we shall return to this in Subsection 2.1.5.

Example 2.6 Consider the following program:

[x: =5]1 ; [y:=1] 2 ; while [x> 1]3 do ([y: =x*y]4 ; [x:=x- 1]')

All of the assignments reach the entry of 4 (the assignments labelled 1 and
2 reach there on the first iteration); only the assignments labelled 1, 4 and 5
reach the entry of 5. 0

The analysis is specified in Table 2.2. The function

killRD : Blocks, -+ P(Var, x Lab,)

42 DATA FLOW ANALYSIS

produces the set of pairs of variables and labels of assignments that are
destroyed by the block. An assignment is destroyed if the block assigns a
new value to the variable, i.e. the left hand side of the assignment. To deal
with uninitialised variables we shall, as in Chapter 1, use the special label

The function
genRD : Blocks, -4 P(Var, x Lab.,)

produces the set of pairs of variables and labels of assignments generated by
the block; only assignments generate definitions.

The analysis itself is now defined by the pair of functions RDentry and RDeit
mapping labels to sets of pairs of variables and labels (of assignment blocks):

RD.,tr-•, RDexit : Lab, -+ P(Var. x Lab,)

For a label consistent program S,, (with isolated entries) the functions are
defined as in Table 2.2.

Similar to the previous example, this is a forward analysis but, as we shall
see, we are interested in the smallest sets satisfying the equation for RDent,.v
An assignment reaches the entry of a block if it reaches the exit of any of
the blocks which precede it; if there are none the formula evaluates to 0.
The computation of the set of assignments reaching the exit of a block is
analogous to the Available Expressions Analysis.

We motivate the requirement for the smallest solution by consideration of
the program [z:=x+y]t; while [true]' do [skip]t" corresponding to Figure
2.2 again. The equations for RDentry and RDe=it are as follows:

RDenty.(M) = (x,?),(y,?),(z,?)}

RDenty ') = RDezit(e)URDexit(e")

RDe.try(t") = RDe=it(e')

RDx.it(t) = (RDe.tr(e) \ {(z,?)})U{(ze)}

RD,.jt(e') = RDntr,-,(e)

RD.zt (t") = RDe..tj(e")

Once again, we concentrate on the entry of the block labelled t', R Dentr, (W');
after some simplification we get

RDe•nt, (') = {(x, ?), (y, ?), (z,t)} U RDent,,(W')

but this equation has many solutions: we can take RDntr,(e') to be any
superset of {(x, ?), (y, ?), (z, f)}. However, since f' does not generate any new
definitions, the most precise solution is { (x, ?), (y, ?), (z, f)} - we require the
smallest solution to the equations.

2.1 Intraprocedural Analysis 43

Sometimes, when the Reaching Definitions Analysis is presented in the liter-
ature, one has RDent,-y(init(S,)) = 0 rather than RDent,(init(S,)) = {(x,?) I
x E FV(S,)}. This is correct only for programs that always assign variables
before their first use; incorrect optimisations may result if this is not the case.
The advantage of our formulation, as will emerge from Mini Project 2.2, is
that it is always semantically sound.

Example 2.7 The following table summarises the assignments killed and

generated by each of the blocks in the program

[x:=5]1; [y:=1]2 ;while [x>1]' do ([y:=x*y]4 ; [x:=x-1]5)

of Example 2.6:

SkillRD (f) genRD ()
1 {(x,?), (x, 1), (x,5)} {(x, 1)}
2 {(y,?),(y,2),(y,4)} {(y, 2)}
3 0 0
4 {(y,?),(y,2),(y,4)} {(y,4)}
5 {(x,?),(x,1),(x,5)} {(x,5)}

The analysis gives rise to the following equations:

RDentry (1) = (x, ?), (y-,

RDe,.try.(2) = RDerit(1)

RDentry(3) = RDeit(2) U RDý:i t(5)

RDe..try(4) = RDei t(3)

RDetry(5) = RDe.it(4)

RDerit(1) = (RDent,-y(1)\{(x, ?),(x, 1), (x, 5)}) U {(x, 1)}
RDezit(2) (RD t.&y (2)\{(y,?), (y,2), (y,4)}) U {(y,2)}

RD,.it(3) = RDent,-y(3)

RDezit(4) = (Ryet , (4)\{(y,?), (y, 2), (y, 4)}) U {(y, 4)}

RD,!.it(5) = (RDent-ry(5)\{(x,?),(x, 1),(x,5)}) U {(x,5)}

Using Chaotic Iteration we may compute the solution:

t RDentry(e) RDe.it(t)
1 {(x, ?), (y, ?)} {(y,?), (x. 1)}
2 {(y, ?), (x,)} {(x, 1), (y, 2)}
3 {(x,1),(y,2),(y,4),(x,5)} {(x,1),(y,2),(y,4),(x,5)}
4 {(x, 1), (y, 2), (y, 4), (x, 5)} {(x, 1), (y,4), (x, 5)}
5 {(x, 1), (y,4), (x,5)} {(y,4), (x, 5)}

44 DATA FLOW ANALYSIS

kill and gen functions

killVB([x a]') = {a'E AExp. I x G FV(a')}
killvB([skip]') = 0

killvB([b]) = 0

genVB([x := a]') = AExp(a)
genvB([skip]) = 0

genv ([bit) = AExp(b)

data flow equations: VB=

VBex:t M = 0 if e E final(S,)
V •){VBen-ty(t') i (e',) E flow'(S.)} otherwise

VB,,et,,y(t) = (VBe=,(t V)\kill]v (Be)) U genvB (B')
where B' E blocks(S,)

Table 2.3: Very Busy Expressions Analysis.

2.1.3 Very Busy Expressions Analysis

An expression is very busy at thecexit from a label if, no matter what path
is taken from the label, the expression must always be used before any of the
variables occurring in it are redefined. The aim of the Very Busy Expressions
Analysis is to determine:

For each program point, which expressions must be very busy at
the exit from the point.

A possible optimisation based on this information is to evaluate the expres-
sion at the block and store its value for later use; this optimisation is some-
times called hoisting the expression.

Example 2.8 Consider the program:

if [a>b]f then ([x: =b-a]2 ; [y: =a-b]3) else ([y: =b-a]4; [x: =a-b]5)

The expressions a-b and b-a are both vecy busy at the start of the condi-
tional; they can be hoisted to the start of the conditional resulting in a space
saving in the size of the code generated for this program. 0

The analysis is specified in Table 2.3. We have already defined the notion
of an expression being killed when we presented the Available Expressions

2.1 Intraprocedural Analysis 45

Figure 2.3: A schematic flow graph (in reverse).

Analysis; we use an equivalent function here:

kilIvB : Blocks, -4 P(AExp.)

By analogy with the previous analyses, we also need to define how a block
generates additional very busy expressions. For this we use:

genvB : Blocks. -+ P(AExp,)

All of the expressions that appear in a block are very busy at the entry to
the block (unlike what was the case for Available Expressions).

The analysis itself is defined bythe pair of functions VBetr and VBe,!it
mapping labels to sets of expressions:

VBety, VBý!jt : Lab, -4 P (AExp.)

For a label consistent program S, (with isolated exits) they are defined as in
Table 2.3.

The analysis is a backward analysis and, as we shall see, we are interested in
the largest sets satisfying the equation for VBezit. The functions propagate
information against the flow of the program: an expression is very busy at
the exit from a block if it is very busy at the entry to every block that follows;
if there are none the formula evaluates to AExp,. However, no expressions
are very busy at the exit from any final block.

To motivate the fact that we require the largest set, we consider the situation
where we have a flow graph as shown in Figure 2.3; this flow graph might
correspond to the program:

(while [x>I]t do [skip]"); [x:=x+l]"'

The equations for this program are

VBe••try() = VBe=it(t)

46 DATA FLOW ANALYSIS

VBentri(f') = VBeztt(e')

VBet,y(e") = {x+1}

VBe=it(t) = VBent,-,(e') nvB,,,tyt(e")

VBe=,t(t') = VB.,t,-j(t)

VBeit(e") = 0

and, for the exit conditions of t, we calculate:

VB5,it(t) = VBgit(t) nf {x+1}

Any subset of {x+1} is a solution but {x+l} is the most informative. Hence
we want the largest solution to the equations.

Example 2.9 To analyse the program

if [a>b]1 then ([x:=b-a12; [y:=a-b]3) else ([y:=b-a]4; [x:=a-b]5)

of Example 2.8, we calculate the following killed and generated sets:

f kilI1(t) I genv(e)
1 0 0
2 t0o {b-a}
3 0 {a-b}
4 0 {b-a}
5 0 {a-b}

We get the following equations:

VB etry(1) = VBe,.it(1)

VBget,-y(2) = VBg.jt(2) U {b-a}
VB,,ty (3) = {a-b}
VBentry(4) = VBexit(4) U {b-a}

VBgn,,tr(5) = {a-b}

VBeit(1) = VB nty,(2) nfVBntr-g(4)

VBeit(2) = VBet,-y (3)

VBg.it(3) = 0
VBg.it(4) = VB,,tv, (5)

VBeit(5) = 0

We can then use an analogue of Chaotic Iteration (starting with AExp.

2.1 Intraprocedural Analysis 47

rather than 0) to compute:

t VBentrij (f) VBeit~te)
1 {a-b,b-a} {a-b,b-a}
2 {a-b, b-a} {a-b}
3 {a-b} 0
4 {a-b, b-a} {a-b}
5 {a-b} 0

2.1.4 Live Variables Analysis

A variable is live at the exit from a label if there exists a path from the
label to a use of the variable that does not re-define the variable. The Live
Variables Analysis will determine:

For each program point, which variables may be live at the exit
from the point.

This analysis might be used as the basis for Dead Code Elimination. If the
variable is not live at the exit from a label then, if the elementary block is
an assignment to the variable, the elementary block can be eliminated.

Example 2.10 Consider the f0.lowing expression:

[x: =2]I; [y: =4]2 ; [x: =1] 3 ; (if [y>x]4 then [z: =y]5 else [z: =y*y]6); [x: =z]'

The variable x is not live at the exit from label 1; the first assignment of the
program is redundant. Both x and y are live at the exit from label 3. .

The analysis is defined in Table 2.4. The variable that appears on the left
hand side of an assignment is killed by the assignment; tests and skip state-
ments do not kill variables. This is expressed by the function:

kilILv : Blocks, -P P(Var,)

The function

genLv : Blocks, - P(Var,)

produces the set of variables that appear in the block.

The analysis itself is defined by the pair of functions LVetri and LV,=it map-
ping labels to sets of variables:

LVWexit, LVentr.y : Lab, -P. (Var.)

48 DATA FLOW ANALYSIS

kill and gen functions

killLv([x := a]t) = {I}
killiv([skip]t) = 0

kill~v([b]') = 0
genLv([x := a]t) = FV(a)

genLv([skip]') = 0
genLv ([b] t) - FV(b)

data flow equations: LV=

10 if f E final(S.)
LVexit() =M U{LVe.tr,(t') 1 (1',e) E flowR(S.)} otherwise

LVentry(f) = (LVezit(e)\killiv(B')) U genLv(Bt)
where B1 E blocks(S,)

Table 2.4: Live Variables Analysis.

For a label consistent program S,, (with isolated exits) they can be defined
as in Table 2.4. The equation for LVezit(f) includes a variable in the set of
live variables (at the exit from t) if it is live at the entry to any of the blocks
that follow f; if there are none then the formula evaluates to 0.

The analysis is a backward analysis and, as we shall see, we are interested in
the smallest sets satisfying the equation for LVe eit. To see why we require
the smallest set, consider once again the program

(while [x>i1t do [skip]t'); [x:=x+l]"'

corresponding to the flow graph in Figure 2.3. The equations for the program
are:

LVe.tr (M) = LVe.=t(f) U {x}

LVentry (') = LVe.it(')

WLentry,(t") = {X}

Lve.it() = LVentry(e) U LVoety(t")
LVexit(t') = LVentryM()
LVexit(V") = 0

Suppose that we are interested in LVWeit(t); after some calculation wa get:

LVex=t() = Lvezit(e) U {x}

2.1 Intraprocedural Analysis 49

Any superset of {x} is a solution. Optimisations based on this analysis are
based on "dead" variables - the smaller the set of live variables, the more
optimisations are possible. Hence we shall be interested in the smallest solu-
tion {x} to the equations. Correctness of the analysis will be established in
Section 2.2.

Example 2.11 Returning to the program

[x: =2]1; [y: =412 ; [x: =1]3 ; (if [y>x] 4 then [z: =y]5 else [z: =y*y] 6); [x: =z]7

of Example 2.10, we can compute kilhLv and genLv as:

t kilILv(1) genLv(f)
1 {x} 0
2 {y} 0
3 {x} 0
4 0 {x,y}
5 {z} {y}
6 {z} {y}
7 {x} 1z}

We get the following equations:

LV.,tr.y(1) = Lv=,tt(1)\{x}

LVentry (2) = :---Ve.it(2)\{y}

LVentry(3) = LVe.it(3)\{x}

LVenr,(4) = LVe.it(4) U {x,y}

LVentrty(5) = (LV,.i,(5)\{z}) U {y}

LVe.tr,(6) = (LVezit(6)\{z}) U {y}

LVentr~y(7) = {z}

LV eýt(1) = LVent,,i(2)

LVe.it (2) = Let,. (3)

LVett(3) = LVentr,(4)

LV•,it(4) = LVenty(5) U LVe.try,(6)

LVe.it(5) = LVentr,,y(7)

LVea~it(6) = LVentry (7)
LV =it(7) = 0

We can then use Chaotic Iteration to compute the solution:

50 DATA FLOW ANALYSIS

t LV.ntr() Lveait(e)
1 0 0
2 0 {y}
3 {y} {x,y}
4 {x,y} {y}
5 {y} {z}
6 {y} 1z}
7 {z} 0

Note that we have assumed that all variables are dead at the end of the
program. Some authors assume that the variables of interest are output at
the end of the program; in that case LVeit (7) should be {x, y, z} which means
that LVent,, (7), LVeit(5) and LVezit(6) should all be {y, z}. 0

2.1.5 Derived Data Flow Information

It is often convenient to directly link labels of statements that produce values
to the labels of statements that use them. Links that, for each use of a vari-
able, associate all assignments that reach that use are called Use-Definition
chains or ud-chains. Links that, for each assignment, associate all uses are
called Definition-Use chains or du-chains.

In order to make these definitionsý more precise, we will use the notion of a
definition clear path with respect to some variable. The idea is that e,, t,,
is a definition clear path for x if none of the blocks labelled ti, ' ", t, assigns
a value to x and if tn uses x. Formally, for a label consistent program S, we
define the predicate clear:

clear(x,t,t') = 3t,...,tn:

(t4 = t) A (V = ') A (n > o) A
(Vi E {1,. .- ,n - 1}: (ti,ti+l) E flow(S,,)) A
(Vi E {1,. .. ,n - 1} :-def(x, ti)) A use(x, tn)

Here the predicate use checks whether the variable is used in a block

use(x, t) = (3B : [B]t E blocks(S,) A x E genLv([B]t))

and the predicate def checks whether the variable is assigned in a block:

det(x,t) = (3B : [B]t E blocks(S,) A x E killLv([B]1))

Armed with these definitions, we can define the functions

ud, du : Var, x Lab, -+ P(Lab,)

2.1 Intraprocedural Analysis 51

as follows:

ud(x, ') = {e I def(x,t) A 3e" : (t,I") E flow(S.) A clear(x,f",t')}

U {? I clear(x, init(S.), t')}

t{' I def(x,f) A 3t" : (t, t") E flow(S.) A clear(x,t", ')}

du(xt) if= tf ?
It {0' I clear(x, init(S.), l')}

ift= ?

So ud(x, f') will return the labels where an occurrence of x at t' might have
obtained its value; this may be at a label t in S,,. or x may be uninitialised as
indicated by the occurrence of "?". And du(x, t) will return the labels where
the value assigned to x at t might be used; again we distinguish between
the case where x gets its value within the program and the case where it is
uninitialised. It turns out that:

du(x,t) = It' I E ud(x,0')}

Before showing how ud- and du-chains can be used, we illustrate the functions
by a simple example.

Example 2.12 Consider the program:

[x:=O]1; [x:=3]2 ; (if [z=x] 3 then fz:=0]4 else [z:=x]S); [y:=x]6 ; [x:=y+z]7

Then we get:

ud(x,t) x y z du(x,t) x y z
1 0 0 0 1 0 0 0
2 0 0 0 2 {3,5,6} 0 0
3 {2} 0 {?} 3 0 0 0
4 0 0 0 4 0 0 {7}
5 {2} 0 0 5 0 0 {7}
6 {2} 0 0 6 0 {7} 0
7 0 {6} {4,5} 7 0 0 0

? 0 0 {3}

The table for ud shows that the occurrence of x in block 3 will get its value
in block 2 and the table for du shows that the value assigned to x in block 2
may be used in block 3, 5 and 6. 0

One application of ud- and du-chains is for Dead Code Elimination; for the
program of Example 2.12 we may e.g. remove the block labelled 1 because
there will be no use of the value assigned to x before it is reassigned in the
next block. Another application is in Code Motion; in the example program
the block labelled 6 can be moved to just in front of the conditional because

52 DATA FLOW ANALYSIS

it only uses variables assigned in earlier blocks and the conditional does not
use the variable assigned in block 6.

The definitions of ud- and du-chains do not give any hints as to how to
compute the chains - the definitions are not constructive. It is possible to
give constructive definitions which re-use some of the functions that we have
defined in the earlier examples. In order to define ud-chains we can use
RDentr,, which records the assignments reaching a block and define

UD : Var, x Lab, -+ P(Lab,)

by:

UD(x,) = t{' I (xe) E RDentry(-)} if x E genLV(B t)

U0 otherwise

Similarly, we can define a function DU : Var,, x Lab, -+ P(Lab,) for du-
chains based on the functions we have seen previously. We shall leave this to
Mini Project 2.1 where we also consider the formal relationship between the
UD and DU functions and the functions ud and du.

2.2 Theoretical Properties

In this section we will show that the Live Variables Analysis of Subsection
2.1.4 is indeed correct; the correctness of the Reaching Definitions Analysis is
the topic of Mini Project 2.2. We sfiall begin by presenting a formal semantics
for WHILE.

The material of this section may be skimmed through on a first reading;
however, it is frequently when conducting the correctness proof that the final
and subtle errors in the analysis are found and corrected! In other words,
proving the semantic correctness of the analysis should not be considered a
dispensable development that is merely of interest for theoreticians.

2.2.1 Structural Operational Semantics

We choose to use a (so-called small step) Structural Operational Semantics
because it allows us to reason about intermediate stages in a program execu-
tion and it also allows us to deal with non-terminating programs.

Configurations and transitions. First define a state as a mapping

from variables to integers:

a E State = Var -+ Z

A configuration of the semantics is either a pair consisting of a statement
and a state or it is a state; a terminal configuration is a configuration that
simply is a state. The transitions of the semantics are of the form

2.2 Theoretical Properties 53

A : AExp -+(State -+ Z)

A[xju = a(x)

A[njo, = Ar[fl
A[a, oPa a 210' = A[aija oPa A[a 2j]

1 : BExp - (State -+ T)

B[not bloa = -'B[bla

B[b, oPb b2]o = B[bila oPb B[b2 •a

B[al op, a210' = A[aiJa op, Ala2&a

Table 2.5: Semantics of expressions in WHILE.

(S, a) -+ a' and (S,a) -+ (S',o')

and express how the configuration is changed by one step of computation.
So in the configuration (S, a) one of two things may happen:

"* the execution terminates after one step and we record that by giving
the resulting state a', or

"* the execution does not terminate after one step and we record that by
a new configuration (S', a') 7where S' is the rest of the program and a'
is the updated state.

To deal with arithmetic and boolean expressions we require the semantic
functions

A: AExp -(State -+ Z)

B: BExp -(State -4 T)

whose definition axe given in Table 2.5. Here we assume that op., opb and
op, are the semantic counterparts of the corresponding syntax. We have
also assumed the existence of K/ : Num -+ Z which defines the semantics
of numerals. For simplicity we have assumed that no errors can occur; this
means that e.g. division by 0 will have to produce an integer. One can modify
the definition so as to allow errors but this will complicate the correctness
proof to be performed below. Note that the value of an expression is only
affected by the variables appearing in it, that is:

if Vx E FV(a): al(x) = 0'2(x) then Aaalor = A[a]Ja2

if Vx E FV(b): al(x) = 0'2(X) then Bibla 1 = Bib]ja2

These results can easily be proved by structural induction on expressions
(or by mathematical induction on their size); see Appendix B for a brief
introduction to these proof principles.

54 DATA FLOW ANALYSIS

[ass] ([x := a], a) -+ aox ý-+ A[aor]

[skip] ([skip]', a) a

(SI, a) - (Sl, o')

(Sl;S2,O) - (Sl;S2,a'O

1seq(eA , or) 0"'
[seq2] (S1; S2, a) (• 2 , a')

[if,] (if [b]t then S else S2 ,o) -+ (Si, o) if B[b]a = true

[if2] (if [b]' then S, else 82, a) -- (S2, u) if B[bja = false

[whi] (while [b]l do S, a) -* ((S; while [b]l do S), a) if 3iblr = true

[wh2] (while [b]t do S, a) -+ a if 13bla = false

Table 2.6: The Structural Operational Semantics of WHILZ.

The detailed definition of the semantics of the statements may be found in
Table 2.6; it is explained below.

The clause [ass] specifies that the'assignment x := a is executed in one step;
here we write a[* -+ Alala] for the state that is as a except that x is mapped
to A[ala, i.e. the value that a will evaluate to in the state a. Formally:

(a[x -+ A[ala])y A[ala ifx=y
a•(y) otherwise

The semantics of sequencing is given by the two rules [seq,] and [seq2] and
the idea is as follows. The first step of executing Si; S2 is the first step of
executing S1. It may be that only one step is needed for S to terminate and
then the rule [seq2] applies and says that the new configuration is (S2, a')
reflecting that we are ready to start executing S2 in the next step. Alter-
natively, S1 may not terminate in just one step but gives rise to some other
configuration (SI, a'); then the rule [seq1] applies and it expresses that the
rest of S1 and all of S2 still have to be executed: the next configuration is

(Si; S2, O').
The semantics of the conditional is given by the two axioms [if,] and [if2] ex-
pressing that the first step of computation will select the appropriate branch
based on the current value of the boolean expression.

Finally, the semantics of the while-construct is given by the two axioms [whi]
and [wh2]; the first axiom expresses that if the boolean expressions evaluates

2.2 Theoretical Properties 55

to true then the first step is to unroll the loop and the second axiom expresses
that the execution terminates if the boolean expression evaluates to false.

Derivation sequences. A derivation sequence for a statement S and
a state a, can take one of two forms:

"* It is a finite sequence of configurations (SI, a,), ... (S,, a,), On+1 sat-
isfying (Si,ouj) -" (Si+I,O'i+I) for i = 1,. *-,n-1 and (S, a,,) -+ ,;n+;
this corresponds to a terminating computation.

"* It is an infinite sequence of configurations (S1, oa),"', (Si, aj), .. satis-
fying (Si,ai) -+ (Si+l,ai+1) for all i > 1; this corresponds to a looping
computation.

Example 2.13 We illustrate the semantics by showing an execution of
the factorial program of Example 1.1. In the following we assume that the
state a, ,,,,, maps x to n,, y to ny and z to n,. We then get the following
finite derivation sequence:

([y: =x]l; [z: =1]2 ; while [y>1] 3 do ([z: =z*y]4 ; [y: =y-1]'); [y: =0]6 , 0 3̀00)

-+ ([z:=1] 2 ;while [y>1]' do ([z:=z*y]4 ; [y:=y-t]'); [y:=0]6 ,a330)

- ((while [y>1] 3 do ([z:=z*y] 4 ;[y :=y-I]');[y:=016 ,U331)

+ ([z:=z*y]4 ; [y:=y-1]5 ;

while [y>l]3 do ([z: =z*y] 4 ; [y: =y-1] 5); [y: =0]6 ,u 3 3 1)

-* ([y:=y-1] 5 ;while [y>1] 3 do ([z:=z*y] 4 ; [y:=y-I]5); [y:=016 ,a 333)

- ((while [y>1] 3 do ([z:=z*y]4;[y :=y-1]5);[y:=016 ,U323)

-(([z:=z*y]4 ; [y:=y-1] 5 ;

while [y>1] 3 do ([z:=z*y]4 ; [y: =y-1] 5); [y: =0]6 , a 323)

-4 ([y:=y-1]5 ; while [y>1] 3 do ([z: =z*y] 4 ; [y: =y-1] 5); [y: =O] 6 , o326)

-+ (while [y>1] 3 do ([z:=z*y] 4 ; [y:=y-1]5); [y:=0]6 ,a3 16)

- [y: =0]6, 0`316)

-- U306

Note that labels have no impact on the semantics: they are merely carried
along and never inspected. 0

Properties of the semantics. We shall first establish a number of
properties of the operations on programs and labels that we have used in
the formulation of the analyses. In the course of the computation the set of

56 DATA FLOW ANALYSIS

flows, the set of final labels and the set of elementary blocks of the statements
of the configurations will be modified; Lemma 2.14 shows that the sets will
decrease:

Lemma 2.14

(i) If (S, a) -+ a' then final(S) = {init(S)}.

(ii) If (S, a) -((S', a') then final(S) D final(S').

(iii) If (S, a) -((S', a') then flow(S) _ flow(S').

(iv) If (S, a) -+ (S', a') then blocks(S) Q blocks(S') and if S is label con-
sistent then so is S'. 0

Proof The proof of (i) is by induction on the shape of the inference tree used to
establish (S, a) -+ a'; we refer to Appendix B for a brief introduction to the proof
principle. Consulting Table 2.6 we see that there are three non-vacuous cases:

The case [ass]. Then ([x := a]', a) -+ a[x ' A[a]a] and we get:

final([x := a]') = {f} = {init([x := ale)}

The case [skip]. Then ([skip]t, a) -+ a and we get:

flnal([skip]') = {I} = {init([skip]')}

The case [wh 2]. Then (while [b]' do Sa) -- a because B[bja = false and we get:

final(while [b]l do S) = {t} = {init(while [b]' do S)}

This completes the proof of (i).

The proof of (ii) is by induction on the shape of the inference tree used to establish
(S, a) -+ (S', a'). There are five non-vacuous cases:

The case [seqa]. Then (Si; S2 , a) -+ (S; S2, a') because (Si, a) -+ (Sj, a') and we
get:

final(Si; S2) = final(S2) = final(Sl; S2)

The case [seq2]. Then (Si; S2 ,a) -4 (S 2,a') because (Si,a) --+ a' and we get:

final(SI; S2) = final(S2)

The case [if,]. Then (if [b]' then S1 else S2, Or) -+ (Si, a) because B[bja = true
and we get:

final(if [b]' then S1 else S2) = final(Si) U final(S 2) 2 final(Si)

The case [if2] is similar to the previous case.

The case [whi]. Then (while [b]' do S, a) -- ((S; while [b]' do S), a) because B[bja
- true and we get:

final(S; while [b]6 do S) - final(while [b]' do S)

. . ., •

2.2 Theoretical Properties 5i

This completes the proof of (ii).

The proof of (iii) is by induction on the shape of the inference tree used to establish
(S, a) -+ (S', a'). There are five non-vacuous cases:

The case [seq1]. Then (Si; S 2, a) -+ (Si; S2, a') because (Si, a) -+ (Si, a') and we
get

flow(SI;S 2) = flow(Sl) U flow(S 2) U {(1,init(S2)) t e final(Si)}

D flow(Sl) U flow(S 2) U {(1, init(S2)) t e E final(Si)}

Sflow(Sl) U flow(S2) U {(, init(S2)) f E fina1(S•)}
flow(Si;S 2)

where we have used the induction hypothesis and (ii).

The case [seq2]. Then (Si; S2,a) -+ (S2,a') because (Si,a) -4 a' and we get:

flow(Si; S2) = flow(S 1) U flow(S 2) U { (, init(S2)) t E final(Si)}

2 flow(S2)

The case [if,]. Then (if [b] t then Si else $2,o') -+ (SE,u) because B[b]j = true
and we get:

flow(if [b]t then S1 else S2) = flow(S 1) U Bow(S 2)

U {(tinit(S1)), (I, init(S2))}

D flow(S 1)

The case [if2] is similar to the previous case.

The case [wh]. Then (while [b]' do S, a) -4 (S; while [b]' do S, a) because B[b]a
= true and we get:

fow(S; while [b]' do S) = flow(S) U fiow(while [bit do S)

U {(I',e) I t' E final(S)}
= flow(S) U flow(S) U {(f,init(S))}

u {(i',t) It' E final(S)} U {(I(,f) It' E fna(S)}
= flow(S) U {(f,init(S))} U {(fi',) It' E flnal(S)}
= flow(while [b]t do S)

This completes the proof of (iii).

The proof of (iv) is similar to that of (iii) and we omit the details.

2.2.2 Correctness of Live Variables Analysis

Preservation of solutions. Subsection 2.1.4 shows how to define an
equation system for a label consistent program S, (with isolated exits); we will

58 DATA FLOW ANALYSIS

refer to this system as LV= (S,). The construction of LV= (S.) can be modified
to give a constraint qystem LVC-(S.) of the form studied in Subsection 1.3.2:

f 0 if t E final(S.)
LVeit(e) _ U{LVnitry(f')I (',t) E flow'R(S.)} otherwise

LVe-try (t) _ (LVeztjt (t) \kilILv (B')) U genLv (Be)

where Bt E blocks(S,)

We make this definition because in the correctness proof we will want to use
the same solution for all statements derived from S,; this will be possible for
LV:(S.) but not for LV=(S.).

Now consider a collection live of functions:

liveent,.,ry liveexit : Lab, -+ P(Var.)

We say that live solves LV=(S), and write

live [LV=(S)

if the functions satisfy the equations; similarly we write

live ý= LV9(S)

if live solves LVý (S.). The following result shows that any solution of the
equation system is also a solution of the constraint system and that the least
solutions of the two systems coincide.

Lemma 2.15 Consider a label consistent program S.. If live H LV=(S,)
then live [LVC-(S.). The least solution of LV=(St) coincides with the least
solution of LV-(S.). a

Proof If live F- LV=(S.) then clearly live = LVC-(S.) because "D" includes the
case of "=".

Next let us prove that LVý-(S.) and LV=(S.) have the same least solution. We
gave a constructive proof of a related result in Chapter 1 (under some assumptions
about finiteness) so let us here give a more abstract proof using more advanced
fixed point theory (as covered in Appendix A). In the manner of Chapter 1 we
construct a function Fs such that:

live LVC-(S) iff live -_ F~s(live)

live = LV=(S) iff live = F~S(live)

Using Tarski's Fixed Point Theorem (Proposition A.10) we now have that Fs has
a least fixed point Ifp(Fs) such that

lfp(Fs) = fl{live i live]1 FS (live)} = l{live I live = Fs (live)}

2.2 Theoretical Properties 59

(S,ul) -+ (Si',o4) -" ... - (Si",O') - o r1i

=LVC- =LVC- =V

live live ... live

Figure 2.4: Preservation of analysis result.

and since lfp(Fsv) = Fl(1fp(FL,)) as well as 1fp(Fs) ; FS(1fp(FS)) this proves
the result. a

The next result shows that if we have a solution to the constraint system
corresponding to some statement SI then it will also be a solution to the
constraint system obtained from a sub-statement S2 ; this result will be es-
sential in the proof of the correctness result.

Lemma 2.16 If live ý= LVý-(S 1) (with S1 being label consistent) and
flow(S 1) D flow(S2) and blocks(S1) D blocks(S2) then live ý= LV-C(s2) (with
S2 being label consistent). M

Proof If S1 is label consistent and b-Uocks(Si) D blocks(S 2) then also S2 is label
consistent. If live k LV- (SI) then live also satisfies each constraint in LV- (S2) and
hence live • LVC-(S 2). 0

We now have the following corollary expressing that the solution to the con-
straints of LVC- is preserved during computation; this is illustrated in Figure
2.4 for finite computations.

Corollary 2.17 If live ý= LVC(S_) (for S being label consistent) and if
(S, a) -+ (S',a') then also live k LV-(S'). 0

Proof Follows from Lemma 2.14 and 2.16. a

We also have an easy result relating entry and exit components of a solution.

Lemma 2.18 If live ý= LVý-(S) (with S being label consistent) then for
all (t,t') E flow(S) we have live,,it(t) D_ live,,,t,(,').

Proof The result follows immediately from the construction of LVC (S).

Correctness relation. Intuitively, the correctness result for the Live
Variables Analysis should express that the sets of live variables computed by

60 DATA FLOW ANALYSIS

(S,a,) - (S',oa) (S",or') ali

S-V ..I -+lXI

V = N(init(S)) V' = N(init(S')) V" = N(init(S")) t E final(S)

Figure 2.5: The correctness result for live.

the analysis are correct throughout the computation. Only the values of the
live variables are of interest for the computation: if a variable is not live then
its value in the state is irrelevant - its value cannot affect the interesting
parts of the result of the computation. Assume now that V is a set of live
variables and define the correctness relation:

al,,,-Va2 iff VxEV:a`(x)=a 2 (x)

The relation expresses that for all practical purposes the two states o- and
a2 are equal: only the values of the live variables matters and here the two
states are equal.

Example 2.19 Consider the statement [x:=y+z]l and let V1 = {y, z} and
V2 = {x}. Then or -yv a2 means al(y) = a2(y) A ao(z) = a2(z) and
aor -v 2 a2 means a (x) = a2(x).
Next suppose that ([x:=y+z]',al) -+ a' and ([x:=y+z]',a2) -+ a0. Clearly
U1 -,v` a2 ensures that ao •v2 a2. So if V2 is the set of variables live after
[x:=y+z]l then V1 is the set of variables live before [x:=y+z]t. M

The correctness result will express that the relation "-."' is an invariant under
the computation. This is illustrated in Figure 2.5 for finite computations and
it is formally expressed by Corollary 2.22 below; to improve the legibility of
formulae we write:

N(t) = iive,,,ty()

X(t) = livee.jt(f)

Since the live variables at the exit from a label are defined to be (a superset
of) the union of the live variables at the entries of all of it successor labels,
we have the following result.

2.2 Theoretical Properties 61

Lemma 2.20 Assume live 1= LVý- (S) with S being label consistent. Then
01 -X(t) 0"2 implies u1 -N(t') 0"2 for all (t,l') E flow(S).

Proof Follows directly from Lemma 2.18 and the definition of -v.

Correctness result. We are now ready for the main result. It states
how semantically correct liveness information is preserved under each step of
the execution: (i) in the case where we do not immediately terminate and
(ii) in the case where we do immediately terminate.

Theorem 2.21
If live = LVC- (S) (with S being label consistent) then:

(i) if (S,oui) -+ (S',oa) and 0o1 -N(init(S)) U2 then there exists
or such that (S, o2) -+ (S', oa) and au -N(init(S')) or , and

(ii) if (S, oI) -+ ao' and 0o1 -N(init(S)) a 2 then there exists a'
such that (S, a 2) -+ ao and au -X(init(S)) Or

Proof The proof is by induction on the shape of the inference tree used to establish

(S, ul) -+ (S', a') and (S, ol) --+ a', respectively.

The case [ass]. Then ([x := a]',al) -* ai[x i-* A[alal] and from the specification
of the constraint system we have

N(1) = livee.,.(t) = (liveexit(t)\{x}) U FV(a) = (X(e)\{x}) U FV(a)

and thus
U1 -N(t) U2 implies A[ala, = A[a]U2

because the value of a is only affected by the variables occurring in it. Therefore,
taking

ol =a2[Xi-+A~ aIC2

we have that a$(x) = a•(x) and thus aU -x(t) a 2 as required.

The case [skip]. Then ([skip]', a,) -+ ul and from the specification of the constraint
system

N(t) = live�,.ty() = (live,.j,(f)\O) U 0 = livea,,t(f) = X(f)

and we take a'2 to be U2.

The case [seql]. Then (S1;S2,al) -4 (Sl;S2,a) because (Si,al) -+ (Sj,a',). By
construction we have flow(Si; S2) ;D flow(S 1) and also blocks(Si; S2) D blocks(S1).
Thus by Lemma 2.16, live is a solution to LVc-(Si) and thus by the induction
hypothesis there exists u2 such that

(S1, a2) -- (SI, o2) and ll ý"N(init(sl)) 0'2

and the result follows.

62 DATA FLOW ANALYSIS

The case [seq,]. Then (SI;S 2 ,a,) -+ (S2, a') because (SI,al) -- a',. Once again
by Lemma 2.16, live is a solution to LV0- (Si) and thus by the induction hypothesis
there exists a2 such that:

(S1, a2) -4 a2 and a1 "x(init(st)) a 2

Now
{(, init(S2)) I e E final(Si)} C flow(Si; S2)

and by Lemma 2.14, final(S1) = {init(SI)}. Thus by Lemma 2.20
I I

al1 -N~inh(S2)) a2

and the result follows.

The case [if1]. Then (if [bit then S1 else S2, a,) -+ (Si,al) because B[b]ai =
true. Since a, -N(t) 0'2 and N(t) = live,,. 1 (1) D FV(b), we also have that
B[b]02 = true (the value of b is only affected by the variables occurring in it) and
thus:

(if [bit then S1 else S2,072) -- (Sl,a 2)

From the specification of the constraint system, N(t) = live ,e1(f) 2 liveexit(t) =
X(1) and hence a, -X(t) U2. Since (e,init(S1)) E flow(S), Lemma 2.22 gives
al -N(init(S1)) a2 as required.

The case [if2] is similal to the previous case.

The case [whi]. Then (while [b]t do S, a,) -+ (S; while [bit do S, a) because Bt[bla
= true. Since a, -N(t) U2 and N(f) D FV(b), we also have that B[ble 2 = true and
thus

(while [b]t do S, oy) - (S; while [b]t do S, a2)

and again, since N(f) = live,.t,,(f) 2 live,.it(t) = X(t) we have a, "-x(1) Or2 and
then

al "-N(init(S)) 0'2

follows from Lemma 2.20 because (1, init(S)) E flow(while [b]' do S).

The case [wh2]. Then (while [b]t do S, ol) -+ orl because B[blal = false. Since
a1 "-N(t) 02 and N(I) ;? FV(b), we also have that B[b]02 = false and thus:

(while [b]t do S,02) a2 •

From the specification of LVC(S), we have N(f) = live,,,(f() P liveeit(e) = X(e)
and thus al -X(t) 0r2.

This completes the proof. u

Finally, we have an important corollary which lifts the previous result to
program executions: (i) in the case where the derivation sequence has not
yet terminated and (ii) in the case it has terminated:

Corollary 2.22 If live H LVC-(S) (with S being label consistent) then:

(i) if (S, or) -+* (S', al) and aol "N(init(S)) ar2 then there exists a2 such
that (S, a2) -+* (S', a2) and ao -N(init(S,)) u2', and

2.3 Monotone Frameworks 63

(ii) if (S, 0l) -* a' and a, -N(init(S)) o2 then there exists a2 such that
(S, O2) -+* ao2 and a' "X(t) a' for some t E final(S).

Proof The proof is by induction on the length of the derivation sequence and uses
Theorem 2.21. E

Remark. We have now proved the correctness of Live Variables Analysis
with respect to a small step operational semantics. Obviously, the correctness
of the analysis can also be proved with respect to other kinds of semantics.
However, note that if one relies on, say, a big step (or natural) semantics then
it is not so obvious how to express (and prove) the correctness of looping
computations: in a big step semantics a looping computation is modelled by
the absence of an inference tree - in contrast to the small step semantics
where it is modelled by an infinite derivation sequence.

2.3 Monotone Frameworks

Despite the differences between the analyses presented in Section 2.1, there
are sufficient similarities to make it plausible that there might be an un-
derlying framework. The advantages that accrue from identifying such a
framework include the possibility of designing generic algorithms for solving
the data flow equations, as we will. see in Section 2.4.

The overall pattern. Each of the four classical analyses (presented in
Subsection 2.1.1 to 2.1.4) considers equations for a label consistent program
S. and they take the form

Analysis.(t) = if f E E
s UJ{Analysis.(e') I (',) E F} otherwise

Analysiso (f) = ft (Analysis. (1))

where

"* U[isnor U (and U is U or),

"* F is either flow(S.) or flowR(S.),

"* E is {init(S.)} or final(S.),

"* t specifies the initial or final analysis information, and

* ft is the transfer function associated with B' E blocks(S.).

We now have the following characterisation:

64 DATA FLOW ANALYSIS

"* The forward analyses have F to be flow(S,) and then Analysiso con-
cerns entry conditions and Analysis. concerns exit conditions; also the
equation system presupposes that S, has isolated entries.

"* The backward analyses have F to be flowA(S,) and then Analysis.
concerns exit conditions and Analysis. concerns entry conditions; also
the equation system presupposes that S,, has isolated exits.

The principle we have seen emerging in Section 2.1 is that:

" When U is n we require the greatest sets that solve the equations
and we are able to detect properties satisfied by all paths of execution
reaching (or leaving) the entry (or exit) of a label; these analyses are
often called must analyses.

" When U is U we require the least sets that solve the equations and we
are able to detect properties satisfied by at least one execution path to
(or from) the entry (or exit) of a label; these analyses are often called
may analyses.

Remark. Some authors propose a typology for Data Flow Analysis, char-
acterising each analysis by a triple from

{O~U}.) -{-4,+-}xit

where -+ means forwards, +- means backwards, 4 means smallest and f means
largest. This leads to eight possible types of analysis - a cube. In fact, given
our association of n with T and U with 4., the cube collapses to a square.
We have presented analyses of the following four types: (n, -+, t), (U, -,1-),
(n, --, t) and (U, +-, $).
It is occasionally awkward to have to assume that forward analyses have iso-
lated entries and that backward analyses have isolated exits. This motivates
reformulating the above equations to be of the form

Analysis. (f) = U{Analysis.(f') I (1',ef) E F} U t

whereL= t ifetE

Analysis.(e) = ft(Analysis.(e))

where _ satisfies I U I = I (hence 1 is not really there). This formulation
makes sense also for analyses that do not have isolated entries and exits.

In this section, we present a more formal approach to defining data flow
frameworks that exploits the similarities that we have identified above. Noth-
ing that we present in this section is dependent on the definition of elementary

2.3 Monotone Frameworks 65

blocks, or the programming language constructs; however, the techniques do
not directly apply to languages with procedures (which will be addressed in
Section 2.5). The view that we take here is that a program is a transition
system; the nodes represent blocks and each block has a transfer function as-
sociated with it that specifies how the block acts on the "input" state. (Note
that for forward analyses, the input state is the entry state, and for backward
analyses, it is the exit state.)

2.3.1 Basic Definitions

Property spaces. One important ingredient in the framework is the
property space, L, used to represent the data flow information as well as
the combination operator, U : P(L) -+ L, that combines information from
different paths; as usual U : L x L -+ L is defined by Li U 12 = LJ{l1,12}

and we write 1 for U 0. It is customary to demand that this property space
is in fact a complete lattice; as discussed in Appendix A this just means
that it is a partially ordered set, (L, _), such that each subset, Y, has a
least upper bound, [U Y. Looking ahead to the task of implementing the
analysis one often requires that L satisfies the Ascending Chain Condition;
as discussed in Appendix A this means that each ascending chain, (ln)n,
i.e. 11 _ 12 __ 13 g .. ", eventually stabilises, i.e. 3n = lI+1 = -

Example 2.23 For Reaching Definitions we have L = P(Var, x Lab,)
and it is partially ordered by subset inclusion, i.e. "E" is "C". Similarly, LU Y
is UJY, 11 U 12 is l1 U 12, and I is 0. That L satisfies the Ascending Chain
Condition, i.e. that 11 12 Cg ... implies 3n : In = l+1 ... , follows because
Var., x Lab,, is finite (unlike Var x Lab). 0

Example 2.24 For Available Expressions we have L = P(AExp,1) and
it is partially ordered by superset inclusion, i.e. "C" is "D". Similarly, U Y
is ny, 11 U 12 is l1 n 12, and I is AExp,1 . That L satisfies the Ascending
Chain Condition, i.e. that l1 D 12 D ... implies 3n : In = lIn+ ... , follows
because AExp,1 is finite (unlike AExp). N

Remark. Historically, the demands on the property space, L, have often
been expressed in a different way. A join semi-lattice is a non-empty set,
L, with a binary join operation, U, which is idempotent, commutative and
associative, i.e. 1 U I = 1, 11 U 12 = 12 U l and (li U 12) U 13 = 11 U (12 U 13).
The commutativity and associativity of the operation mean that it does not
matter in which order we combine information from different paths. The join
operation induces a partial ordering, g, on the elements by taking 11 E 12

if and only if 11 U 12 = 12. It is not hard to show that this in fact defines
a partial ordering and that 11 U 12 is the least upper bound (with respect to
E). A unit for the join operation is an element, 1, such that 1 U l = 1. It is

66 DATA FLOW ANALYSIS

not hard to show that the unit is in fact the least element (with respect to
E). It has been customary to demand that the property space, L, is a join
semi-lattice with a unit and that it satisfies the Ascending Chain Condition.
As proved in Lemma A.8 of Appendix A this is equivalent to our assumption
that the property space, L, is a complete lattice satisfying the Ascending
Chain Condition. N

Some formulations of Monotone Frameworks are expressed in terms of prop-
erty spaces satisfying a Descending Chain Condition and using a combination
operator n. It follows from the principle of lattice duality (see the Conclud-
ing Remarks of Chapter 4) that this does not change the notion of Monotone
Framework.

Transfer functions. Another important ingredient in the framework is
the set of transfer functions, ft : L -+ L for f E Lab,. It is natural to demand
that each transfer function is monotone, i.e. I E I' implies ft(l) E ft(l').
Intuitively, this says that an increase in our knowledge about the input must
give rise to an increase in our knowledge about the output (or at the least
that we know the same as before). Formally, we shall see that monotonicity
is of importance for the algorithms we develop. To control the set of transfer
functions we demand that there is a set T of monotone functions over L,
fulfilling the following conditions:

"* T contains all the transfer functions f, in question,

"* T contains the identity function, and

"* F is closed under composition of functions.

The condition on the identity function is natural because of the skip state-
ment and the condition on composition of functions is natural because of
the sequencing of statements. Clearly one can take F to be the space of
monotone functions over L but it is occasionally advantageous to consider a
smaller set because it makes it easier to find compact representations of the
functions.

Some formulations of Monotone Frameworks associate transfer functions with
edges (or flows) rather than nodes (or labels). A similar effect can be obtained
using the approach of Exercise 2.11.

Frameworks. In summary, a Monotone Framework consists of:

"* a complete lattice, L, that satisfies the Ascending Chain Condition,
and we write [j for the least upper bound operator; and

"* a set F of monotone functions from L to L that contains the identity
function and that is closed under function composition.

2.3 Monotone Frameworks 67

Note that we do not demand that F is a complete lattice or even a partially
ordered set although this is the case for the set of all monotone functions
from L to L (see Appendix A).

A somewhat stronger concept is that of a Distributive Framework. This is a
Monotone Framework where additionally all functions f in Y are required to
be distributive:

(ll U 12) = f(ll) u f(1 2)

Since f(Al U 12) Q f(ll) U f(12) follows from monotonicity, the only additional
demand is that f(lz U 12) E f(ll) U f(12). When this condition is fulfilled it
is sometimes possible to get more efficient algorithms.

Instances. The data flow equations make it clear that more than just
a Monotone (or Distributive) Framework is needed in order to specify an
analysis. To this end we define an instance, Analysis, of a Monotone (or
Distributive) Framework to consist of:

"* the complete lattice, L, of the framework;

"* the space of functions, Y, of the framework;

"* a finite flow, F, that typically is flow(S,) or flowR(S,);

"* a finite set of so-called extremal labels, E, that typically is {init(S,)}
or fina1(S,);

"* an extremal value, t E L, for the extremal labels; and

"* a mapping, f., from the labels Lab, of F and E to transfer functions
in Y.

The instance then gives rise to a set of equations, Analysis=, of the form
considered earlier:

Analysiso(f) = U{Analysis.(e') I (1',t) E F} u tE

{ I if f E Ewhere t= -L iffýE

Analysis.(t) = f,(Analysiso(t))

It also gives rise to a set of constraints, Analysis:-, defined by:

Analysis°(f) J L{Analysis.(t') I (t',t) E F} U tE

{ t if f E Ewhere = .L ifeU E

Analysis°(t) ft (Analysis. (f))

68 DATA FLOW ANALYSIS

Available Reaching Very Busy Live
Expressions Definitions Expressions Variables

L P(AExp,) P(Var. x Lab.) P(AExp.) P(Var,)

E D C D C

U n U n U
I AExp,. 0 AExp. 0

t 0 {(x,?)IxEFV(S.)} 0 0
E {init(S.)} {init(S-.)} flnal(S.,) final(S.,)

F flow(S.) flow(S.) flowR(S') flow(S.)

{f: L -+ L I 31k,lg : f(l) = (l\lk)U1g}

ft ft(l) = (I \ kill([B]t)) U gen([B]') where [B]l E blocks(S,)

Figure 2.6: Instances for the four classical analyses.

2.3.2 The Examples Revisited

We now return to the four classicaf analyses from Section 2.1 and show how
the analyses of a label consistent program, S, can be recast as an instance of
a Monotone (in fact Distributive) Framework. We refer to Figure 2.6 for all
the data needed to specify the Monotone Framework as well as the instance.

It is immediate that the property space, L, is a complete lattice in all cases.
Given the choice of a partial ordering, C, the information about the least
element, I., and the least upper bound operation, U, is immediate. Note
that we define E to be C for those analyses where we used U (and require
the least solution) in Section 2.1, and similarly, that we define E to be D
for those analyses where we used n (and required the greatest solution) in
Section 2.1. To ensure that L satisfies the Ascending Chain Condition we have
restricted the attention to the finite sets of expressions, labels and variables
occurring in the program, S,, under consideration.

The definition of the flow, F, is as one should expect: it is flow(S,) for forward
analyses and flowR(S,) for backward analyses. Similarly, the extremal labels,
E are {init(S,)} for forward analyses and final(S,) for backward analyses.
The only thing to note about the extremal value, t, is that there seems to be
no general pattern concerning how to define it: it is not always TL (nor is it
always I-L).

It remains to show that the conditions on the set F of transfer functions are

2.3 Monotone Frameworks 69

satisfied.

Lemma 2.25 Each of the four data flow analyses in Figure 2.6 is a Mono-
tone Framework as well as a Distributive Framework. 0

Proof To prove that the analyses are Monotone Frameworks we just have to
confirm that Y has the necessary properties:

The functions of Y are monotone: Assume that I E 1'. Then (I \ 1k) 9 (1' \ ik)

and, therefore ((I \ iA) U l1) C ((I' \ 1k) U 1g) and thus f(l) g f(1') as required.
Note that this calculation is valid regardless of whether 1- is C or D.

The identity function is in Y: It is obtained by taking both 1k and 1, to be 0.

The function of Y are closed under composition: Suppose f(L) = (I \ 1k) U 1, and
f'(1) = (1 \ l') U I,. Then we calculate:

(fof')(1) = (((\ 1k) U l') \k) U 1g

= (I \ k U 1k)) U ((\ 1k) U 1')

So (fo f')(l) = (1 \ lI) U l" where I" = 1' U 1k and l" = (1' \ lk) U 1g. This
completes the proof of the first part of the lemma.

To prove that the analyses are Distributive Frameworks consider f E F given by
f(l) = (I \ Ik) U 1.. Then we have:

f(l U W') = ((Lu l')\lk) U Ig

- ((I \JA) U (1' \ 1k)) U 1,
- ((I \-I) U 1g) U ((I'\ k) U 19)

- f(l) U f(A')

Note that the above calculation is valid regardless of whether U is U or nl. This
completes the proof. u

It is worth pointing out that in order to get this result we have made the
frameworks dependent upon the actual program - this is needed to enforce
that the Ascending Chain Condition is fulfilled.

Example 2.26 Let us return to the Available Expressions Analysis of the
program

[x: =a+b]'; [y: =a*b]2 ; while [y>a+b]3 do ([a: =a+l]4 ; [x: =a+b] 5)

of Examples 2.4 and 2.5 and let us specify it as an instance of the associated
Monotone Framework. The complete lattice of interest is

(P({a+b, a*b, a+1}), D)

with least element {a+b, a*b, a+1}. The set of transfer functions has the form
shown in Figure 2.6.

70 DATA FLOW ANALYSIS

The instance of the framework additionally has the flow {(1, 2), (2, 3), (3, 4),
(4,5), (5, 3)} and the set of extremal labels is {1}. The extremal value is 0
and the transfer functions associated with the labels are

fAE(y) = YU {a+b}

f AE(y) = Y U{a*b}

f3AE(y) = YU {a+b}
f 4AE(y) = Y \ {a+b,a*b,a+1}

fsAE(y) = YU{a+b}

for Y C {a+b, a*b, a+1}.

2.3.3 A Non-distributive Example

Lest the reader should imagine that all Monotone Frameworks are Distribu-
tive Frameworks, here we present one that is not. The Constant Propagation
Analysis will determine:

For each progiam point, whether or not a variable has a constant
value whenever execution reaches that point.

Such information can be used as the basis for an optimisation known as
Constant Folding: all uses of the =Variable may be replaced by the constant
value.

The Constant Propagation framework. The complete lattice
used for Constant Propagation Analysis of a program, S,, is

Sta"tecp = ((Var, -+ ZT).L, E, U, n, I, Ax.T)

where Var, is the set of variables appearing in the program and ZT = ZU{T}
is partially ordered as follows:

Vz E ZT : z E T

VzI,Z 2 E Z : (z1 E- z2) <* (zI = z 2)

The top element of ZT is used to indicate that a variable is non-constant and
all other elements indicate that the value is that particular constant. The
idea is that an element a of Var, -- ZT is a property state: for each variable
x, 6(x) will give information about whether or not x is a constant and in the
latter case which constant.

To capture the case where no information is available we extend Var, -+ ZT
with a least element I, written (Var, --+ ZT)±_. The partial ordering E on

2.3 Monotone Frameworks 71

Acp : AExp -+ (Sia•tecp -+ ZT)
AcpX]6= .L ifa= J

Acp[x] = {�I (x) otherwise

Aclna= J .L if & = _LAcp[n]6 L ia

I n otherwise
Acp[al opN a216 = Acp[ai]6 6pa Acp[a2]a

transfer functions: fcP

[X:=a]': fP (6) = I ifa= I

f [ax i-+ Acp[a]6] otherwise

[skip]' : fcp(6) = &

[b]' ICP (6) = a

Table 2.7: Constant Propagation Analysis.

Statecp = (Var, _+ ZT)± is defined by

V& E (Var,-_+ ZT)± : _L E

Val,a 2 EVar*,-ZT: T 61 02 iff Vx: 1 (x) E- 2 (x)

and the binary least upper bound-operation is then:

V& E (Var, _- ZT)± : _L = a = _L Ua

Val,& 2 E Vart -+ ZT : VX: (61 UL&2)(x) = a 1 (x) U 6 2 (x)

In contrast to the earlier examples, we define the transfer functions as follows:

Tcp = {f I f is a monotone function on Statecp}

It is easy to verify that Statecp and Fcp satisfy the requirements of being a
Monotone Framework (see Exercise 2.8).

Constant Propagation is a forward analysis, so for the program S, we take
the flow, F, to be flow(S,), the extremal labels, E, to be {init(S,)}, the
extremal value, tcp, to be Ax.T, and the mapping, fcP, of labels to transfer
functions is given in Table 2.7. The specification of the transfer functions
uses the function

Acp : AExp 4+ (Sitiatecp -I ZI)
for analysing expressions. Here the operations on Z are lifted to ZT -

Z U {I_,T} by taking z1 6-p. Z2 = Zl OPa Z2 if zi,z 2 E Z (and where opa is
the corresponding arithmetic operation on Z), z1 o5p Z2 = -L if zl = I or
z2 -L and zz 6P. Z2 = T otherwise.

I,.

72 DATA FLOW ANALYSIS

Lemma 2.27 Constant Propagation is a Monotone Framework that is not
a Distributive Framework. N

Proof The proof that Constant Propagation is a Monotone Framework is left for
Exercise 2.8. To show that it is not a Distributive Framework consider the transfer
function fcp for [y:-=X*rx t and let a, and a2 be such that a,(x) = 1 and a 2 (x) = -1.
Then al U a2 maps x to T and thus fip(al U a2) maps y to T and hence fails to
record that y has the constant value 1. However, both fcp(a1) and ffP(a 2) map y
to 1 and so does fiCP(al) U fCP(2).

Correctness of the analysis will be established in Section 4.5.

2.4 Equation Solving

Having set up a framework, there remains the question of how to use the
framework to obtain an analysis result. In this section we shall consider two
approaches. One is an iterative algorithm in the spirit of Chaotic Iteration
as presented in Section 1.7. The other more directly propagates analysis
information along paths in the program.

2.4.1 The MFP Solution

We first present a general iterative algorithm for Monotone Frameworks that
computes the least solution to the data flow equations. Historically, this
is called the MFP solution (for Maximal Fixed Point) although it in fact
computes the least fixed point; the reason is that the classical literature
tends to focus on analyses where U is n rather than U (and because the least
fixed point with respect to D equals the greatest fixed point with respect to
C).

The algorithm, written in pseudo-code in Table 2.8, takes as input an instance
of a Monotone Framework. It uses an array, Analysis, which contains the
Analysis. information for each elementary block; the array is indexed by
labels. It also uses a worklist W being a list of pairs; each pair is an element
of the flow relation F. The presence of a pair in the worklist indicates that
the analysis has changed at the exit of (or entry to - for backward analyses)
the block labelled by the first component and so must be recomputed at the
entry to (or exit from) the block labelled by the second component. As a
final stage the algorithm presents the result (MFPo, MFP.) of the analysis
in a form close to the formulation of the data flow equations.

Example 2.28 To illustrate how the' algorithms works let us return to
Example 2.26 where we consider the program

[x: =a+b]'; [y: =a*b]2 ; while [y>a+b]3 do ([a: =a+l]4 ; [x: =a+b]5)

i " ,,,i a S

2.4 Equation Solving 73

INPUT: An instance of a Monotone Framework:
(L,.F,F,E,t,f.)

OUTPUT: MFPo, MFP.

METHOD: Step 1: Initialisation (of W and Analysis)
W:= nil;
for all (t, t') in F do

W := cons((t, '),W);
for all t in F or E do

if t E E then Analysis[t] t
else Analysis[e] :-L;

Step 2: Iteration (updating W and Analysis)
while W 5 nil do

S:= fst(head(W)); t' = snd(head(W));
W:= tail(W);
if fi(Analysis[l) Lt Analysisft'] then

Analysis[f'] := Analysis[f'] U ft(Analysis[e]);
for all I" with (f',f") in F do

W := cons((t', t"),W);

Step 3: Presenting the result (MFPo and MFP.)
for all t in F or E do

MFP0 (t) Analysis[j;
MFP.(e) := fi(Analysis[l)

Table 2.8: Algorithm for solving data flow equations.

Writing W for the list ((2,3),(3,4),(4,5),(5,3)) and U for the set {a+b, a*b,
a+l}, step 1 of the algorithm will initialise the data structures as in the first
row in Table 2.9. Step 2 will inspect the first element of the worklist and
rows 2-7 represent cases where there is a change in the array Analysis and
hence a new pair is placed on top of the worklist; it is inspected in the next
iteration. Rows 8-12 represent cases where no modification is made in the
array and hence the worklist is getting smaller - the elements of W are now
inspected. Step 3 will then produce the solution we already saw in Example
2.5. 0

Properties of the algorithm. We shall first show that the algorithm
computes the expected solution to the equation system.

Lemma 2.29 The worklist algorithm in Table 2.8 always terminates and
it computes the least (or MFP) solution to the instance of the framework

74 DATA FLOW ANALYSIS

Analysis[e] for f being

W 1 2 3 4 5
1 ((1,2),W) 0 U U U U

2 ((2,3),W) 0 {a+b} U U U
3 ((3,4),W) 0 {a+b} {a+b,a*b} U U
4 ((4,5),W) 0 {a+b} {a+b,a*b} {a+b,a*b} U
5 ((5,3),W) 0 {a+b} {a+b,a*b} {a+b,a*b} 0
6 ((3,4),W) 0 {a+b} {a+b} {a+b,a*b} 0
7 ((4,5),W) 0 {a+b} {a+b} {a+b} 0
8 ((2,3),...) 0 {a+b} {a+b} {a+b} 0
9 ((3,4),...) 0 {a+b} {a+b} {a+b} 0
10 ((4,5),...) 0 {a+b} {a+b} {a+b} 0
11 ((5,3)) 0 {a+b} {a+b} {a+b} 0
12 0 0 {a+b} {a+b} {a+b} 0

Table 2.9: Iteration steps of the worklist algorithm

given as input.

Proof First we prove the termination result. Step 1 and 3 are bounded loops over
finite sets and thus trivially terminate. Next consider step 2. Assume that there
are b labels in the program. Then the worklist initially has at most b2 elements;
the worst case is that F associates every label to every label. Each iteration either
deletes an element from the worklist"6r adds up to b new elements. New elements
are added if for the pair selected in this iteration, (t, t'), we have ft(Analysis[]) g
Analysis[e'J; that is, fe(Analysis[t) D Analysis[e'] or they are incomparable. In either
case, the new value of Analysis[e'] is strictly greater than the previous one. Since
the set of values satisfies the Ascending Chain Condition, this can only happen a
finite number of times. Thus the worklist will eventually be exhausted.

Next we prove the correctness result. Let Analysis. and Analysis. be the least
solution to the instance given as input to the algorithm. The proof is now in three
parts: (i) first we show that on each iteration the values in Analysis are approxi-
mations to the corresponding values of Analysiso, (ii) then we show that Analysis.
is an approximation to Analysis at the termination of step 2 of the algorithm, and
(iii) finally we combine these results.

Part (i). We show that

We: Analysis[e] C Analysis0 (f)

is an invariant of the loop of step 2. After step 1 we have Analysis[e] _ Analysis.(t)
for all t because Analysiso (t) :_ t whenever t E E. After each iteration through the
loop either there is no change because the iteration just deletes an element from
the worklist or else Analysis[t"] is unchanged for all t" except for some t'. In that
case there is some t such that (t,e') E F and

newAnalysis[t'] = oldAnalysis[f'] U fe(oldAnalysis[I])

2.4 Equation Solving 75

_ Analysiso(e) U ft(Analysis.(t))

= Analysis.(t')

The inequality follows since f, is monotone and the last equation follows from

(Analysis., Analysis.) being a solution to the instance.

Part (ii). On termination of the loop, the worklist is empty. We show that

Vt,t' : (t,/) e F •. Analysis[t] __ fe(Analysis[l])

by contradiction. So suppose that Analysis[f'] A fi(Analysis[]) for some (t,f') E
F and let us obtain a contradiction. Consider the last time that Analysis[l was
updated. If this was in step 1 we considered (t, t') in step 2 and ensured that

Analysis[f'] ;] fi(Analysis[l])

and this invariant has been maintained ever since; hence this case cannot apply.
It follows that Analysis[] was last updated in step 2. But at that time (t, t') was
placed in the worklist once again. When considering (R, t') in step 2 we then ensured
that

Analysis[t'] _ fe(Analysis[t])

and this invariant has been maintained ever since; hence this case cannot apply
either. This completes the proof by contradiction.

On termination of the loop we have:

Vt E E : Analysis[t] _t

This follows because it was establislied in step 1 and it is maintained ever since.
Thus it follows that at termination of step 2:

Vt: Analysis[4] Q (LJ{fh, (Analysis[t]) I (e', t) E F}) U L

Part (iii). By our assumptions and Proposition A.10 we have

Vt: MFPo (t) Q Analysis0 (t)

since Analysis° (t) is the least solution to the above constraint system and MFPo
equals the final value of Analysis. Together with part (i) this proves that

Vt: MFPo[t = Analysiso(f)

upon termination of step 2.

Based on the proof of termination in Lemma 2.29 we can determine an upper
bound on the number of basic operations (for example an application of fl,
an application of U, or an update of Analysis) performed by the algorithm.
For this we shall assume that the flow F is represented in such a way (for
example an array of lists) that all (1', e") emanating from I' can be found in
time proportional to their number. Suppose that E and F contain at most
b > 1 distinct labels, that F contains at most e > b pairs, and that L has

76 DATA FLOW ANALYSIS

finite height at most h > 1. Then steps 1 and 3 perform at most O(b + e)
basic operations. Concerning step 2 a pair is placed on the worklist at most
O(h) times, and each time it takes only a constant number of basic steps to
process it - not counting the time needed to add new pairs to W; this yields
at most O(e • h) basic operations for step 2. Since h > 1 and e > b this
gives at most O(e • h) basic operations for the algorithm. (Since e < b2 a
potentially coarser bound is O(b2 • h).)

Example 2.30 Consider the Reaching Definitions Analysis and suppose
that there are at most v > 1 variables and b > 1 labels in the program, S,,
being analysed. Since L = 'P(Var, x Lab,), it follows that h < v b and thus
we have an O(v . b3) upper bound on the number of basic operations.

Actually we can do better. If S, is label consistent then the variable of the
pairs (x, f) of P(Var, x Lab,) will always be uniquely determined by the
label t so we get an O(b3) upper bound on the number of basic operations.
Furthermore, F is flow(S,) and inspection of the equations for flow(S,) shows
that for each label t we construct at most two pairs with t in the first com-
ponent. This means that e < 2 . b and we get an O(b 2) upper bound on the
number of basic operations.

2.4.2 The MOP Solution

Let us now consider the other solution method for Monotone Frameworks
where we more directly propagate analysis information along paths in the
program. Historically, this is called the MOP solution (for Meet Over all
Paths) although we do in fact take the join (or least upper bound) over
all paths leading to an elementary block; once again the reason is that the
classical literature focuses on analyses where u is n rather than U.

Paths. For the moment, we adopt the informal notion of a path to the
entry of a block as the list of blocks traversed from the start of the program
up to that block (but not including it); analogously, we can define a path
from an exit of the block. Data Flow Analyses determine properties of such
paths. Forward analyses concern paths from the initial block to the entry
of a block; backward analyses concern paths from the exit of a block to a
final block. The effect of a path on the state can be computed by composing
the transfer functions associated with the individual blocks in the path. In
the forward case we collect information about the state of affairs before the
block is executed and in the backward case we collect information about the
state of affairs immediately after the block has been executed. This informal
description contrasts with the approach taken in Section 2.1 and earlier in
this section; there we presented equations which were defined in terms of the
immediate predecessors (successors) of a block (as defined by the flow and
flow' functions). We will see later that, for a large class of analyses, these

2.4 Equation Solving 77

two approaches coincide.

For the formal development let us consider an instance (L, F, F, E, t, f.) of

a Monotone Framework. We shall use the notation f = [fl,.", 1,] for a
sequence of n > 0 labels. We then define two sets of paths. The paths up to
but not including t are

patho(f) = {[1,'"-, t,- 1] I n > 1 A Vi < n : (ti, ti+l) E F A fn = f A tj E E}

and the paths up to and including t are:

path.(e) = {[- 1,'",,•]In _> 1 AVi < n: (etei+j) E FAe. = tAe1 E E}

For a path I= [V, t.] we define the transfer function

fi= ft. o'"oft, oid

so that for the empty path we have f[I = id where id is the identity function.

By analogy with the definition of solutions to the equation system, in par-
ticular MFPo(A) and MFP.(t), we now define two components of the MOP
solution. The solution up to but not including t is

MOPo(t) = U{ft&() I IE patho(t)}

and the solution up to and including t is:

MOP.(g) = Df,) I 1E path°(t)}

Unfortunately, the MOP solution is sometimes uncomputable (meaning that
it is undecidable) even though the MFP solution is always easily computable
(because of the property space satisfying the Ascending Chain Condition);
the following result establishes one such result:

Lemma 2.31 The MOP solution for Constant Propagation is undecid-
able.

Proof Let u1,. .,u, and vi,..,v,n be strings over the alphabet {1,.-. .,9} (see Ap-
pendix C). The Modified Post Correspondence Problem is to determine whether or
not there exists a sequence ii, ... i,, with ii = 1 such that ui" ... uim= Vl..

Let I u I denote the length of the string u and let [u] be its value interpreted as a
natural number. Consider the program (omitting most labels)

x:=[uij; y:=[vl;
while [...] do

(if ['"] then x:=x * 10I"uI + [ul; y:=y * 101uIl + [vil else

if [.--] then x:=x * 010l" 1 + [un]; y:=y * 1I0"' + [v.] else skip)

[z: =abs((X-y)*(X-y))]t

78 DATA FLOW ANALYSIS

where abs gives the absolute value (which is 1 for a positive argument and 0 or -1
otherwise) and where the details of [..-] are of no concern to us (and so could be
taken to be [true]).

Then MOP.(t) will map z to 1 if and only if the Modified Post Correspondence
Problem has no solution. Since the Modified Post Correspondence problem is un-
decidable [57] so is the MOP solution for Constant Propagation (assuming that our
selection of arithmetic operation does indeed allow those used to be defined). .

MOP versus MFP solutions. We shall shortly prove that the MFP
solution safely approximates the MOP solution (informally, MFP _ MOP).
In the case of a (n, -t t) or (n, +-, t) analysis, the MFP solution is a subset of
the MOP solution (_ is C); in the case of a (U, -+, 4) or (U, +-, 4) analysis,
the MFP solution is a superset of the MOP solution. We can also show
that, in the case of Distributive Frameworks, the MOP and MFP solutions
coincide.

Lemma 2.32 Consider the MFP and MOP solutions to an instance (L, F,
F, B,t , f.) of a Monotone Framework; then:

MFPo ;_ MOPo and MFP. _ MOP.

If the framework is distributive and if path. (f) $ 0 for all t in E and F then:

MFPo = MOPO and MFP. = MOP.
0

Proof It is straightforward to show that:

V1: MOP.(f) g; ft (MOPO (f))

Vt: MFP.(t) = f,(MFPo(f))

For the first part of the lemma it therefore suffices to prove that:

Vt: MOP. (f) 9 MFPo (t)

Note that MFPo is the least fixed point of the functional F defined by:

F(Ao)(f) = (L{ft, (Ao(f')) I (e', t) E F})U L

Next let us restrict the length of the paths used to compute MOP.; for n > 0
define:

MOPO-(t) = U{f&t) 1 'E patho(t), III < n}

Clearly, MOPo (t) = Un MOP'n (t) and to prove MFPo ;1 MOP. is therefore suffices
to prove

Vn: MFPo 3_ MOP'n

2.4 Equation Solving 79

and we do so by numerical induction. The basis, MFPo Q MOP'o, is trivial. The
inductive step proceeds as follows:

MFPo(I) = F(MFPo)(e)

= (L{ft,(MFPo(e)) I (t,e) E F})U tu

S(U{ft,(MOP.-(t)) I (e',e) E F}) u 4,

= (UL fe, (U{fj-(&) I I E path.(1'),l1l < n}) I (E0 E F}) ULt

U (l({[l{.f,,cft(,)) i1 path.(1'), I11 < n} I (t',I) E F}) U LI

= LQ]({f&) I IG patho(t), < Ill < n}) U 4
- MOPn+1 (t)

where we have used the induction hypothesis to get the first inequality. This com-
pletes the proof of MFPo :_ MOP. and MFP. D MOP..

To prove the second part of the lemma we now assume that the framework is
distributive. Consider I in E or F. By assumption ft is distributive, that is
ft(l1 U 12) = fl(li) U ft(12), and from Lemma A.9 of Appendix A it follows that

ft(LUY) = L[{if(l I I E Y}

whenever Y is non-empty. By assumption we also have patho (t) $ 0 and it follows
that

fj(jft)I 1E path0 (t)}) = LJjft(ft-(0) I 1E path0 (f)}
= I I{fj•) I 1E p,,th.(t)}

and this shows that:
VI: ft(MOPo(f)) = MOP.(e)

Next we calculate:

MOPo(I) = Ljfti) I !E patho(t)}

= L{.ft(L) I 1E U{path.(r) I (t,,t) E F} U {[• E E}}

= Ij({.f'(.ft)) I 1E patho(t'), (t',t) E F} U {t I E E})

= (II{fe,(_J{.fi() I 1e patLo(f')} I (t', t) E F}) U 4
= (U{ft,(MOPo(')) I (',t) E F})U tE

Together this shows that (MOP., MOP.) is a solution to the data flow equations.
Using Proposition A.10 of Appendix A and the fact that (MFPo, MFP.) is the least
solution we get MOP. J_ MFPo and MOP. ; MFP.. Together with the results of
the first part of the lemma we get MOP. = MFPo and MOP. = MFPo. u

80 DATA FLOW ANALYSIS

We shall leave it to Exercise 2.13 to show that the condition that path. (f) $ 0
(for e in E and F) does hold when the Monotone Framework is constructed
from a program S, in the manner of the earlier sections.

It is sometimes stated that the MOP solution is the desired solution and
that one only uses the MFP solution because the MOP solution might not be
computable. In order to validate this we would need to prove that the MOP
solution is semantically correct as was proved for the MFP solution in Section
2.2 in the case of Live Variables Analysis - in the case of Live Variables this
is of course immediate since it is a Distributive Framework. However, it is
always possible to formulate the MOP solution as an MFP solution over a
different property space (like P(L)) and therefore little is lost by focusing on
the fixed point approach to Monotone Frameworks.

2.5 Interprocedural Analysis

The Data Flow Analysis techniques that have been presented in the previous
sections are called intraprocedural analyses because they deal with simple
languages without functions or procedures. It is somewhat more demand-
ing to perform interprocedural analyses where functions and procedures are
taken into account. Complications arise when ensuring that calls and returns
match one another, when dealing with parameter mechanisms (and the alias-
ing that may result from call-by-reference) and when allowing procedures as
parameters. " -

In this section we shall introduce some of the key techniques of interproce-
dural analysis. To keep things simple we just extend the WHILE language
with top-level declarations of global mutually recursive procedures having a
call-by-value parameter and a call-by-result parameter. The extension of the
techniques to a language where procedures may have multiple call-by-value,
call-by-result and call-by-value-result parameters is straightforward and so is
the extension with local variable declarations (see Exercise 2.20) and we shall
allow to use these extensions in examples.

Syntax of the procedure language. A program, PR, in the ex-

tended WHILE-language has the form

begin D. S,,. end

where D, is a sequence of procedure declarations:

D ::= proc p(val x, res y) is'" S end-" I D D

Procedure names (denoted p) are syntactically distinct from variables (de-
noted x and y). The label t,, of is marks the entry to the procedure body
and the label t. of end marks the exit from the procedure body. The syntax

2.5 Interprocedural Analysis 81

of statements is extended with:

S ::= ... I [call p(a, z)]':

The call statement has two labels: 4, will be used for the call of the procedure
and 4, will be used for the associated return; the actual parameters are a and
Z.

The language is statically scoped, the parameter mechanism is call-by-value
for the first parameter and call-by-result for the second parameter and the
procedures may be mutually recursive. We shall assume throughout that
the program is uniquely labelled (and hence label consistent); also we shall
assume that only procedures that have been declared in D. are ever called
and that D. does not contain two definitions of the same procedure name.

Example 2.33 Consider the following program calculating the Fibonacci
number of the positive integer stored in x and returning it in y:

begin proc fib(val z, u, res v) is'

if [z<3]2 then [v:-u+i] 3

else ([call fib(z-5,uv)] ; [call fib(z-2,v,v)]1)
end8 ;
[call fib(x,O,y)] o

end

It uses the procedure fib that returns in v the Fibonacci number of z plus
the value of u. Both x and y are global variables whereas z, u and v are
formal parameters and hence local variables. M

Flow graphs for statements. The next step is to extend the defi-
nitions of the functions init, final, blocks, labels, and flow to specify the flow
graphs also for the procedure language. For the new statement we take:

init([call p(a, z)]"') = 4,
final([call p(a, z)]',) = }

blocks([call p(a, z)]") = {[call p(a, z)]-c}

labels([call p(a,z)]•') = {Itc, ,}

flow([call p(a, z)]':) = {(IC; t.), (V; t)}
if proc p(val x, res y) is'- S endt'

is in D,

Here (tc;t4) and (t.; t) are new kinds of flows:

* (4; t,) is the flow corresponding to calling a procedure at 4c and with
t, being the entry point for the procedure body, and

82 DATA FLOW ANALYSIS

((4; 4,) is the flow corresponding to exiting a procedure body at t. and
returning to the call at 4,.

The definition of flow([call p(a, z)]t,) exploits the fact that the syntax of
procedure calls only allows us to use the (constant) name of a procedure
defined in the program; had we been allowed to use a variable that denotes
a procedure (e.g. because it was a formal parameter to some procedure or
because it was a variable being assigned some procedure) then it would be
much harder to define flow([call p(a, z)],t). This is often called the dynamic
dispatch problem and we shall deal with it in Chapter 3.

Flow graphs for programs. Next consider the program P, of the
form begin D. S,. end. For each procedure declaration proc p(val x, res y)
ist4 S endt, we set

init(P) = fn

final(p) = {t.}
blocks(p) = {is In, endte } U blocks(S)

labels(p) = {, t.,} U labels(S)

flow(p) = {(t.,init(S))} u fow(S) u {(t, t) tI E final(S)}

and for the entire program P. we set

init. = init(S.)

final. = final(S.)

blocks. = U{blocks(p) I proc p(val x, res y) ist4 S endt, is in D,}

U blocks(S.)

labels, = U{labels(p) I proc p(val x, res y) ist" S endte is in D,}

U labels(S.)

flow. = U{flow(p) I proc p(val x, res y) is 4
n S endt, is in D.}

U fow(S*)

as well as Lab. = labels..

We shall also need to define a notion of interprocedural flow

inter-flow. = {(tc,fn,f4,4) I P* contains [call p(a,z)]t"

as well as proc p(val x, res y) is 4
I S endt' }

that clearly indicates the relationship between the labels of a procedure call
and the corresponding procedure body.

2.5 Interprocedural Analysis 83

proc fib(val z, u, res v)

____ no

P_ 0____ _/jes _

[[call fib~z-2,v)]

Figure 2.7: Flow graph for the Fibonacci program.

Example 2.34 For the Fibonacci program considered in Example 2.33
we have

flow, = {(1,2),(2,3),(3,8),

(2,4), (4; 1), (8; 5), (5, 6), (6; 1), (8; 7), (7,8),

(9; 1), (8; 10)}

inter-flow, = {(9,1,8,10),(4,1,8,5),(6,1,8,7)}

and init, = 9 and final, = {10}. The corresponding flow graph is illustrated
in Figure 2.7. 0

For a forward analysis we use F = flow,, E = {init,} and IF = inter-flow,
whereas for a backward analysis we use F = flow*, E = final, and IF =
inter-flow,. However, the explanations in the sequel will focus on forward
analyses.

2.5.1 Structural Operational Semantics

We shall now show how the semantics of WHILE can be extended to cope
with the new constructs. To ensure that the language allows local data in
procedures we shall need to distinguish between the values assigned to dif-
ferent incarnations of the same variable and for this we introduce an infinite

84 DATA FLOW ANALYSIS

set of locations (or addresses):

ý E Loc locations

An environment, p, will map the variables in the current scope to their loca-
tions, and a store, ;, will then specify the values of these locations:

p E Env = Var,, -+ Loc environments
c E Store = Loc -+fin Z stores

Here Var, is the (finite) set of variables occurring in the program and
Loc -+fln Z denotes the set of partial functions from Loc to Z that have
a finite domain. Thus the previously used states a E State = Var, -+ Z
have been replaced by the two mappings p and ; and can be reconstructed
as a = c o p: to determine the value of a variable x we first determine its
location C = p(x) and next the value q(() stored in that location. For this
to work it is essential that ; o p : Var, -+ Z is a total function rather than
a partial function; in other words, we demand that ran(p) C dom(¢) where
ran(p) = {p(x) I x E Var.} and dom(c) = {CI is defined on C1.

The locations of the global variables of the program P, are given by a top-level
environment denoted p,,; we shall assume that it maps all variables to unique
locations. The semantics of statements is now given relative to modifications
of this environment. The transitions have the general form

p ,-. (S,,) -+ (S', ')

in case that the computation does not terminate in one step, and the form

P ý-. (S, .0 -+ -;'

in case that it does terminate in one step. It is fairly straightforward to
rewrite the semantics of WHILE given in Table 2.6 to have this form; as an
example the clause [ass] for assignments becomes:

p F-,., (x:=a,,) -+ -[p(x) '- Ala](;op)] if op is total

Note that there is no need to modify the semantics of arithmetic and boolean
expressions.

For procedure calls we make use of the top-level environment, p,, and we
take:

p (-. ([call p(a, z)]•', .) --
(bind p.[x i- ýI,Y t- C2] in S then z:=y,-;[Cj :-).A[a](q;op),C2 ý- v])

where C1, C2 V dom(p), v E Z
and proc p(val x, res y) ist" S endt- is in D,

The idea is that we allocate new locations C, and C2 for the formal parameters
x and y, and we then make use of a bind-construct to combine the procedure

2.5 Interprocedural Analysis 85

body S with the environment p,[x i-+ ý1, y i-+ ý2] in which it must be executed
and we also record that the final value of y must be returned in the actual
parameter z. At the same time the store is updated such that the new
location for x is mapped to the value of the actual parameter a whereas we
do not control the initial value of the new location for y. The bind-construct
is only needed to ensure that we have static scope rules and its semantics is
as follows:

P <, -A (S',
p K. (bind p' in S then z:=y, 4) - (bind p' in S' then z:=y,,;')

P' F-., (S,,;) -+ -;'

p K (bind p' in S then z:=y,,) -+ ;'[p(z) (p'(y))]

The first rule expresses that executing one step of the body of the construct
amounts to executing one step of the construct itself; note that we use the
local environment when executing the body. The second rule expresses that
when the execution of the body finishes then so does execution of the con-
struct itself and we update the value of the global variable z to be that of the
local variable y; furthermore, there is no need for the local environment p' to
be retained as subsequent computations will use the previous environment p.

Remark. Although the semantics works with two mappings, an environ-
ment and a store, it is often the case that the analysis abstracts the state,
i.e. the composition of the environment and the store. The correctness of the
analysis will then have to relate the abstract state both to the environment
and the store.

The correctness result will often be expressed in the style of Section 2.2:
information obtained by analysing the original program will remain correct
under execution of the program. The semantics presented above deviates
from that of the WHILE-language in that it introduces the bind-construct
which is only used in the intermediate configurations. So in order to prove
the correctness result we will also need to specify how to analyse the bind-
construct. We refer to Chapter 3 for an illustration of how to do this. N

2.5.2 Intraprocedural versus Interprocedural Analysis

To appreciate why interprocedural analysis is harder than intraprocedural
analysis let us begin by just naively using the techniques from the previous
sections. For this we suppose that:

e for each procedure call [call p(a, z)]t' we have two transfer functions
ft. and ftr corresponding to calling the procedure and returning from
the call, and

* for each procedure definition proc p(val x, res y) ist" S endt' we

86 DATA FLOW ANALYSIS

have two transfer functions ft. and ft. corresponding to entering and
exiting the procedure body.

A naive formulation. Given an instance (L, .F, F, E, &, f.) of a Mono-
tone Framework we shall now treat the two kinds of flow ((f, f2) versus
(4o; t.) and (4.; 4,)) in the same way: we interpret the semi-colon as stand-
ing for a comma. While a Monotone Framework is allowed to interpret all
transfer functions freely, we shall for now, naively, assume that the two trans-
fer functions associated with procedure definitions are the identity functions,
and that the two transfer functions associated with each procedure call arc
also the identity functions, thus effectively ignoring the parameter-passing.

We now obtain an equation system of the form considered in the previous
sections:

A.(t) = fl(Ao(f))

Ao (e) = L{A.(e') I(',t) E F or (t';t) E F} U E

Here A is as in Section 2.3:

{• ifeEE

I =fi ifE
1E _L if t E

When inspecting this equation system is should be apparent that both proce-
dure calls (t,; 14) and procedure returns (f.; 4t) are treated like goto's: there
is no mechanism for ensuring that information flowing along (4,; t,) from a
call to a procedure only flows back along (t,; fr) from the procedure to the
same call. (Indeed, nowhere does the formulation consult the interprocedu-
ral flow, IF.) Expressed in terms of the flow graph in Figure 2.7, there is
nothing preventing us from considering a path like [9,1,2,4,1,2,3,8, 10] that
does not correspond to a run of the program. Intuitively, the equation system
considers a much too large set of "paths" through the program and hence
will be grossly imprecise (although formally on the safe side).

Valid paths. A natural way to overcome this shortcoming is to somehow
restrict the attention to paths that have the proper nesting of procedure calls
and exits. We shall explore this idea in the context of redefining the MOP
solution of Section 2.4 to only take the proper set of paths into account,
thereby defining an MVP solution (for Meet over all Valid Paths).

So consider a program P,, of the form begin D, S,- end. A path is said to be
a complete path from 4j to t 2 in P, if it is has proper nesting of procedure
entries and exits and such that a procedure returns to the point where it was
called. These paths are generated by the nonterminal CPtl,12 according to
the following productions:

2.5 Interprocedural Analysis 87

CPe,,t2 -- + whenever e1 =

CPtte3 - 41, CP12,t 3 whenever (61 , 2) E F;
for a forward analysis this means
that (t 1,t 2) E flow.

CPte,t -- + t, CPt.,t=, CPe,,e whenever (t,.,t,,, 4) E IF;
for a forward analysis this means
that P. contains [call p(a, z)],:
and proc p(val x, res y) is-' S endt-

The matching of calls and returns is ensured by the last kind of productions:
the flows (t.; t,,) and (4=; 4,) are forced to obey a parenthesis structure in
that t, t. only will be in the generated path if there is a matching occur-
rence of t4, t, - and vice versa. Hence for a forward analysis, a terminating
computation will give rise to a complete path from init. to one of the labels
of final,. Note that the grammar constructed above will only have a finite
set of nonterminals because there only is a finite set of labels in P,.

Example 2.35 For the Fibonacci program of Example 2.33 we obtain the
following grammar (using forward flow and ignoring the parts not reachable
from CPg9 ,o):

CP9 ,10 - 9, CP1,8, CPlo,10 CP3,8 - 3, CP8 ,s
CP 10 ,10 -- 10 " CP8,8 -' 8

CPI,s -- 1, CP2,s - CP4,8 7-44, CP1,8, CP5,8

CP 2 ,8 -- 2, CP 3 ,8 CP5 ,8 - 5, CP6 ,8
CP2,8 -- 2, CP4 ,8 CP 6,8 -- 6, CP I ,8 , CP7 ,8

CP7,s -4 7, CP8 ,8

It is now easy to verify that the path [9,1,2,4,1,2,3,8,5,6,1,2,3,8,7,8, 10]
is generated by CP9,10 whereas the path [9, 1,2,4, 1,2,3,8, 10] is not. M

A path is said to be a valid path if it starts at an extremal node of P. and
if all the procedure exits match the procedure entries but it is possible that
some procedures are entered but not yet exited. This will obviously include
all prefixes of the complete paths starting in E but we also have to take into
account prefixes of computations that might not terminate. To specify the
valid paths we therefore construct another grammar with productions:

VP*. -- + VP11 ,12 whenever 41 E E and f2 E Lab,

VPtli, 2 f, 4 whenever f1 = t2

"VP1 1 ,1 3 -- 1, VP 1 2 ,13 whenever (1, £2) E F

VP1,,t - t 4, CPI,,t,, VPt,,t whenever (t,4,4t,41) E IF

VPt,1 -'-4, VPl,,t whenever (t,, ,,,4) E IF

88 DATA FLOW ANALYSIS

The valid paths will then be generated by the nonterminal VP,. For a for-
ward analysis, to come from the label f, of a procedure call to the program
point I there are two possibilities. One is that the call initiated at 4. ter-
minates before reaching t and this corresponds to the second last kind of
production where we use the nonterminal CPt.,t. to generate the complete
path corresponding to executing the procedure body. The other possibility is
that t is reached before the call terminates and this corresponds to the last
kind of production where we simply use VPt,t, to generate a valid path in
the procedure body.

We can now modify the two sets of paths defined in Section 2.3 as follows
(keeping in mind that the definitions are implicitly parameterised on F, E
and IF):

vpath0 (t) = {[I," ",4-] In Ž1 Ain = fA [V,1 "" ,fn] is a valid path}

vpatho(i) = {[4V,'",tn] In > 1 Ain = A [h1 ,'",n] is a valid path}

Clearly the sets of paths are smaller than what would have resulted if we
had merely regarded (1; t2) as standing for (4, 62) and had used the notions
path. (t) and path.(t) of Section 2.3.

Using valid paths we now define the MVP solution as follows:

MVPo(t) = U{fhL) I 1E vpatho(t)}

MvP.(m) = Ljj(it) IE vpath.(i)}

Since the sets of paths are smaller than in the similar definitions in Section
2.3, we clearly have MVPo(t) 9_ MOPo(f) and MVP.(t) E; MOP.(t) for all
t.

2.5.3 Making Context Explicit

The MVP solution may be undecidable for lattices of finite height, just as was
the case for the MOP solution, so we now have to reconsider the MFP solution
and how to avoid taking too many invalid paths. An obvious approach is
to encode information about the paths taken into the data flow properties
themselves; to this end we introduce context information:

J E A context information

The context may simply be an encoding of the path taken but we shall see
in Subsection 2.5.5 that there are other possibilities. We shall now show how
an instance of a Monotone Framework (as introduced in Section 2.3) can be
extended to take context into account.

2.5 Interprocedural Ana!ysis 89

The intraprocedural fragment. Consider an instance (L, F, F, E,
t, f.) of a Monotone Framework. We shall now construct an instance

(L,.F, F, E, Z, 1.)

of an embellished monotone framework that takes context into account. We
begin with the parts of its definition that are independent of the actual choice
of A, i.e. the parts that correspond to the intraprocedural analysis:

f L = A -+ L;

* the transfer functions in F are monotone; and

* each transfer function fe is given by fe (T) 5) = f (l (J)).

In other words, the new instance applies the transfer functions of the original
instance in a pointwise fashion.

Ignoring procedures, the data flow equations will take the form displayed
earlier:

A.(t) = 7fi(Ao(t))
for all labels that do not label a procedure call
(i.e. that do not occur as first or fourth components

of a tuple in IF)

A.(1) = L{A.(t') I (t',) E F or (e';e) E F} U 6

for all labels (including those that label procedure calls)

Example 2.36 Let (Lsign, Fsign, F, E, t sign, fn) be an instance of a Mono-
tone Framework specifying a Detection of Signs Analysis (see Exercise 2.15)
and assume that

Lsign = P(Var. -+ Sign)

where Sign = {-, 0, +}. Thus Lsign describes sets of abstract states asign map-
ping variables to their possible signs. The transfer function fisln associated
with the assignment Ix := a]t will now be written as

fgsign (y) j , = Iogi n E Y}

where Y C Var, -+ Sign and

Osign(osign) = {,,signf[x F4 s]j1 8 E ,Asign[a](oUsign)}

Here Asign : AExp -+ (Var, -+ Sign) -+ P(Sign) specifies the analysis of
arithmetic expressions. The transfer functions for tests and skip-statements
are the identity functions.

90 DATA FLOW ANALYSIS

Given a set A of contexts, the embellished monotone framework will have

Lsign = A -+ Lsign

but we shall prefer the following isomorphic definition

Lsign = P(A x (Var. -+ Sign))

Thus Lsign describes sets of pairs of context and abstract states. The transfer
function associated with the assignment [x all will now be:

fin(z) = U{{,} x 0 1(, ,sign)

In subsequent examples we shall further develop this analysis.

The interprocedural fragment. It remains to formulate the data
flow equations corresponding to procedures.

For a procedure definition proc p(val x, res y) is t' S endt - we have two
transfer functions:

f,, , : (A -4 L) -e (A -+ L)

In the case of our simple language we shall prefer to take both of these transfer
functions to be the identity function; i.e.

14 l) =

for all F E L. Hence the effect of procedure entry is handled by the trans-
fer function for procedure call (considered below) and similarly the effect of
procedure exit is handled by the transfer function for procedure return (also
considered below). For more advanced languages where many semantic ac-
tions take place at procedure entry or exit it may be preferable to reconsider
this decision.

For a procedure call (t,, t,,, t4, 1,) E IF we shall define two transfer functions.
In our explanation we shall concentrate on the case of forward analyses where
P, contains [call p(a, z)]", as well as proc p(val x, res y) is'- S end-=.
Corresponding to the actual call we have the transfer function

fl• : (A -+ L) -+ (A. L)

and it is used in the equation:

A.(t,) = fl(Ao(f)) for all (fc, t,ex,t) E IF

2.5 Interprocedural Analysis 91

proc p(val x, res y)

ise,ý

Figure 2.8: Analysis of procedure call: the forward case.

In other words, the transfer function modifies the data flow properties (and
the context) as required for passing to the procedure entry.

Corresponding to the return we have the transfer function

ot4 : (A -+ L) x (A -+ L) -+ (A -+ L)

and it is used in the equation:

A.(e,) = .ft (Ao(ec),Ao(.r)) for all (tc,,n,,t,et) E IF

The first parameter of 2f ,t describes the data flow properties at the call
point for the procedure and the second parameter describes the properties at
the exit from the procedure body. Ignoring the first parameter, the transfer
function modifies the data flow properties (and the context) as required for
passing back from the procedure exit. The purpose of the first parameter is
to recover some of the information (data flow properties as well as context
information) that was available before the actual call; how this is done de-
pends on the actual choice of the set, A, of context information and we shall
return to this shortly. Figure 2.8 illustrates the flow of data in the analysis
of the procedure call.

Variations. The functionality and use of f,2., (as well as Figure 2.8) is
sufficiently general that it allows us to deal with most of the scenarios found
in the literature. A simple example being the possibility to define

1ft, C1, r') =

thereby completely ignoring the information before the call; this is illustrated
in Figure 2.9.

92 DATA FLOW ANALYSIS

proc p(val x, res y).1 •____ s

[call p(a, A)e

Figure 2.9: Analysis of procedure call: ignoring calling context.

proc p(val x, res y)

is In

[call p(a, z)]" f

[call p(a, z:

Figure 2.10: Analysis of procedure call: merging of context.

A somewhat more interesting example is the ability to define

- (1,1') = C2" (I) Uf j2-)

thereby allowing a simple combination of the information coming back from
the call with the information pertaining before the call. This form is illus-

trated in Figure 2.10 and is often mot;vated on the grounds that f2A2 copies

data that is local to the calling procedure whereas fiB copies information

that is global. (It may be worth noticing that the function f2 is com-

pletely additive if and only if it can be written in this form with fV andft, b
f C being completely additive.)

2.5 Interprocedural Analysis 93

Context-sensitive versus context-insensitive. So far we have
criticised the naive approach because it was unable to maintain the proper
relationship between procedure calls and procedure returns. A related criti-
cism of the naive approach is that it cannot distinguish between the different
calls of a procedure. The information about calling states is combined for
all call sites, the procedure body is analysed only once using this combined
information, and the resulting information about the set of return states is
used at all return points. The phrase context-insensitive is often used to refer
to this shortcoming.

The use of non-trivial context information not only helps to avoid the first
criticism but also the second: if there are two different calls but they are
reached with different contexts, 61 and 62, then all information obtained from
the procedure will be clearly related to 61 or 62 and no undesired combination
or "cross-over" will take place. The phrase context-sensitive is often used to
refer to this ability.

Clearly a context-sensitive analysis is more precise than a context-insensitive
analysis but at the same time it is also likely to be more costly. The choice be-
tween which technique to use amounts to a careful balance between precision
and efficiency.

2.5.4 Call Strings as Context

To complete the design of the analysis of the program we must choose the set,
A, of context information and also specify the extremal value, 1', and define
the two transfer functions associated with procedure calls. In this subsection
we shall consider two approaches based on call strings and our explanation
will be in terms of forward analyses.

Call strings of unbounded length. As the first possibility we
simply encode the path taken; however, since our main interest is with pro-
cedure calls we shall only record flows of the form (f,; t,) corresponding to
a procedure call. Formally we take

A = Lab*

where the most recent label f, of a procedure call is at the right end (just as
was the case for valid paths and paths); elements of A are called call strings.
We then define

i"= (A, t)

where A is the empty sequence corresponding to the fact that there are no
pending procedure calls when the program starts execution; t is the extremal
value available from the underlying Monotone Framework.

94 DATA FLOW ANALYSIS

Example 2.37 For the Fibonacci program of Example 2.33 the following
call strings will be of interest:

A, [91, [9, 4], [9, 6], [9, 4, 4], [9, 4, 6], [9, 6, 4], [9, 6, 6], . •

corresponding to the cases with 0, 1, 2, 3,... pending procedure calls. X

For a procedure call (4,, ,,, 4) E IF, amounting to [call p(a, z)]"' in
-

tr

the case of a forward analysis, we define the transfer function f~l, such that

*f~l (1) ([6,4]e) = f (1'(6)) where [6, t,] denotes the path obtained by append-
ing f, to 6 (so as to reflect that now we enter the body of the procedure)
and the function fi, : L - L describes how the property is modified. This is
achieved by setting

o(1")(f') = (16()) when 6' = [J,4c]

otherwise

which takes care of the special case of empty paths.

Next we define the transfer function fiot corresponding to returning from
the procedure call:

f-4 (i,) (6) = fe,,�t1 (6), r([6, 4]))

Here the information r from the original call is combined with information I'
from the procedure exit using the Tfnction fi t, : L x L -+ L. However, only
information corresponding to the same contexts for call point 4, is combined:
this is ensured by the two occurrences of 6 in the above formula.

Example 2.38 Let us return to the Detection of Signs Analysis of Ex-
ample 2.36. For a procedure call [call p(a, z)]t' where p is declared by
proc p(val x, res y) ist' S endt, we may take:

f~signl (Z 11 , sign 1 (0sign) 1 osign) t --

1 l (Z) = U{{•,}× (6 or) E Z A 6' = [6,4o]}

csignil(Usign) = { sign[x - s][y i- s'] I S E A sign[a] (sign) A s' E {- 10 1+}}

When returning from the procedure call we take:
f~ig2 (Z Z, Ufy X sign2 sign, ,sign in

fs~gn• (Z,z'), = UJ{{6} x ~sI~n2 (~n10)2 (6,ign) E Z A

A (yrsign) E Z' 6A']
•s,!gn2, sign sign, 'g Oign (X);Y y ig (y); z _+ s'in (y)]}

ort,[l ,O"r2 10) {~g[X ý~ 1- s2g

Thus we extract all the information from the procedure body except for the
information about the formal parameters x and y and the actual parameter

2.5 Interprocedural Analysis 95

z. For the formal parameters we rely on the information available before the
current call which is still correct and for the actual parameter we perform the
required update of the information. Note that to facilitate this definition it
is crucial that the transfer function fe2

0 ,4 takes two arguments: informa2ion

from the call point as well as from the procedure exit. 0

Call strings of bounded length. Clearly the call strings can be-
come arbitrarily long because the procedures may be recursive. It is therefore
customary to restrict their length to be at most k for some number k > 0;
the idea being that only the last k calls are recorded. We write this as

A = Lab-<k

and we still take the extremal value to be i" = (A, t). Note that in the case
k = 0 we have A = {A} which is equivalent to having no context information.

Example 2.39 Consider the Fibonacci program of Example 2.33 and as-
sume that we are only interested in recording the last call, i.e. k = 1. Then
the call strings of interest are:

A, [9], [4], [6]

Alternatively, we may choose to record the last two calls, i.e. k = 2, in which
case the following call strings are of interest:

A, [9], [9, 4], [9, 6].-[4, 4], [4, 6], [6, 4], [6, 6]

In general, we would expect an analysis using these 8 contexts to be more
precise than one using the 4 different contexts displayed above. 0

We shall now present the transfer functions for the general case where call
strings have length at most k. The transfer function fl' for procedure call
is redefined by

fk (1)(5') = UMUL(T(0) 15' = r3, 41k}
where r[, 4

1 k denotes the call string [6, t,] but possibly truncated (by omit-
ting elements on the left) so as to have length at most k. Since the function
mapping 3 to [9, 4 1 k is not injective (unlike the one mapping 3 to [3, t,]) we
need to take the least upper bound over all 5 that can be mapped to the
relevant context 3'.

Similarly, the transfer function f2. for procedure return is redefined by

j2- 1) = 2 () c

as should be expected.

96 DATA FLOW ANALYSIS

Example 2.40 Let us consider Detection of Signs Analysis in the special
case where k = 0, i.e. where A = {A} and hence A x (Var, -+ Sign) is
isomorphic to Var, -+ Sign. Using this isomorphism the formulae defining
the transfer functions for procedure call can be simplified to

f 1signl (y) = //IjSignir) yin sign }
|~in(~i |jo(sign2 orsign osign) •sgn•sg

fsign~ (y, y') = •L t a ,) E Y A ^ sign E Y'}

where Y, Y' C Vart, -+ Sign. It is now easy to see that the analysis is context-
insensitive: at procedure return it is not possible to distinguish between the
different call points.

Let us next consider the case where k = 1. Here A = Lab U {A} and the
transfer functions for procedure call are:

gnl (Z) = U{{Ie} x osignl(,'Sign) I (j,0sign) E Z}

n2~ (ZZZ,) U I fj}Xsign2 (,sign signf) (jorsign) E Z
(1c, Iosign 1
A 2 (4c" e Z'}

Now the transfer function F will mark all data from the call point 4c with

that label. Thus it does not harrithat the information ftoi (Z) is merged

with similar information f•glni (Z) from another procedure call. At the return
Figsign2 Zn

from the call the transfer function t selects those pairs (4, 02) E
that are relevant for the current call and combines them with those pairs
(•, uson) E Z that describe the situation before the call; in particular, this
allows us to reset the context to be that of the call point.

2.5.5 Assumption Sets as Context

An alternative to describing a path directly in terms of the calls being per-
formed is to record information about the state in which the call was made;
these methods can clearly be combined but in the interest of simplicity we
shall abstain from doing so.

Large assumption sets. Throughout this subsection we shall make
the simplifying assumption that

L = P(D)

as is the case for the Detection of Signs Analysis. Restricting the attention
to only recording information about the last call (corresponding to taking

2.5 Interprocedural Anilysis 97

k = 1 above), one possibility is to take

A = P(D)

and we then take the extremal value to be

U4= ({0},t)

meaning that the initial context is described by the initial abstract state. This
kind of context information is often called an assumption set and expresses
a dependency on data (as opposed to a dependency on control as in the case
of call strings).

Example 2.41 Assume that we want to perform a Detection of Signs
Analysis (Example 2.36) of the Fibonacci program of Example 2.33 and that
the extremal value tsign is the singleton [x F+ +, y '-+ -, z F4 -]. Then the
contexts of primary interest will be sets consisting of some of the following
abstract states

[x 1,+ ,y f-0, z - , [x 1 +,y 0,z f+0],1 [x + y 0,z +],
[x +y +z•] [x +y zý+, 0], [x +y +z ++]

corresponding to the states in which the call-statements may be encoun-
tered.

For a procedure call (t., I,, fx,-) E IF, i.e. [call p(a, z)]"c in the case of

forward analysis, we define the transfer function fl for procedure call by:

f(Z) = U{{6'} x ,(d) I (6,d) E Z A
6' = {d" I (6, d")E Z}}

where € D -4 P(D). The idea is as follows: a pair (6, d) E Z describes a
context and an abstract state for the current call. We now have to modify
the context to take the call into account, i.e. we have to determine the set of
possible abstract states in which the call could happen in the current context
and this is 6' = {d" I (6, d") E Z}. Given this context we proceed as in
the call string formulations presented above and mark the data flow property
with this context.

Next we shall consider the transfer function fj,2 for procedure return

fI, (Z,Z') U{{6} x Cto1t(d,d') 1 (6,d) E Z A (6',d') E Z'A
6' = {d"I(6,d") E Z}}

where t: D x D -+ P(D). Here (6,d) E Z describes the situation
before the call and (6', d') E Z' describes the situation at the procedure exit.

98 DATA FLOW ANALYSIS

From the definition of fIl we know that the context matching (6, d) will be
6' = {d" I (J, d") E Z} so we impose that condition. We can now combine
information from before the call with that at the procedure exit much as in
the call string approach; in particular, we can reset the context to be that of
the call point.

Small assumption sets. As a simpler version of using assumption
sets one may take

A=D

and then use i" = (t, t) as the extremal value. So rather than basing the
embellished monotone framework on P(D) x D as above we now base it on
D x D. Of course, this is much less precise but, on the positive side, the size
of the data flow properties has been reduced dramatically.

For a procedure call (t,, f,, t,, 4) E IF, i.e. [call p(a, z)]te for forward anal-

yses, the transfer function f4' is now defined by

l(Z) = U{{d} x 0',(d) 1 (6,d) E Z}

where, as before, 1, D -+ P(D). Here the individual pieces of information
concerning the abstract state of the call have their own local contexts; we
have no way of grouping the abstract states corresponding to 6 as we did in
the approach with large assumption sets.

The corresponding definition of the transfer function fA4 for procedure
return then is

f~tce (Z,Z,) = U{ X q2 ,, (d,d') 1 (6,d) E Z A (d,d') E Z'}

where again 2, D x PD- (D). Examples of how to use assumption
sets will be considered in the exercises.

2.5.6 Flow-Sensitivity versus Flow-Insensitivity

All of the data flow analyses we have considered so far have been flow-
sensitive: this just means that in general we would expect the analysis of
a program S; S2 to differ from the analysis of the program S2 ; S where the
statements come in a different order.

Sometimes one considers flow-insensitive analyses where the order of state-
ments is of no importance for the analysis being performed. This may sound
weird at first, but suppose that the analysis being performed is like the ones
considered in Section 2.1 except that for simplicity all kill components are
empty sets. Given these assumptions one might expect that the programs
Si; S2 and S2 ; S give rise to the same analysis. Clearly a flow-insensitive

• i I

2.5 Interprocedural Analysis 99

analysis may be much less precise than its flow-sensitive analogue but also it
is likely to be much cheaper; since interprocedural data flow analyses tend
to be very costly, it is therefore useful to have a repertoire of techniques for
reducing the cost.

Sets of assigned variables. We shall now present an example of a
flow-insensitive analysis. Consider a program P.,, of the form begin D, S,
end. For each procedure

proc p(val x, res y) is-' S endt'

in D., the aim is to determine the set IAV(p) of global variables that might
be assigned directly or indirectly when p is called.

To compute these sets we need two auxiliary notions. The set AV(S) of
directly assigned variables gives for each statement S the set of variables
that could be assigned in S - but ignoring the effect of procedure calls. It is
defined inductively upon the structure of S:

AV([skip]') = 0

AV([x := a]') = {x}
AV(Si; S 2) = AV(S 1) U AV(S2)

AV(if [b]' then S else S2) = AV(S 1) U AV(S2)

AV(while [b]'-.do S) = AV(S)

AV([call p(a;z)],:) = {z}

Similarly we shall need the set CP(S) of immediately called procedures that
gives for each statement S the set of procedure names that could be directly
called in S - but ignoring the effect of procedure calls. It is defined inductively
upon the structure of S:

CP([skip]') = 0

CP[x := a]') = 0

CP(SI; S2) = CP(S1) U CP(S2)

CP(if [b]' then S1 else S2) = CP(SI) U CP(S2)

CP(while [b]t do S) = CP(S)

CP([call p(a, z)]t:) = {p}

Both the sets AV(S) and CP(S) are well-defined by induction on the structure
of S; also it should be clear that they are context-insensitive in the sense that
any rearrangement of the statements inside S would have given the same
result. The information in CP(...) can be presented graphically: let the
graph have a node for each procedure name as well as a node called main,
for the program itself, and let the graph have an edge from p (respectively

100 DATA FLOW ANALYSIS

main.) to p' whenever the procedure body S of p has p' E CP(S) (respectively
p' E CP(S,)). This graph is usually called the procedure call graph.

We can now formulate a system of data flow equations that specifies how to
obtain the desired sets IAV(p):

IAV(p) = (AV(S) \ {x}) U U{IAV(p') I p' E CP(S)}

where proc p(val x, res y) is'"S endl= is in D.

By analogy with the considerations in Section 2.1 we want the least solution
of this system of equations.

Example 2.42 Let us now consider the following version of the Fibonacci
program (omitting labels):

begin proc fib(val z) is if z<3 then call add(1)
else (call fib(z-1); call fib(z-2))

end;
proc add(val u) is (y:=y+u; u:=0)
end;
y:=O; call fib(x)

end

We then get the following equatidrfs

IAV(fib) = (0 \ {z}) U IAV(fib) U IAV(add)

IAV(add) = {y,u} \ {u}

The associated procedure call graph is shown in Figure 2.11. The least solu-
tion to the equation system is

IAV(fib) = IAV(add) = {y}

showing that only the variable y will be assigned by the procedure calls.
(Had we instead taken the greatest solution to the equations we would have
IAV(f ib) = IAV(add) = Var,, for any set Var, of variables that contains
those used in the program and this would be completely unusable.) 0

Note that the formulation of the example analysis did not associate infor-
mation with entries and exit of blocks but rather with the blocks (or more
generally the statements) themselves. This is a rather natural space saving
approach for a context-insensitive analysis. It also relates to the discussion
of Type and Effect Systems in Section 1.6: the "annotated base types" in
Table 1.2 versus the "annotated type constructors" in Table 1.3.

2.6 Shape Analysis 101

add

fi

main,

Figure 2.11: Procedure call graph for example program.

2.6 Shape Analysis

We shall now study an extension of the WHILE-language with heap allocated
data structures and an interprocedural Shape Analysis that gives a finite
characterisation of the shapes of these data structures. So while the aim of
the previous sections has been to present the basic techniques of Data Flow
Analysis, the aim of this section is to show how the techniques can be used
to specify a rather complex analysis.

Shape analysis information is not.iinly useful for classical compiler optimisa-
tions but also for software development tools: the Shape Analysis will allow
us to statically detect errors like dereferencing a nil-pointer - this is guar-
anteed to give rise to a dynamic error and a warning can be issued. Perhaps
more surprisingly, the analysis allows us to validate certain properties of the
shape of the data structures manipulated by the program; we can for exam-
ple validate that a program for in-situ list reversal does indeed transform a
non-cyclic list into a non-cyclic list.

Syntax of the pointer language. We shall study an extension of
WHILE that allows us to create cells in the heap; the cells are structured and
may contain values as well as pointers to other cells. The data stored in a
cell is accessed via selectors so we assume that a finite and non-empty set
Sel of selector names are given:

sel E Sel selector names

As an example Sel may include the Lisp-like selectors cdr and car for select-
ing the first and second components of pairs. The cells of the heap can be
addressed by expressions like x.cdr: this will first determine the cell pointed
to by the variable x and then return the value of the cdr field. For the sake of
simplicity we shall only allow one level of selectors although the development

102 DATA FLOW ANALYSIS

generalises to several levels. Formally the pointer expressions are given by:

p ::= x Ix.sel

The syntax of the WHILE-language is now extended to have:

a ::= pIn aloPaa2Inil

b ::= true false I not bI bl opb b2 I al opr a2 I opp p

S ::= :=a]' I [skip]t I SI;S I
if [b]t then S else S 2 I while [bit do S I
[malloc p]'

Arithmetic expressions are extended to use pointer expressions rather than
just variables, and an arithmetic expression can also be the constant nil.
The binary operations oPa are as before, that is, they are the standard arith-
metic operations and in particular they do not allow pointer arithmetic. The
boolean expressions are extended such that the relational operators op, now
allow testing for the equality of pointers and also we shall allow unary opera-
tions opp on pointers (as for example is-nil and has-sel for each sel E Sel).
Note that arithmetic as well as boolean expressions can only access cells in
the heap, they cannot create new cells nor update existing cells.

The assignment statement takes the general form p: =a where p is a pointer
expression. In the case where p is just a variable we have an extension of the
ordinary assignment of the WHILE.language and in the case where p contains
a selector we have a destructive update of the heap. The statements of the
extended language also contain a statement malloc p for creating a new cell
pointed to by p.

Example 2.43 The following program reverses the list pointed to by x
and leaves the result in y:

[y:=nil]';

while [not is-nil(x)] 2 do
([z:=y] 3 ; [y: =x]4 ; [x:=x.cdr]5 ; [y.cdr: =z] 6);

[z: =nil]
7

Figure 2.12 illustrates the effect of the program when x points to a five
element list and y and z are initially undefined. Row 0 shows the heap just
before entering the while-loop: x points to the list and y is nil (denoted
by *); to avoid cluttering the figure we do not draw the car-pointers. After
having executed the statements of the body of the loop the situation is as in
row 1: x now points to the tail of the list, y points to the head of the list and
z is nil. In general the n'th row illustrates the situation just before entering
the loop the n + l'th time so in row 5 we see that x points to nil and the
execution of the loop terminates and y points to the reversed list. The final
statement z: =nil simply removes the pointer from z to $4 and sets it to the
nil-value. U

2.6 Shape Analysis 103

0: y -----

z

X Q •,Iyedr ed 4 cdr • d

2: y 42ct d

X 3 cdr •4 cdt cdt cd

4: Y 3 o

zxo

3: y d d

2:
z

x -

3: y c d

zx - ----- 0

Figure 2.12: Reversal of a list of five elements.

2.6.1 Structural Operational Semantics

To model the scenario described above we shall introduce an infinite set Loc
of locations (or addresses) for the heap cells:

E Loc locations

104 DATA FLOW ANALYSIS

The value of a variable will now either be an integer (as before), a location
(i.e. a pointer) or the special constant * reflecting that it is the nil value.
Thus the states are given by

o E State = Var, -+ (Z + Loc + {o})

where as usual Var,, is the (finite) set of variables occurring in the program
of interest. As mentioned above the cells of the heap have multiple fields and
they are accessed using the selectors. Each field can either be an integer, a
pointer to another cell or it can be nil. We formalise this by taking

1h E Heap = (Loc x Sel) -+fin (Z + Loc + {o})

Note that the use of partial functions reflects that not all selector fields need
to be defined; as we shall see later, a newly created cell with location ý will
have all its fields to be uninitialised and hence the corresponding heap W will
have w(ý, sel) to be undefined for all sel E Sel.

Pointer expressions. Given a state and a heap we need to determine
the value of a pointer expression p as an element of Z + Loc + {I}. For this
we introduce the function

p Var -4 (State x Heap) -4-fj, (Z + {o} + Loc)

defined by

if a(x) E Loc and H is defined on (o(x), sel)
plx.setl(a,7/) = undef

if u(x) V Loc or -H is undefined on (u(x), set)

The first clause takes care of the situation where p is a simple variable and
using the state we determine its value - note that this may be an integer,
a location or the special nil-value o'. The second clause takes care of the
case where the pointer expression has the form x.sel. Here we first have to
determine the value of x; it only makes sense to inspect the sel-field in the
case x evaluates to a location that has a sel-field and hence the clause is split
into two sub-cases. In the case where x evaluates to a location we simply
inspect the heap 7i to determine the value of the sel-field - again we may
note that this can be an integer, a location or the special value o.

Example 2.44 In Figure 2.12 the oval nodes model the cells of the heap
u and they are labelled with their location (or address). The unlabelled edges
denote the state o: an edge from a variable x to some node labelled ý means
that u(x) = ý; an edge from x to the symbol o means that u(x) = o. The
labelled edges model the heap 7H: an edge labelled sel from a node labelled

2.6 Shape Analysis 105

ý to a node labelled •' means that there is a sel pointer between the two
cells, that is H(6, sel) ='; an edge labelled sel from a node labelled 6 to the
symbol * means that the pointer is a nil-pointer, that is H(6, sel) = o.

Consider the pointer expression x.cdr and assume that a and w are as in row 0
of Figure 2.12, that is a(x) = 61 and w(61, cdr) = 62. Then p[x.cdr](a, W) =
62. N

Arithmetic and boolean expressions. It is now straightforward
to extend the semantics of arithmetic and boolean expressions to handle
pointer expressions and the nil-constant. Obviously the functionality of the
semantic functions A and B have to be changed to take the heap into account:

A : AExp -4 (State x Heap) -- fin (Z + Loc + {o})

B : BExp -4 (State x Heap) -+fin T

The clauses for arithmetic expressions are

A[p (a, = p[p](a,

A nI(o,7) = K[n]

A[al OPa a2](a,,W) = 4[al](a,w) Opa A[a2](oi)

A[nil](a, -) = o

where we use p to determine the value of pointer expressions and we explicitly
write that the meaning of nil is o,:cAlso the meaning OPN of the binary oper-
ation opa has to be suitably modified to be undefined unless both arguments
are integers in which case the results are as for the WHILE-language.

The definition of the semantics of boolean expressions is similar so we only
give two of the clauses:

B[al op, a2](a, -H) = A,4aiI(a, w) op,4 A[a2](a, R)

B[opp A(a, ?') = opP (p[p](a,07))

Analogously to above, the meaning op, of the binary relation operator op,
has to be suitably modified to give undefined in case the arguments are not
integers except that the equality operation now allows testing for the equality
of pointers. The meaning of the unary operation opp is defined by opp; as
an example:

is-nil(v) = { tt ifv=o
ff otherwise

Statements. Finally, the semantics of statements is extended to cope
with the heap component. The configurations will now contain a state as
well as a heap so we have

if=],a)- (a x -,) is w)fi
if A[aJ (a, w-) is defined

106 DATA FLOW ANALYSIS

reflecting that for the assignment x: =a the state is updated as usual and the
heap is left unchanged. In the case where we assign to a pointer expression
containing a selector field we shall leave the state unchanged and update the
heap as follows:

&[.sel: =a]',a, 7)-+ a (*) sel) +Aa](,w]
if a(x) E Loc and A[a] (a, w) is defined

Here the side condition ensures that the left hand side of the assignment does
indeed evaluate to a location.

The construct malloc p is responsible for creating a new cell. We have two
clauses depending on the form of p:

([malloc x]', a, w) -+ (a[x -H•])

where ý does not occur in a or -H
([malloc (x.sel)]t, a-, n) --+ (a [a ,sel)]

where ý does not occur in a or w and a(x) E Loc

Note that in both cases we introduce a fresh location ý but we do not specify
any values for H(ý, sel) - as discussed before we have settled for a semantics
where the fields of ý are undefined; obviously other choices are possible. Also
note that in the last clause the side condition ensures that we already have a
location corresponding to x and hence can create an edge to the new location.

Remark. The semantics only allows a limited reuse of garbage locations.
For a statement like [malloc x]1;:[x:=ni1] 2 ; [malloc y]3 we will assign some
location to x at the statement with label 1 and since it neither occurs in
the state nor the heap after the assignment labelled 2 we are free to reuse
it in the statement labelled 3 (but we do not have to). For a statement like
[malloc x]'; [x.cdr:--nil] 2 ; [x:--nil]3 ; [malloc y]4 we would not be able to
reuse the location allocated at 1 although it will be unreachable (and hence
garbage) after the statement labelled 3. u

2.6.2 Shape Graphs

It should be evident that there are programs for which the heap can grow
arbitrarily large. Therefore the aim of the analysis will be to come up with
finite representations of it. To do so we shall introduce a method for com-
bining the locations of the semantics into abstract locations such that there
is only a finite number of abstract locations. We then introduce an abstract
state S mapping variables to abstract locations (rather than locations) and
an abstract heap H specifying the links between the abstract locations (rather
than the locations). More precisely, the analysis will operate on shape graphs
(S, H, is) consisting of:

* an abstract state, S,

i ;ir

2.6 Shape Analysis 107

"* an abstract heap, H, and

"* sharing information, is, for the abstract locations.

The last component allows us to recover some of the imprecision introduced
by combining many locations into one abstract location. We shall now de-
scribe how a given state a and heap w give rise to a shape graph (S, H, is); in
doing so we shall specify the functionality of S, H and is in detail as well as
formulating a total of five invariants.

Abstract locations. The abstract locations have the form nx where
X is a subset of the variables of Var,:

ALoc = {nx I X C Var,} abstract locations

Since Var, is finite it is clear that ALoc is finite and a given shape graph
will contain a subset of the abstract locations of ALoc.

The idea is that if x E X then the abstract location nx will (among oth-
ers) represent the location o(x). The abstract location n0 is called the ab-
stract summary location and it will represent all the locations that cannot be
reached directly from the state without consulting the heap. Clearly nx and
n0 will represent disjoint sets of locations when X $ 0.

In general, we shall enforce the invariant that two distinct abstract locations
nx and ny always represent disjoint sets of locations. As a consequence
we get that for any two abstract"locations nx and ny it is either the case
that X = Y or that X n Y = 0. To see this assume that X 4 Y and that
z E X n Y. From z E X we get that a(z) is represented by nx and similarly
z E Y gives that a(z) is represented by ny. Hence nx and ny must be equal
and we have a contradiction.

The invariant can be formulated as follows:

Invariant 1. If two abstract locations nx and ny occur in the same
shape graph then either X = Y or X n Y = 0.

Example 2.45 Consider the state and heap in row 2 of Figure 2.12. The
variables x, y and z point to different locations (ý3, E2, and ý1, respectively)
so in the shape graph they will be represented by different abstract locations
named n{x}, n{y} and n{,}. The two locations ý4 and ý5 cannot be reached
directly from the state so they will be represented by the abstract summary
location no. M

Abstract states. One of the components of a shape graph is the ab-
stract state, S, that maps variables to abstract locations. To maintain the
naming convention for abstract locations we shall ensure that:

108 DATA FLOW ANALYSIS

cd.

cdr E"1dr no

0: x 1:]

cdr edr

2: Y 3: Y]dr.r

z z
cdr edr

cdr cdr

4(

_0

ccd

4: Y n, d rn5: Y n, d

z z

Figure 2.13: Shape graphs corresponding to Figure 2.12.

Invariant 2. If x is mapped to nx by the abstract state then x E X.

From Invariant 1 it follows that there will be at most one abstract location
in the shape graph containing a gt`"en variable.

We shall only be interested in the shape of the heap so we shall not distinguish
between integer values, nil-pointers and uninitialised fields; hence we can
view the abstract state as an element of

S E AState = P(Var, x ALoc)

where we have chosen to use powersets so as to simplify the notation in later
parts of the development. We shall write ALoc(S) = {Inx I 3x : (x, nx) E S}
for the set of abstract locations occurring in S. (Note that AState is too
large in the sense that it contains elements that do not satisfy the invariants.)

Abstract heaps. Another component of the shape graph is the abstract
heap, H, that specifies the links between the abstract locations (just as the
heap specifies the links between the locations in the semantics). The links
will be specified by triples (nv, sel, nw) and formally we take the abstract
heap as an element of

H E AHeap = P(ALoc x Sel x ALoc)

where we again do not distinguish between integers, nil-pointers and unini-
tialised fields. We shall write ALoc(H) = {nv,nw I 3sel : (nv, sel, nw) E H}
for the set of abstract locations occurring in H.

2.6 Shape Analysis 109

The intention is that if w(Cj, sel) = ý2 and C1 and C2 are represented by nv
and nw, respectively, then (nv, sel, nw) E H.

In the heap H there will be at most one location C2 such that w(C1, sel) =

ý2. The abstract heap only partly shares this property because the abstract

location no can represent several locations pointing to different locations.
However, the abstract heap must satisfy:

Invariant 3. Whenever (nv, sel, nw) and (nv, sel, nw,) are in the
abstract heap then either V = 0 or W = W'.

Thus the target of a selector field will be uniquely determined by the source
unless the source is the abstract summary location no.

Example 2.46 Continuing Example 2.45 we can now see that the ab-

stract state S2 corresponding to the state of row 2 of Figure 2.12 will be

S2 = {(x, n{x}), (yfjy}),(z)flz})}

The abstract heap H2 corresponding to row 2 has

H2 = {(n{,}, cdr, no), (n0 , cdr, n0), (n{y}, cdr, n{z})}

The first triple reflects that the heap maps C3 and cdr to ý4, C3 is represented
by n{1 } and C4 is represented by no. The second triple reflects that the heap
maps C4 and cdr to C5 and both C4 and C5 are represented by no. The final
triple reflects that the heap maps C2 and cdr to C1, 42 is represented by n{j}
and C1 is represented by n{j}. Note that there is no triple (n{z}, cdr, no)
because the heap maps C1 and cdr to * rather than a location.

The resulting abstract state and abstract heap is illustrated in Figure 2.13
together with similar information for the other states and heaps of Figure
2.12. The square nodes model abstract locations; the unlabelled edges from
variables to square nodes model the abstract state and the labelled edges
between square nodes model the abstract heap. If the abstract state does
not associate an abstract location with some variable then that variable does
not occur in the picture.

Note that even if the semantics uses the same locations throughout the
computation it need not be the case that the locations are associated with
the same abstract locations at all points in the analysis. Consider Figures
2.12 and 2.13: the abstract location no will in turn represent the locations

, 4 {3,C4,C5}, {f4,C5}, {C1,,5}, {•1,C2} and {•1,C2,C3}" M

Sharing information. We are now ready to introduce the third and
final component of the shape graphs. Consider the top row of Figure 2.1.1.
The abstract state and abstract heap to the right represent the state and the

110 DATA FLOW ANALYSIS

Xd, y od

xx
yC =

aCr cdt c

cdr X

y

ct cdr d drx -a i r C

cdt cdr

y

Figure 2.14: Sharing information.

heap to the left but they also represent the state and the heap shown in the
second row. We shall now show how to distinguish between these two cases.

The idea is to specify a subset, is,- of the abstract locations that represent
locations that are shared due to pointers in the heap: an abstract location
nx will be included in is if it does represent a location that is the target of
more than one pointer in the heap. In the top row of Figure 2.14, the abstract
location n{,} represents the location ý5 and it is not shared (by two or more
heap pointers) so n{y} V is; the fat box indicates that the abstract location is
unshared. On the other hand, in the second row 65 is shared (both ý3 and ý4

point to it) so n{j} E is; the double box indicates that the abstract location
might be shared.

Obviously, the abstract heaps themselves also contain some implicit sharing
information: this is illustrated in the bottom row of Figure 2.14 where there
are two distinct edges with target n{,}. We shall ensure that this implicit
sharing information is consistent with the explicit sharing information (as
given by is) by imposing two invariants. The first ensures that information
in the sharing component is also reflected in the abstract heap:

Invariant 4. If nx E is then either

(a) (no, sel, nx) is in the abstract heap for some sel, or

(b) there exists two distinct triples (ny, sell, nx) and (nw, sel2 , nx)
in the abstract heap (that is either sel l 5 sed2 or V $ W).

2.6 Shape Analysis 111

Case 4(a) takes care of the situation where there might be several locations
represented by n0 that point to nx (as in the second row of Figure 2.14).
Case 4(b) takes care of the case where two distinct pointers (with different
source or different selectors) point to nx (as in the bottom row of Figure
2.14).

The second invariant ensures that sharing information present in the abstract
heap is also reflected in the sharing component:

Invariant 5. Whenever there are two distinct triples (ny, sell, nx)
and (nw, Sel2, nx) in the abstract heap and nx 0 n0 then nx E ;S.

This takes care of the case where nx represents a single location being the
target of two or more heap pointers (as in the bottom row of Figure 2.14).
Note that invariant 5 is the "inverse" of invariant 4(b) and that we have no
"inverse" of invariant 4(a) - the presence of a pointer from n0 to nx gives
no information about sharing properties of nx.

In the case of the abstract summary location the explicit sharing information
clearly gives extra information: if no E is then there might be a location
represented by no that is the target of two or more heap pointers, whereas
if no V is then all the locations represented by no will be the target of at
most one heap pointer. The explicit sharing information may also give extra
information for abstract locations, nx where X 0 0: from 4(a) alone we
cannot deduce that nx is shared -,this is clearly illustrated for the node n{y}
by the top two rows of Figure 2.14.

The complete lattice of shape graphs. To summarise, a shape
graph is a triple consisting of an abstract state S, an abstract heap H, and a
set is of abstract locations that are shared:

S E AState = P(Var, x ALoc)

H E AHeap = P(ALoc x Sel x ALoc)

is E IsShared = P(ALoc)

where ALoc = {nz I Z C Var,}. A shape graph (S, H, is) is a compatible
shape graph if it fulfils the five invariants presented above:

1. Vnv,nw E ALoc(S) UALoc(H) Uis: V = W V V n W =0

2. V(x,nx) E S: x E X

3. V(nv, sel, nw),(nv,sel, nw,) E H : V = 0 V W W'

4. Vnx E is : (3sel : (no, sel, nx) E H) V
(3(nv, sell,nx), (nw, sel2, nx) E H

sell 5 sel 2 V V 5 W)

112 DATA FLOW ANALYSIS

cdr

x

Figure 2.15: The extremal value t for the list reversal program.

5. V(nv, sell, nx), (nw, sel2,nx) E H:
((sell 5 sel2 V V $ W) A X # 0) : nx E is

The set of compatible shape graphs is denoted

SG = {(S, H, is) I (S, H, is) is compatible}

and the analysis, to be called Shape, will operate over sets of compatible
shape graphs, i.e. elements of P(SG). Since P(SG) is a powerset, it is
trivially a complete lattice with U being U and __ being C.

2.6.3 The Analysis

The analysis will be specified as an instance of a Monotone Framework with
the complete lattice of properties being P(SG). For each label consistent
program S,, with isolated entries we obtain a set of equations of the form

p () if f = init(S.)
Shapeo(e) =I U{Shape. (') 1 (1', 1) E flow(S.)} otherwise

Shape.(e) = ItSA(Shapeo())

where t E P(SG) is the extremal value holding at entry to S, and 4sA are the
transfer functions to be developed below. The analysis is a forward analysis
since it is defined in terms of the set flow(S,), and it is a may analysis since
we are using U as the combination operation.

Example 2.47 Consider again the list reversal program of Example 2.43
and assume that x initially points to an unshared list with at least two el-
ements and that y and z are initially undefined; the singleton shape graph
corresponding to this state and heap is illustrated in Figure 2.15 and will be
the extremal value t used throughout this development.
The Shape Analysis computes the sets Shapeo(t) and Shape.(f) of shape
graphs describing the state and heap before and after executing the elemen-
tary block labelled f. The equations for Shape. (f) are

Shape.(1) = fsA(Shapeo(1)) = fsA(t)

Shape.(2) = f2SA(Shapeo(2)) = fSA(Shape (1) U Shape.(6))

2.6 Shape Analysis 113

cdr

Shape.(1): x

cdr cdr

Shape. (2): X c.- drCE6) X = Lr

Y
cdr cdr

X . !E d_:6X cdr n
y y () c&,

_.%
Vcdr

cdr

Shape.(3): x dr

cdr cdr

cdr ~ cdr n

cdrShape.o(4): xcd

y
cdr cdr

y y cdr

Y Yz

Figure 2.16: Shape graphs computed for the list reversal program (part 1).

Shape.(3) = ISA(Shapeo(3)) = fS A(Shape. (2))

Shape.(4) = fSA(Shapeo(4)) = fS4A(Shape (3))

Shape.(5) = fSA(Shapeo(5)) = fSA(Shape (4))

Shape.(6) = fSA(Shape (6)) -= fSA(Shapeo(5))

114 DATA FLOW ANALYSIS

cdr

Shape. (5): x

cdr cdr

x x

cd n drn

Shape. (6): x

car cdr

y N)y NY) cdr

z z

Shape.(7): x n.r

cdr cdr

Shape.(7) = _SA(Shapeo ()) = fSA(Shapeo(2))

where the transfer functions fSA will be specified below. The least solution
to the equations is shown in Figures 2.16 and 2.17; the sets Shape. (t) contain
between 1 and 4 distinct shape graphs.

From Shape. (2) we can see that at the beginning of each iteration of the loop
it is the case that

"* x never points to a shared list,

"* y never points to a shared list,

2.6 Shape Analysis 115

"* z may point to the second element of the list pointed to by y (if it
exists), and

"* x and y never point to lists that are not disjoint (because no is not
shared).

The shape graphs in Shape.(7) show that at termination y cannot point to
a shared list - it will not be possible that the list is cyclic since such a list
cannot be represented by any of the shape graphs in Shape.(7).

The transfer function fsA : P(SG) -+ P(SG) associated with a label, f, has
the form:

ftSA(SG) = U{fA((S, H, is)) I (S, H, is) E SG}

where OsA : SG -+ P(SG) specifies how a single shape graph (in Shapeo(t))
may be transformed into a set of shape graphs (in Shape. (1)) by the elemen-
tary block labelled t. We shall now inspect the various forms of elementary
block and specify OSA in each case. We shall first consider the boolean ex-
pressions and the skip-statement, then the different forms of assignments
and finally the malloc-statement.

Transfer function for [b]l and [skip]'. We are only interested in
the shape of the heap and the boolean tests do not modify the heap. Hence
we take

SAt((S, H, is)) = {(S, H, is)}

so that the transfer function fSA will be the identity function. Similarly for
the skip-statement.

Example 2.48 This case is illustrated by the test [not is-nil(x)]2 of

the list reversal program of Example 2.43: the transfer function f2sA is the
identity function. Hence Shape.(2) = Shape.(1) U Shape. (6) in Figures 2.16
and 2.17. 0

Transfer function for [x =a]t where a is of the form n, a, oPa a2 or
nil. The effect of this assignment will be to remove the binding to x, and
to rename all abstract locations so that they do not include x in their name.
The renaming of abstract locations is specified by the function

k2 (nz) = nz\{x}

and we then take

OSA((S, H, is)) = {killý((S, H, is))}

116 DATA FLOW ANALYSIS

(S, H, is) (S', H', is')

Figure 2.18: The effcct of [x:=nil]t.

where kill.((S, H, is)) = (S', H', is') is given by

S' = {(z, k.(nz)) I (z, nz) E S A z $ x}

H' - {(ký(nv),sel,k,(nw)) I (nv,sel,nw) E H}

is' = {k-(nx) I nx E is}

It is easy to check that if (S, H, is) is compatible then so is (S', H', is').

Example 2.49 The statement- [y: --nil]1 of the list reversal program of
Example 2.43 is of the form considered here. Since there is no occurrence of
y in the shape graph t of Figure 2.15, the shape graph Shape. (1) in Figure
2.16 is equal to t. a

An interesting case is when (x, n{_}) E S since this will cause the two abstract
locations n{.} and no to be merged. The sharing information is then updated
to capture that we can only be sure that no is unshared in the updated shape
graph if both no and n{.} were unshared in the original shape graph. This is
illustrated in Figure 2.18: the left hand picture shows the interesting parts of
the shape graph (S, H, is) and the right hand picture shows the corresponding
parts of (S', H', is'). We shall assume that the square boxes represent distinct
abstract locations so in particular V, {x}, W and 0 are all distinct sets.
The fat boxes represent unshared abstract locations as before, the thin boxes
represent abstract locations whose sharing information is not affected by the
transfer function, and unlabelled edges between abstract locations represent
pointers that are unaffected by the transfer function.

Example 2.50 The statement [z: =nil]7 of the list reversal program of
Example 2.43 illustrates this case: for each of the shape graphs of Shape.(2)
in Figures 2.16 and 2.17 the abstract location n{.} is merged with no to
produce one of the shape graphs of Shape°(7).

2.6 Shape Analysis 117

J.d1

"V "nV

(S, H, is) (S", H", is")

Figure 2.19: The effect of [x:=y]' when x5/y.

Remark. The analysis does not perform garbage collection: it might be
the case that there axe no heap pointers to n{.} and then the corresponding
location in the heap will be unreachable after the assignment. Nonetheless
the analysis will still merge the two abstract locations n{,,} and n0 and insist
on a pointer from no to any abstract location that n{,} might point to. *

Transfer function for [x: =y]t. If x = y then the transfer function
fS A is just the identity.

Next suppose that x 0 y. The first effect of the assignment is to remove
the old bindings to x; for this we use the kill, operation introduced above.
Then the new binding to x is recorded; this includes renaming the abstract
location that includes y in its variable set to also include x. The renaming
of the abstract locations is specified by the function:

, nzu{l} ifyEZg•(nlz){
n z otherwise

We shall then take

OSA((s, H, is)) = {(S", H", is")}

where (S', H', is') = killx((S, H, is)) and
S" (zgl(nz)) I (znz) E S'}

u (x,gy(ny)) I (y',ny) ES'Ay' =y}

H" = {(gy(nv),sel, gy(nw)) I (nv,sel, nw) E H'}

is"= {g(nz) I nz E is'}

Here the second clause in the formula for S" adds the new binding to T.
Again we note that if (S, H, is) is compatible then so is (S", H", is").

118 DATA FLOW ANALYSIS

The clause is illustrated in Figure 2.19 where we assume that nodes represent
distinct abstract locations; it follows from the invariants that y E Y but y V V
and y V W. Note that nyulx} inherits the sharing properties of ny although
both x and y will point to the same cell; the reason is that the sharing
information only records sharing in the heap - not sharing via the state.

Example 2.51 The statement [y: =x]4 of the list reversal program of Ex-
ample 2.43 is of the form considered here: each of the shape graphs of
Shape.(3) in Figure 2.16 is transformed into one of the shape graphs of
Shape.(4).

Also the statement [z: =y]3 is of the form considered here: each of the shape
graphs of Shape. (2) is transformed into one of the shape graphs of Shape. (3);
indeed two of the shape graphs in Shape. (2) give rise to the same shape graph
in Shape. (3). a

Transfer function for [x: =y.sel]'. First assume that x = y; then
the assignment is semantically equivalent to the following sequence of assign-
ments

[t: =y.sel]" [;X: =t][
t 2; [t: =nil]t3

where t is a fresh variable and tj, t 2 and 63 are fresh labels. The transfer
function f1sA car, therefore be obtained as

f A = SA O fSA 0 fSA

where the transfer functions ftSA and f3sA follow the pattern described above.
We shall therefore concentrate on the transfer function fSA, or equivalently,
jSA in the case where x $ y.

Example 2.52 The statement [x: =x.cdr]5 of the list reversal program of
Example 2.43 is transformed into [t: =x.cdr]5 1; [x: =t]5 2

; [t : -nil]5 3 . We shall
return to the analysis of [t:=x.cdr]5 1 later. M

So assume that x $ y and let (S, H, is) be a compatible shape graph before
the analysis of the statement. As in the previous case, the first step will be
to remove the old binding for x and again we use the auxiliary function kill.:

(S', H', is') = killý:((S, H, is))

The next step will be to rename the abstract location corresponding to y.sel
to include x in its name and to establish the binding of x to that abstract
location. We can now identify three possibilities:

1. There is no abstract location ny such that (y, ny) E S' or there is
an abstract location ny such that (y, ny) E S' but no nz such that
(ny, sel, nz) E H'; in this case the shape graph will represent a state
and a heap where y or y.sel is an integer, nil or undefined.

2.6 Shape Analysis 119

XX

yy M, eeL(. cc V

(S, H, is) (S", H", is")

Figure 2.20: The effect of [x:=y.seI]t in Case 2 when x 5y.

2. There is an abstract location ny such that (y, ny) E S' and there is
an abstract location nu $ no such that (ny, sel, nu) E H'; in this case
the shape graph will represent a state and a heap where the location
pointed to by y.sel will also be pointed to by some other variable (in
U).,

3. There is an abstract location ny such that (y, ny) E S' and (ny, sel, Ino)
E H'; in this case the shape graph will represent a state and a heap
where no other variable poiits to the location pointed to by y.sel.

Case 1. First consider the statement [x: =y.sel]t (where x $ y) in the case
where there is no abstract location ny such that (y, ny) E S'. Then there is
no abstract location for y.sel and hence no abstract location to rename and
no binding to establish. Thus we take:

,SAI((s, H, is)) = {killx((S, H, is))}

Note that this situation captures the case where an attempt is made to deref-
erence a nil-pointer.

Alternatively, there is an abstract location ny such that (y, ny) E S' but there
is no abstract location n such that (ny, sel, n) E H'. From the invariants it
follows that ny is unique but still there is no abstract location to rename and
no binding to establish. So again we take:

SA((S, H, is)) = {killý((S, H, is))}

This situation captures the case where an attempt is made to dereference a
non-existing selector field of pointer.

Case 2. We consider the statement [x:=y.sel]' (where x 5 y) in the case
where there is an abstract location ny such that (y, ny) E S' and there is an

120 DATA FLOW ANALYSIS

abstract location nu 0 no such that (ny, sel, nu) E H'. Both ny and nu will
be uniquely determined because of the invariants (and they might be equal).
The abstract location nu will be renamed to include the variable x using the
function:

1h!U(nz) nuu{.} if Z = U
nz otherwise

We shall then take

0S A((S, H, is)) = {(S", H", is")}

where (S', H', is') = kill.((S, H, is)) and
S" = {(z,nhU(nz)) l (z,nz)ES'}U x

H" = {(h'(nv),sel',hu(nw)) I (nv,sel',nw) E H'}

is" = {h (nz)l nlz E is'}

The inclusion of (x, h¶(nu)) in S" reflects the assignment. The definition of
is" ensures that sharing is preserved by the operation; in particular, nuu{x}
is shared in H" if and only if nu is shared in H'.

The effect of the assignment is illustrated in Figure 2.20 in the case where
nu E is. As before we assume that the abstract locations shown on the figure
are distinct so in particular Y, V and W are all distinct from U.

Case 3. We now consider the statement [x: =y.sel]l (where x 5 y) in the case
where there is an abstract location ny such that (y, nfy) E S' and furthermore
(ny, sel, n0) E H'. As before the invariants ensure that ny is uniquely deter-
mined. The location n0 describes the location for y.sel as well as a (possibly
empty) set of other locations. We now have to materialise a new abstract
location n{,.} from no; then n{.} will describe the location for y.sel and no
will continue to represent the remaining locations. Having introduced a new
abstract location we will have to modify the abstract heap accordingly.

This is a potentially difficult operation, so let us consider the following se-
quence of assignments:

[x:=nil]*'"; [x: =y.seljt; Ix: =nil]'"*t t I
(S" 1H", is"l)

(S, H, is) ",H
(S', (-",, is') (S") , H", is')

Clearly Ix: =nil]'"; [x: =y.sel' is equivalent to [x: =y.sel]' both in terms of the
analysis and the semantics. Indeed, (S', H', is') = kill,,((S, H, is)) represents
the effect of removing the binding to x. We are trying to determine candidate
shape graphs (S", H", is") holding after the assignment [x: =y.sel]t (where

2.6 Shape Analysis 121

x 5 y) but let us first study our expectations to (S"', H"', is"'). It is immediate
that (S"', H"', is"') = kill ((S", H", is")). Furthermore, the states and heaps
possible at the point described by (S', H', is') should be the same as those
possible at the point described by (S"', H"', is"'). This suggests demanding
that

(S-1, H"', is"') = (S', H', is')

which means that kill-,((S", H", is")) = (S', H', is'). It is also immediate that
(x,n{.}) E S" and that (ny,sel, n{.,}) E H".

We shall then take
IA ((S, H, is)) = {(S", H", is") I (S", H", is") is compatible A

kill,((S", H", is")) = (S', H', is') A
(x,n{x}) E S" A (ny,sel,n{•}) E H"}

where (S', H', is') = killT((S, H, is)).

It is hopefully clear that we have not missed any shape graphs (S", H", is")
that might be the result of the assignment. What might be a worry is that
we have included an excessive amount of irrelevant shape graphs. (Indeed
producing all compatible shape graphs would be trivially sound but also
utterly useless.) Although it is possible to do slightly better (see Exercise
2.22) we shall now argue that there is no excessive amount of imprecision in
the above definition.

We first establish that
S" = U

showing that the abstract state is fully determined. Consider (z, nz) E S".
If z = x it follows from the compatibility of (S", H", is") that nz = .
If z 5 x it follows from (x, n{,}) E S" and the compatibility of (S", H", is')
that x V Z and hence (z, nz) = (z, k.(nz)) (where k, is the renaming of the
kill, operation). This establishes that S" C S' U { (x, n{j}) }. Next consider
(u, nu) E S'. We know that u 0 x and x V U from the definition of S'
and from compatibility of (S', H', is'). There must exist (u, n{u) E S" such
that k,(n') = nu but since x $ u this gives n' = nu. It follows that
S" D S' U {(x, n{a})} and we have proved the required equality.

We next establish that

is'\ {no} = is" \ {no,n{x}}

nE is' iff n E is" V n{.,} E is"

showing that

"* abstract locations apart from no retain their sharing information,

"* if no is shared then that sharing cannot go away but must give rise to
sharing of at least one of no or n{,}, and

122 DATA FLOW ANALYSIS

* if no is not shared then no sharing can be introduced for n0 or n{=}.

Since both (S', H', is') and (S", H", is") are compatible shape graphs it follows
that if nu E S' then x 0 U and if nu E S" then x ý U U {x} = U. Hence
is' = {k 3,(nu) I nu E is"} establishes is' \ {no} = is" \ {In,n{.{}} because

ký(nu) = nu 5 no for all nu E is" \ {no,n{,}}. Furthermore, n0 E is" V
nj.} E is" gives no E is', and no0 is" A n{,} V is" gives no 0 is'. Thus we
have established the required relationship.

We now turn to the abstract heap. We shall classify the labelled edges
(nv, sel', nw) into four groups depending on whether or not the source or
target may be one of the nodes no or n{•:

(nv,sel',nw) is external iff {fnv,nw} n {no,n{2}} = 0

(nv,sel',nw) is internal iff {Inv,nw} g {no,n{f}}

(nv,sel',nw) is going-out iff nv E {nofn{x}} A nw q {no,fn{ 4 }

(nv,sel',nw) is going-in iff nv - {fno,fn{z}} A nw E {fn,fn{z}}

We shall also say that two edges (nv, sel', nw) and (nv', sel", naw) are related
if and only if kx(nv) = k.(n'y), sel' = sel" and kx(nw) = kr(n'w). Clearly
an external edge is related only to itself.

Reasoning as above one can show .that

"• H' and H" have the same external edges,

"* each internal edge in H' is related to an internal edge in H" and vice
versa,

"* each edge going-out in H' is related to an edge going-out in H" and vice
versa, and

"* each edge going-in in H' is related to an edge going-in in H" and vice
versa.

One consideration is that the going-in edge (ny, sel, no) E H' should be
changed into the going-in edge (ny, sel, nf1,}) E H". We clearly demanded
that (ny, sel, n{a,}) E H" and because (S' , H", is") is compatible it follows
that (ny, sel, no) V H".

As a more concrete illustration consider the scenario in Figure 2.21. Here
neither no nor nw is shared and we assume that both nv and nw are distinct
from no; we also assume that x 5 y and set 2 $ sel3. The result of the
transfer function is shown in Figure 2.22. First note that the going-in edge
(ny, sel, no) E H is changed to (ny, sel, n{j}) E H' in all shape graphs. Next
note that the going-in edge labelled sell can only point to n0 because n{.} is

2.6 Shape Analysis 123

X- nX

13

(S, H, is)

Figure 2.21: The effect of [x:=y.sel]t in a special case (part 1).

not shared (as n0 is not) and ny points to n{l}. The going-out edge labelled
sel2 can start at both no and n{.} but it cannot do so simultaneously because
nw is not shared. The internal edge labelled sel3 can only point to no because
n{I} is not shared and ny points to n{f}; but it can start at both no and
n{.} and can even do so simultaneously. This explains why there are only
six shape graphs in OSA((S, H, is)), all of which are clearly needed.

Example 2.53 The statement.[t :=x.cdr]51 introduced in Example 2.52
is of the form considered here: thid transfer function will transform each of
the shape graphs of Shapeo(4) in Figure 2.16 into one of the shape graphs in
Figure 2.23. 0

Transfer function for [x.sel: =a]' where a is of the form n, a, opa a2
or nil. Again we consider a compatible shape graph (S, H, is). First assume
that there is no nx such that (x, nx) E S; then x will not point to a cell
in the heap and the statement will have no effect on the shape of the heap
so the transfer function fIsA is just the identity. Next assume that there
is a (unique) nx such that (x, nx) E S but that there is no nu such that
(nx, sel, nu) E H; then the cell pointed to by sel does not point to another
cell so the statement will not change the shape of the heap and also in this
case the transfer function fSA will be the identity.

The interesting case is when there are abstract locations nx and nu such that
(x, nx) E S and (nx, sel, nu) E H; these abstract locations will be unique
because of the invariants. The effect of the assignment will be to remove the
triple (nx, sel, nu) from H:

cSA ((S, H, is)) = {kill..8, 1((S, H, is))}

where kitll.s.i((S, H, is)) = (S', H', is') is given by:

124 DATA FLOW ANALYSIS

y ey .•I ne "2

#ed3

(S111, H (S, H", is"'')

yx y n set nfl 1

5 1"3 13 l

"" "8 "" "1 "0

(S",H11,is")(S", H11, is"')

Figure 2.22: The effect of [a;:=y.selyt in a special case (part 2).

S =S

H' = {(nv,sel',nw) I (nv, sel',nzw) e H A -•(X = V A sel =sel')}Jis\{nu} if nu C is A #into(nu, H') • 1 A

is' = i(n0, sel',nu) C H'
is otherwise

, H , i) 1, 1

2.6 Shape Analysis 125

cdr

Shape.(51): t; wr
x Zd

cdr cdr

t •

y y ydr

z • z

Figure 2.23: Shape graphs computed for the list reversal program.

(S, H, is) (S', H', is')

Figure 2.24: The effect of [x.sel:-=nil]t when #into(nu, H') <1.

The sharing information is as before except that we may be able to do better
for the node nu - we have removed one of the pointers to it and in the case
where there is at most one pointer left and it does not have source no the
corresponding location will be unshared. Here we write #into(nu, H') for the
number of pointers to nu in H'. This clause is illustrated in Figure 2.24.

Remark. Again we shall note that the analysis does not incorporate garbage
collection: it might be the case that there is only one pointer to the abstract
location nu and that after the assignment x.sel: =nil the corresponding lo-
cation will be unreachable. However, the abstract location may still be part
of the shape graph. N

Transfer function for [x.sel: =y]. First assume that x y. The
statement is then semantically equivalent to

[t:--y]"; [x.sel:--t]"; [t: --il] 1

126 DATA FLOW ANALYSIS

yS
y in

(S, H, is) (S', H", is")

Figure 2.25: The effect of [x.sel:=y]t when #into(ny, H') < 1.

where t is a fresh variable and ti, t 2 and 63 are fresh labels. The transfer
function fSA is then given by

f 1S = A o f1S 1o fSA

The transfer functions fsA and ftsA follow the pattern we have seen before

so we shall concentrate on the clause for f,52A, or equivalently, ft - in the case
where x 5 y.

So assume that x 5 y and that (S, H, is) is a compatible shape graph. It may
be the case that there is no nx such that (x, nx) E S and in that case the
transfer function will be the identty since the statement cannot affect the
shape of the heap.

So assume that nx satisfies (x, nx) E S. The case where there is no ny such
that (y, ny) E S corresponds to a situation where the value of y is an integer,
the nil-value or undefined and is therefore similar to the case [x.sel: =nil].]:

tA((S, H, is)) = {kilU.,.S1((S, H, is))}

The interesting case is when x $ y, (x, nx) E S and (y, ny) E S. The first
step will be to remove the binding for x.sel and for this we can use the kill,.s.,
function. The second step will be to establish the new binding. So we take

OSAI((S, H, is)) = {(S", H", is")}

where (S', H', is') = kill,.se,((S, H, is)) and

s" = s' (=S)

H" = H'U{(nx,sel,ny)}

is"= is' U {ny} if #into(ny, H') > 1
[is' otherwise

Concluding Remarks 127

Note that the node ny might become shared when we add a new pointer to
it. The effect of the transfer function is illustrated in Figure 2.25.

Example 2.54 This transfer function is illustrated by the assignment
[y.cdr: =z]6 of the list reversal program of Example 2.43: each of the shape
graphs of Shapeo(5) in Figure 2.17 are transformed into one of the shape
graphs of Shape.(6). 0

Transfer function for [x.sel :=y.sel']t. This statement is equivalent
to the sequence of statement

[t:=y.sel']1I; [x.sel : =t]12; [t: =nil]13

for t being a fresh variable and fl, 62 and 13 being fresh labels. Thus the
transfer function fIsA satisfies

f A = fSA o fSA 0 fSA

The transfer functions tftA, 1sA and 6SA all follow the patterns we have seen
before so this completes the specification of the transfer function.

Transfer function for [malloc p]'. We first consider the statement
[malloc x]t where we have to remove the binding for x and then introduce a
new (unshared) location pointed to by x. Thus we define

,SAt((S, H, is)) = I-(-S' U {(x, n{.})}, H', is')}

where (S', H', is') = kill,(S, H, is).

The statement [malloc (x.sel)]' is equivalent to the sequence

[malloc t]t ; [x.sel: =t]1 ; [t: =nil]t"

where t is a fresh variable and 4j, t2 and f3 are fresh labels. The transfer
function fSA is then

f A t S o~ 2A o fS

The transfer functions f, f16 and fsA3 all follow the patterns we have seen
before so this completes the specification of the transfer function.

Concluding Remarks

Data Flow Analysis for imperative languages. As mentioned
in the beginning of this chapter, Data Flow Analysis has a long tradition.
Most compiler textbooks contain sections on optimisation which mainly dis-
cuss Data Flow Analyses and their implementation [2, 39, 141]. The emphasis
in these books is often on practical implementations of data flow analyses. A

128 DATA FLOW ANALYSIS

classic textbook which provides a more theoretical treatment of the subject
is by Hecht [52]; the book contains a detailed discussion of the four exam-
ple Data Flow Analyses in Section 2.1, and also presents a more traditional
treatment of Monotone Frameworks based on the use of semi-lattices as well
as a number of algorithms (see Chapter 6 for a more thorough treatment of
algorithms). Marlowe and Ryder [78] provide a survey of data flow frame-
works. Steffen [129] and Schmidt [117] express data flow analyses using modal
logic (rather than equations) thereby opening up for using model checking
techniques for program analysis.

The examples presented in Section 2.1 are fairly standard. Alternative treat-
ments of this material can be found in any of the books already cited. The
examples may all be represented as Bit Vector Frameworks (see Exercise 2.9):
the lattice elements may be represented by a vector of bits and the lattice op-
erations efficiently implemented as boolean operations. The method used in
Section 2.2 to prove the correctness of the Live Variables Analysis is adapted
from [84]. The notion of faint variables, introduced in Exercise 2.4, was first
introduced by Giegerich, M6ncke and Wilhelm [49].

The use of semi-lattices in Data Flow Analysis was first proposed in [72]. The
notion of Monotone Frameworks is due to Kam and Ullman [70]. These early
papers, and much of the later literature, use the dual notions (meets and
maximal fixed points) to our presentation. Kam and Ullman [70] prove that
the existence of a general algorithm to compute MOP solutions would imply
the decidability of the Modified Post Correspondence Problem [57]. Cousot
and Cousot [27] model abstract program properties by complete semi-lattices
in their paper on Abstract Interpretation (see Chapter 4).

We have associated transfer functions with elementary blocks. It would be
possible to associate transfer functions with flows instead as e.g. in [113].
These two approaches have equal power: to go from the first to the second,
the transfer functions may be moved from the blocks to their outgoing flows;
to go from the second to the first, we can introduce artificial blocks. In fact
artificial blocks can be avoided as shown in Exercise 2.11.

Most of the papers that we have cited so far concentrate on intraprocedural
analysis. An early, and influential, paper on interprocedural analysis is [120]
that studies two approaches to establishing context. One is based on call
strings and expresses aspects of the dynamic calling context; our presentation
is inspired by [139]. The other is based on data and shares some of the
aims of assumption sets [74, 106, 112]; the technical formulation is different
because [120] obtains the effect by calculating the transfer functions for the
call statement. Most of the subsequent papers in the literature can be seen
as variations and combinations over this theme; a substantial effort in this
direction may be found in [34].

Concluding Remarks 129

Pointer analysis. There is an extensive literature on the analysis of
alias problems for languages with pointers. Following [46] we can distinguish
between analyses of pointers to (1) statically allocated data (typically on
the stack) and (2) dynamically allocated data (typically in the heap). The
analysis of pointers to statically allocated data is the simplest: typically the
data will have compile-time names and the analysis result can be presented
as a set of points-to pairs of the form (p, x) meaning that the pointer p points
to the data x or as alias pairs of the form (*p, x) meaning that *p and x are
aliased. Analyses in this category include [36, 75, 112, 142, 127, 119].

The analysis of dynamically allocated data is more complicated since the
objects of interest are inherently anonymous. The simplest analyses [28,
45] study the connectivity of the heap: they attempt to split the heap into
disjoint parts and do not keep any information about the internal structure
of the individual parts. These analyses have been found quite useful for many
applications.

The more complex analyses of dynamically allocated data give more precise
information about the shape of the heap. A number of approaches use graphs
to represent the heap. A main distinction between these approaches is how
they map a heap of potentially unbounded size to a graph of bounded size:
some bounds the length of paths in the heap [64, 130], others merge heap cells
created at the same program point [65, 20], and yet others merge heap cells
that cannot be kept apart by the set of pointer variables pointing to them
[114, 115]. Another group of analyses obtain information about the shape
of the heap by more directly appriximating the access paths. Here a main
distinction is the kind of properties of the access paths that are recorded:
some focus on simple connectivity properties [46], others use some limited
form of regular expressions [76], and yet others use monomial relations [35].

The analysis presented in Section 2.6 is based on the work of Sagiv, Reps
and Wilhelm [114, 115]. In contrast to [114, 115] it uses sets of compatible
shape graphs; [114, 115] merges sets of compatible shape graphs into a single
summary shape graph and then use various mechanisms for extracting parts
of the individual compatible shape graphs and in this way an exponential
factor in the cost of the analysis can be avoided. The sharing component of
the shape graphs is designed to detect list-like properties; it can be replaced
by other components detecting other shape properties [116].

Static Single Assignments. Prior to analysis, many modern com-
pilers perform a source-to-source transformation which produces a program in
static single assignment (SSA) form. In SSA form there is a single assignment
for each name; this is achieved by variable renaming. The transformation also
introduces new assignments which combine the results from several assign-
ments (using the so-called 0 functions) at certain points. Uses of names on
the right hand side of an assignment refer to the result of a unique assignment
of one of the previous two forms. The advantage of transforming the pro-

130 DATA FLOW ANALYSIS

gram in this way is that some analyses become simpler or more effective. An
efficient algorithm for computing SSA form was introduced in [32]. The first
algorithm gives conservative results for arrays; [73] presents a new approach
to array SSA form that captures precise element-level data flow information
for array variables.

Data Flow Analysis for other language paradigms. The
analysis techniques that we have studied assume the existence of some rep-
resentation of the flow of control in the program. For the class of imperative
languages that we have studied, it is relatively easy to determine this control
flow information. For many languages, for example functional programming
languages, this is not the case. The next chapter presents techniques for de-
termining control flow information for such languages and shows how Data
Flow Analysis can be integrated with Control Flow Analysis.

The techniques we have presented can be applied directly to other language
paradigms. Two examples are in object-oriented programming and a commu-
nicating processes language. In both cases the authors describe their analyses
by data flow equations. Vitek, Horspool and Uhl [139] present an analysis for
object-oriented languages which determines classes of objects and their life-
times. Their analysis is an interprocedural analysis that uses a graph-based
representation of the memory as data flow values. Reif and Smolka [109] ap-
ply Data Flow Analysis techniques to distributed communicating processes to
detect unreachable code and to determine the values of program expressions.
They apply their analysis to a language with asynchronous communication.
Their reachability analysis is based on an algorithm that builds a spanning
tree for each process flow graph and links matching transmits and receives
between processes. They construct a Monotone Framework for determining
value sets.

We refer to the Concluding Remarks of Chapter 6 for a discussion of systems
implementing data flow analysers.

Mini Projects

Mini Project 2.1 ud- and du-chains

The aim of this mini project is to develop a more thorough understanding of
the concepts of ud- and du-chains introduced in Subsection 2.1.5.

1. The function ud is specified in terms of definition clear paths, whilst
U D re-uses functions introduced for the Reaching Definitions and Live
Variables Analyses. Prove that the two functions compute the same
information.

Mini Projects 131

ud-chain
-chainhain

du-chVain

Figure 2.26: du-and ud-chains.

2. DU can be defined by analogy with UD. Starting from the definition of
du, develop an equational definition of DU and verify its correctness.

3. A Constant Propagation Analysis is presented in Subsection 2.3.3; an
alternative approach would be to use du- and ud-chains. Suppose there
is a block [x := n]t that assigns a constant n to a variable x. By
following the du-chain it is possible to find all blocks using the variable
x. It is only safe to replace.A.' use of x by the constant n in a block t'
if all other definitions that reach I' also assign the same constant n to
x. This can be determined by using the ud-chain. This is illustrated
in Figure 2.26. Considering the program of Example 2.12, Constant
Folding (followed by Dead Code Elimination) can be used to produce
the following program:

(if [z=3]3 then [z: =0]4 else [z: =3] 5); [y: =3] 6 ; [x: =3+z]7

Develop a formal description of this analysis.

Mini Project 2.2 Correctness of Reaching Definitions

The aim of this mini project is to prove the correctness of Reaching Definitions
with respect to the notion of semantic reaching definitions introduced in
Section 1.5. To get a precise definition of the set of traces of interest we shall
begin by introducing a so-called instrumented semantics: an extension of a
more traditional semantics that keeps track of additional information that is
mainly of interest for the program analysis.
The instrumented semantics has transitions of the forms:

(S, a, tr) -+ (a', tr') and (S, a, tr) -+ (S', a', tr')

132 DATA FLOW ANALYSIS

[ass] ([x := a]t, o, tr) -+ (a[x ý-+ A[aj]], tr: (x, e))

[skip] ([skip], a, tr) - (a, tr)

(S1 , a, tr) - (S', a', tr')
[seqz] (Si;S2 ,a, tr) -+ (Sl;S2,a',tr')

(Si, a, tr) - (a', tr')
[seq2] ($ 1 ; S2 , a, tr) -+ (2, a', tr')

[if1] (if [bi' then S else S2 , a, tr) -+ (S1, a, tr) if B[bla = true

[if2] (if [b]' then S1 else S2, a, tr) -+ (S2, a, tr) if B[b]a = false

[whil] (while [b]' do S, a, tr) -+ ((S; while [b]t do S), a, tr)

if B[bla = true

[wh2] (while [b]t do S, a, tr) -4 (a, tr) if B[b]a = false

Table 2.10: The instrumented semantics of WHILE.

All configurations include a trace -tr E Trace = (Var x Lab)* that records
the elementary block in which advariable is being assigned. The detailed
definition of the instrumented semantics is given in Table 2.10.

Given a program S, and an initial state a, E State it is natural to construct
the trace

tr, = ((xi, ?), (x,, ?))

where x,... , x,, are the variables in S, and to consider the finite derivation
sequence: (S., a., tr.) -+* (a,', tr')

Intuitively, there should be a similar derivation sequence (S,, a,) -+* a' in the
Structural Operational Semantics. Similar remarks apply to infinite deriva-
tion sequences.

As in Section 2.2 we shall study the constraint system RDg (S,) corresponding
to the equation system RD=(S,). Let reach be a collection of functions:

reachentry, reach,.it : Lab. -+ P(Var. x Lab,)

We say that reach solves RD-(S), and write

reach • RD9(S)

if the functions satisfy the constraints; similarly for reach f RD=(S).

Mini Projects 133

1. Formulate and prove results corresponding to Lemmas 2.15, 2.16 and
2.18.

The correctness relation - will relate traces tr E Trace to the information

obtained by the analysis. Let Y C_ P(Var, x Lab,) and define

trY iff VxEVar, :(x,SRD(tr)(x))EY

meaning that Y contains at least the semantically reaching definitions ob-
tained from the trace tr by the function SRD introduced in Section 1.5.

2. Formulate and prove results corresponding to Lemma 2.20, Theorem
2.21 and Corollary 2.22. u

Mini Project 2.3 A Prototype Implementation

In this mini project we shall implement one of the program analyses consid-
ered in Section 2.1. As implementation language we shall choose a functional
language such as Standard ML or Haskell. We can then define a suitable
data type for WHILE programs as follows:

type var = string

type label = int

datatype aexp = Var of va-r-Const of int
I Op of string * aexp * aexp

and bexp = True I False
I Not of bexp I Boolop of string * bexp * bexp
I Relop of string * aexp * aexp

datatype stat = Assign of var * aexp * label I Skip of label
I Seq of stat * stat I If of bexp * label * stat * stat
I While of bexp * label * stat

Now proceed as follows:

1. Implement the operations init, final, flow, flow"' and blocks.

2. Generate the data flow equations for the Live Variables Analysis of
Subsection 2.1.4.

3. Solve the data flow equations; the function should be based on the
algorithm of Section 2.4.

For the more ambitious: generalise your program to accept an instance of a
Monotone Framework as input. 0

134 DATA FLOW ANALYSIS

Exercises

Exercise 2.1 Formulate data flow equations for the Reaching Definitions
Analysis of the program studied in Example 1.1 of Chapter 1 and in particular
define the appropriate gen and kill functions.

Exercise 2.2 Consider the following program:

[x:=1]1 ; (while [y>0] 2 do [x:=x-1] 3); [x:=2]4

Perform a Live Variables Analysis for this program using the equations of
Section 2.1.4. z

Exercise 2.3 A modification of the Available Expressions Analysis de-
tects when an expression is available in a particular variable: a non-trivial
expression a is available in x at a label i if it has been evaluated and assigned
to x on all paths leading to f and if the values of x and the variables in the
expression have not changed since then. Write down the data flow equations
and any auxiliary functions for this analysis.

Exercise 2.4 Consider the following program:

[x:'1J1 ;x=x-1]2 ; [x: =2]3

Clearly x is dead at the exits from 2 and 3. But x is live at the exit of 1 even
though its only use is to calculate a new value for a variable that turns out to
be dead. We shall say that a variable is a faint variable if it is dead or if it is
only used to calculate new values for faint variables; otherwise it is strongly
live. In the example x is faint at the exits from 1, 2 and 3. Define a Data
Flow Analysis that detects strongly live variables. (Hint: For an assignment
[X := alt the definition of ft(l) should be by cases on whether x is in I or
not.) u

Exercise 2.5 A basic block is often taken to be a maximal group of state-
ments such that all transfers to the block are to the first statement in the
group and, once the block has been entered, all statements in the group are
executed sequentially. In this exercise we shall consider basic blocks of the
form

[xi := a,;-"..;Xn := an; B]t

where n > 0 and B is x := a, skip or b. Reformulate the analyses of Section
2.1 for this more general notion of basic block. M

Exercises 135

Exercise 2.6 Consider the analyses Available Expressions and Reaching
Definitions. Which of the equations make sense for programs that do not
have isolated entries (and how can this be improved)? Similarly, which of
the equations for Very Busy Expressions and Live Variables make sense for
programs that do not have isolated exits (and how can this be improved)?
(Hint: See the beginning of Section 2.3.) a

Exercise 2.7 Consider the correctness proof for the Live Variables Anal-
ysis in Section 2.2. Give a compositional definition of LV=(...) for a label
consistent statement using

LV=([skip]') = {LVx!tt(•) = LVenty (e)}

as one of the clauses and observe that a similar development is possible for
LV (.. .). Give a formal definition of live ý= C where C is a set of equalities
or inclusions as might have been produced by LV= (S) or LVc (S).

Prove that {live I live [- LVC- (S)} is a Moore family in the sense of Appendix
A (with Fl being n and determine whether or not a similar result holds for
{live I live [= LV=(S)}. 0

Exercise 2.8 Show that Constant Propagation is a Monotone Framework
with the set Tcp as defined in Section 2.3.3.

Exercise 2.9 A Bit Vector Framework is a special instance of a Monotone

Framework where

"* L = (P(D), E) for some finite set D and where E is either C or D, and

" Y ={f: P(D)-P(D) I BY, y2 C D: VY C D:

f(Y) = (YnYl)UY/}

Show that the four classical analyses of Section 2.1 are Bit Vector Frame-
works. Show that all Bit Vector Frameworks are indeed Distributive Frame-
works. Devise a Distributive Frameworks that is not also a Bit Vector Frame-
work. 0

Exercise 2.10 Consider the Constant Propagation Analysis of Section

2.3.3 and the program

(if [...]i then [x:=-1] 2 ; [y:=1]' else [x:=1] 4 ; [y:=-1]5); [z:=x*y]6

Show that MFP. (6) differs from MOP. (6).

136 DATA FLOW ANALYSIS

Exercise 2.11 In our formulation of Monotone Frameworks we associate
transfer functions with basic blocks. In a statement of the form

if [b]' then S1 else S2

this prevents us from using the result of the test to pass different information
to Si and S2 ; as an example suppose that x is known to be positive or negative
and that b is the test x>0, then x is always positive at the entry to S, and
always negative at the entry to S2. To remedy this deficiency consider writing
[b]t as [b]t1,t2 where 4 corresponds to b evaluating to true and t 2 corresponds
to b evaluating to false. Make the necessary changes to the development in
Sections 2.1 and 2.3. (Begin by considering forward analyses.) 0

Exercise 2.12 Consider one of the analyses Available Expressions, Very
Busy Expressions and Live Variables Analysis and perform a complexity anal-
ysis in the manner of Example 2.30. U

Exercise 2.13 Let F be flow(S*) and E be {init(S,)} for a label consis-
tent program S,. Show that

Vt E Lab, : path. (t) 5 0

Prove a similar result when F is flowa(S,) and E is final(S,). 0

Exercise 2.14 In a Detection of Signs Analysis one models all negative
numbers by the symbol -, zero by the symbol 0, and all positive numbers
by the symbol +. As an example, the set {-2, -1, 1} is modelled by the set
{-,+}, that is an element of the powerset P({-, 0, +}).

Let S, be a program and Var,, be the finite set of variables in S,. Take
L to be Var, -+ PQ({-, 0, +}) and define an instance (L,YF,F,E,t,f.) of a
Monotone Framework for performing Detection of Signs Analysis.

Similarly, take L' to be P(Var, x {-, 0, +}) and define an instance (L', P, F',
E', t', f.') of a Monotone Framework for Detection of Signs Analysis. Is there
any difference in the precision obtained by the two approaches? v

Exercise 2.15 In the previous exercise we defined a Detection of Signs
Analysis that could not record the interdependencies between signs of vari-
ables (e.g. that two variables x and y always will have the same sign); this is
sometimes called an independent attribute analysis. In this exercise we shall
consider a variant of the analysis that is able to record the interdependencies
between signs of variables; this is sometimes called a relational analysis. To do
so take L to be P(Var, -+ {-, 0, +}) and define an instance (L,YT, F, E, t, f.)
of a Monotone Framework for performing Detection of Signs Analysis. Con-
struct an example showing that the result of this relational analysis may be

Exercises 137

more informative than that of the independent attribute analysis. The dis-
tinction between independent attribute methods and relational methods is
further discussed in Chapter 4.

Exercise 2.16 The interprocedural analysis using bounded call strings
uses contexts to record the last k call sites. Reformulate the analysis for a
notion of context that records the last k distinct call sites. Discuss whether
or not this analysis is useful for distinguishing between the call of a procedure
and subsequent recursive calls. 0

Exercise 2.17 Consider the Fibonacci program of Example 2.33 and the
Detection of Signs Analysis of Exercise 2.15 and Example 2.36. Construct
the data flow equations corresponding to using large and small assumption
sets, respectively. E

Exercise 2.18 Choose one of the four classical analyses from Section 2.1
and formulate it as an interprocedural analysis based on call strings. (Hint:
Some may be easier than others.) u

Exercise 2.19 Extend the syntax of programs to have the form

begin D,; input x;S,; output y end

so that it maps integers to integers-rather than states to states. Consider the
Detection of Signs Analysis and define the transfer functions for the input
and output statements. 0

Exercise 2.20 Consider extending the procedure language such that pro-
cedures can have multiple call-by-value, call-by-result and call-by-value-result
parameters as well as local variables and reconsider the Detection of Signs
Analysis. How should one define the transfer functions associated with pro-
cedure call, procedure entry, procedure exit, and procedure return? N

Exercise 2.21 In the Shape Analysis of Section 2.6 work out direct def-
initions of the transfer functions for elementary statements of the forms
[x: =x.sel]1, [x.sel :=x]1, [x.se :=x.sel']' and [malloc (x.sel)]'.

Exercise 2.22 Consider Case 3 in the definition of the transfer function
for [x :=y.sel]t (where x $ y) in the Shape Analysis. Make a careful analy-
sis of internal, going-in and going-out edges and determine whether or not
some of the shape graphs (S", H", is") in OS A((S, H, is)) can be removed by
placing stronger demands on the edges in H" compared to those in H' (where
(S', H', is') = kill ((S, H, is))). U

138 DATA FLOW ANALYSIS

Exercise* 2.23 The Shape Analysis as presented in Section 2.6 does not
take garbage collection into account. Modify the Structural Operational Se-
mantics of the pointer language to perform garbage collection and subse-
quently modify the analysis to reflect this. 0

Exercise* 2.24 The use of a single abstract summary location leads to a
certain amount of inaccuracy in the Shape Analysis. A more accurate anal-
ysis could associate allocation sites with the abstract locations. An abstract
location would then have the form nt,X where f is an allocation site (a label
of a malloc-statement) and X is a set of variables as before. Develop the
transfei functions for the new analysis. u

• . ~

Chapter 3

Control Flow Analysis

In this chapter we present the technique of Control Flow Analysis using
a simple functional language, FUN. We begin by presenting an abstract
specification of the analysis and then study its theoretical properties: it is
correct with respect to a Structural Operational Semantics and it can be
used to analyse all programs. This specification of the analysis does not
immediately lend itself to an efficient algorithm for computing a solution so
we proceed by developing first a syntax directed specification and then a
constraint based formulation andc-finally we show how the constraints can
be solved. We conclude by illustrating how the precision of the analysis can
be improved by combining it with Data Flow Analysis and by incorporating
context information thereby linking up with the development of the previous
chapter.

3.1 Abstract O-CFA Analysis

In Chapter 2 we saw how properties of data could be propagated through a
program. In developing the specification we relied on the ability to identify for
each program fragment all the possible successor (and predecessor) fragments
- via the operator flow (and flowR) and the interprocedural flow inter-flow,
(and inter-flow,). The usefulness of the resulting specification was due to the
number of successors and predecessors being small (usually just one or two
except for procedure exits). This is a typical feature of imperative programs
without procedures but it usually fails for more general languages, whether
imperative languages with procedures as parameters, functional languages,
or object-oriented languages. In particular, the interprocedural technique6 of
Section 2.5 provide a solution for the simpler cases where the program text
allows one to limit the number of successors, as is the case when a proce-

139

140 CONTROL FLOW ANALYSIS

Jure call is performed by explicitly mentioning the name of the procedure.
However, these techniques are not powerful enough to handle the dynamic
dispatch problem where variables can denote procedures. In Section 1.4 we
illustrated this by the functional program

let f = fn x => x 1;
g = fn y => y+2;
h = fn z => z+3

in (f g) + (f h)

where the function application x 1 in the body of f will transfer control
to the body of the function x, and here it is not so obvious what program
fragment this actually is, since x is the formal parameter of f. The Control
Flow Analysis of the present chapter will provide a solution to the dynamic
dispatch problem by determining for each subexpression a hopefully small
number of functions that it may evaluate to; thereby it will determine where
the flow of control may be transferred to in the case where the subexpression
is the operator of a function application. In short, Control Flow Analysis
will determine the interprocedural flow information (inter-flow, or IF) upon
which the development of Section 2.5 is based.

Syntax of the FUN language. For the main part of this chapter
we shall concentrate on a small functional language: the untyped lambda
calculus extended with explicit operators for recursion, conditional and local
definitions. The purpose of the Control Flow Analysis will be to compute
for each subexpression the set of functions that it could evaluate to, and to
express this it is important that we are able to label all program fragments.
We shall be very explicit about this: a program fragment with a label is
called an expression whereas a program fragment without a label is called a
term. So we use the following syntactic categories:

e E Exp expressions (or labelled terms)
t E Term terms (or unlabelled expressions)

We assume that a countable set of variables is given and that constants
(including the truth values), binary operators (including the usual arithmetic,
boolean and relational operators) and labels are left unspecified:

f, x E Var variables
c E Const constants

op E Op binary operators
f E Lab labels

The abstract syntax of the language is r.ow given by:

e :: tt

t ::= clxlfnx=>eolfunfx=>eoleie 2

if eo then ei else e2 I let x = e in e2 I el op e2

3.1 Abstract O-CFA Analysis 141

Here fn x => eo is a function definition (or function abstraction) whereas
fun f x => eo is a recursive variant of fn x => eo where all free occurrences of
f in eo refer to fun f x => eo itself. The construct let x = el in e2 is a non-
recursive local definition that semantically is equivalent to (fn x => e2) (el).
As usual we shall use parentheses to disambiguate the parsing whenever
needed. Also we shall assume throughout that in all occurrences of fun f x =>
eo, f and x are distinct variables.

We shall need the notion of free variables of expressions and terms so we
define the function

FV: (Term U Exp) -4 P(Var)

in the following standard way. The abstractions fn x => eo and fun f x => eo
contain binding occurrences of variables so FV(fn x => eo) = FV(eo)\ {x} and
similarly FV(fun f x => eo) = FV(eo) \ {f, x}. Similarly, let x = el in e2

contains a binding occurrence of x so we have FV(let x = el in e2) =

FV(el) U (FV(e2) \ {x}) reflecting that free occurrences of x in el are bound
outside the construct. The remaining clauses for FV are straightforward.

Example 3.1 The functional program (fn x => x) (fn y => y) consid-

ered in Section 1.4 is now written as:

((in x => x1) 2 (fn y => y3)4)5

Compared with the notation of Example 1.2 we have omitted the square
brackets.

Example 3.2 Consider the following expression, loop, of FUN:

(let g = (fun x > ((n > y2)3))5

in (g6 (, > z7)8)9)10

It defines a function g that is applied to the identity function fn z => z7 .

The function g is defined recursively: f is its local name and x is the formal
parameter. Hence the function will ignore its actual parameter and call itself
recursively with the argument fn y => y 2 . This will happen again and again
so the program loops.

3.1.1 The Analysis

Abstract domains. We shall now show how to specify O-CFA analyses.
These may be regarded as the simplest possible form of Control Flow Analysis
in that no context information is taken into account. As will become clear
in Section 3.6, this is what the number 0 is indicating.

The result of a 0-CFA analysis is a pair (C, p) where:

142 CONTROL FLOW ANALYSIS

* C is the abstract cache associating abstract values with each labelled
program point.

* ý is the abstract environment associating abstract values with each
variable.

This is made precise by:

SE Q = P(Term) abstract values

SE Env = Var -+ Val abstract environments

C E Cache = Lab-* Val abstract caches

Here an abstract value iY is an abstraction of a set of functions: it is a set of
terms of the form fn x => e0 or fun f x => e0 . We will not be recording any
constants in the abstract values because the analysis we shall specify is a pure
Control Flow Analysis with no Data Flow Analysis component; in Section
3.5 we shall show how to extend it with Data Flow Analysis components.
Furthermore, we do not need to assume that all bound variables are distinct
and that all labels are distinct, but clearly, greater precision is achieved if
this is the case. As we shall see an abstract environment is an abstraction of
a set of environments occurring in closures at run-time (see the semantics in
Subsection 3.2.1). In a similar way an abstract cache might be considered as
an abstraction of a set of execution profiles: as discussed below some texts
prefer to combine the abstract environment with the abstract cache.

Example 3.3 Consider the expression ((fn x => xl)2 (fn y => y3)4)5
of Example 3.1. The following table contains three guesses of a 0-CFA anal-
ysis:

(.(ce, pe) let, ,po)
1 {Ifn y => y3 } {fn y => y3 } {Ifn x => xIfn y => y3 }
2 {Ifn x => x} {fn x => xl} {fn x => x, fn y => y3 }
3 0 0 {Ifn x => x', fn y => y3}
4 {Ifn y => y3 } {fn y => y3 } {Ifn x => x', fn y => y3}

5 {ifn y => y3} {fn y > y3 } {Ifn x => xifn y => y3 }

x {Ifn y => y3 } 0 {Ifn x => x', fn y => y3}
y 0 0 {Ifn x => x', fn y => y3 }

Intuitively, the guess (Ce, Pe) of the first column is acceptable whereas the
guess (C', P) of the second column is wrong: it would seem that fn x =>
x1 is never called since 7 (x) = 0 indicates that x will never be bound to
any closures. Also the guess (Ce, Pe) of the third column would seem to be
acceptable although clearly more imprecise than (Ce, . U

3.1 Abstract 0-CFA Analysis 143

Example 3.4 Let us consider tne expression, loop, of Example 3.2 and
introduce the following abbreviations for abstract values:

f = fun f x => (f 1 (fn y => y2)3)4

idy = fn y => y2

idz = fn z => z7

One guess of a 0-CFA analysis for this program is (Cýp, p) defined by:

C 1() = {f} Cp(6) = {f} APM(=) M{f}
Ci, (2) = 0 Cp(7) = 0 Ap(g) = {f}
Cip(3) = {idy} Cip(8) = {id.} ýjp(x) = {idy,ida}

Cpp(4) = 0 Cp(9) = 0 Ap (y) = 0

CP(5) = {f} C1, (10) = 0 AW = 0

Intuitively, this is an acceptable guess. The choice of ýjp (g) = {f} reflects that
g will evaluate to a closure constructed from that abstraction. The choice of
;i 1p(x) = {idy, id.} reflects that x will be bound to closures constructed from
both abstractions in the course of the evaluation. The choice of C1p(10) = 0
reflects that the evaluation of the expression will never terminate. ,

We have already said that Controi-Flow Analysis computes the interproce-
dural flow information used in Section 2.5. It is also instructive to point
out the similarity between Control Flow Analysis and Definition- Use chains
(du-chains) for imperative languages (see Subsection 2.1.5): in both cases we
attempt to trace how definition points reach points of use. In the case of
Control Flow Analysis the definition points are the points where the function
abstractions are created, and the use points are the points where functions
are applied; in the case of Definition-Use chains the definition points are the
points where variables are assigned a value, and the use points are the points
where values of variables are accessed.

Remark. Clearly an abstract cache C : Lab -+ Va"l and an abstract environ-
ment ; : Var -4 Val can be combined into an entity of type (Var U Lab) -+

Val. Some texts dispense with the labels altogether, simply using an abstract
environment and no abstract cache, by ensuring that all subterms are prop-
erly "labelled" by variables. This type of expression frequently occurs in the
internals of compilers in the form of "continuation passing style", "A-normal
form" or "three address code". We have abstained from doing so in order to
illustrate that the techniques not only work for compiler intermediate forms
but also for general programming languages and calculi for computation; this
flexibility is useful when dealing with non-standard applications (as discussed
in the Concluding Remarks). 0

144 CONTROL FLOW ANALYSIS

[con] (C,p -) c' always

[vad (C, p-) x' iff ý(x) C C(t)

[fn] (, p-) (fn x => eo)t iff {fn x => eo} C C(e)

[fun] (C,p-) k (fun f x => eo)tiff {fun f x => eo} C C(e)

[app] (C,p) k (t1' t'2)1

if (C, P) = t,' A (C,) E f A
(V(fn x => t"o) E C(f,)

pC,) [-- t0 A
C(4 2) C ý(x)A C(fo) C(()) A

(V(fun f x => t") E C(e1)
(C~kt'0 A

C(4) c ý(x) A t(e 0) c(t) A
{I un f x => t0o}c(f))

[i (E o) (if t'O then t"' else t12)

iff (C, p) t'° A
(-,•) t•' A (E, p-)=t12

C(e1) CE(e) A (V2) c c(f)

[let] (p,-) (let x = t'-in t2)t
if (C, P) t"' A (E,)=te 2A

C(e1) C ý(x) A W(2) c C(e)

[op] p) (t'1 op t'2)1 iff (2,) = t•' A (C,) 1=t2

Table 3.1: Abstract Control Flow Analysis.

Acceptability relation. It remains to determine whether or not a
proposed guess (C, ý) of an analysis results is in fact an acceptable O-CFA
analysis for the program considered. We shall give an abstract specification
of what this means; having studied its theoretical properties (in Section 3.2)
we then consider how to compute the desired analysis (in Sections 3.3 and
3.4).

It is instructive to point out that the abstract specification corresponds to an
implicit formulation of the data flow equations of Chapter 2; it will be used
to determine whether or not a a guess is indeed an acceptable solution to
the analysis problem. The syntax directed and constraint based formulations
(of Sections 3.3 and 3.4) correspond to explicit formulations of the data flow
equations from which an iterative algorithm in the spirit of Chaotic Iteration

3.1 Abstract O-CFA Analysis 145

(Section 1.7) can be used to compute an analysis result.

For the formulation of the abstract O-CFA analysis we shall write

(C, p) Pe

for when (C, p) is an acceptable Control Flow Analysis of the expression e.
Thus the relation "k" has functionality:

(Cache x Env x Exp) -+ {true, false}

and its defining clauses are given in Table 3.1 (writing "always" for "iff true");
they are explained below.

The clause [con] places no demands on C(i) because we are not tracking
any data values in the pure O-CFA analysis considered here and because we
assume that there are no functions among the constants; the clause can be
reformulated as

(t, =c t if 0 Ct()

thereby highlighting this point.

The clause [var] is responsible for linking the abstract environment into the
abstract cache: so in order for (C, p) to be an acceptable analysis, everything
the variable x can evaluate to has to be included in what may be observed
at the program point t: ý(x) C Ci).

The clauses [fn] and [fun] simply demand that in order for (C, •) to be an
acceptable analysis, the functional term (fn x => e0 or fun f x => eo) must
be included in C(t); this says that the term is part of a closure that can arise
at program point t during evaluation. Note that these clauses do not demand
that (C, p) is an acceptable analysis result for the bodies of the functions; the
clause for function application will take care of that.

Before turning to the more complicated clause [app] let us consider the clauses
[iA and [let]. They contain "recursive calls" demanding that subexpressions
must be analysed in consistent ways using (C, p); additionally, the clauses
explicitly link the values produced by subexpressions to the value of the
overall expression, and in the case of [let] also the abstract cache is linked
into the abstract environment. The interplay between the clauses [var] and
[let] is illustrated in Figure 3.1; as in Chapter 2 an arrow indicates a flow of
information. The clause [op] follows the same overall pattern.

Clause [app] also contains "recursive calls" demandIing that the operator t4'

and the operand t2 can be analysed using (C, p-. For each term fn x => t4'
that may reach the operator position (fl), i.e. where

(fn x => 40) E

146 CONTROL FLOW ANALYSIS

(let x t" in 42)1

~N
• ~ 2

XI
Figure 3.1: Pictorial illustration of the clauses [let] and [var].

it further demands that the actual parameter (labelled f 2) is linked to the
formal parameter (x)

(e2) c X(X)

and that the result of the function evaluation (labelled to) is linked to the
result of the application itself (labelled t)

E(to) c (E)

and finally, that the function body itself can be analysed using (C, p-):

(C, P) ý= tlo

This is illustrated in Figure 3.2. For terms fun f x => t"o the demands are
much the same except that the term itself additionally needs to be included
in •(f) in order to reflect the recursive nature of fun f x => to.

Example 3.5 Consider Example 3.3 and the guesses of a 0-CFA analysis
for the expression. First we show that (Ce, &e) is an acceptable guess:

(CePe) • ((fn x => x') 2 (fn y => y3)4)5

Using clause [app] and Ce(2) = {fn x => x'} we must check:

(Ce,•e) h (fn x => x')'
(fe o) (n y => y')'

3.1 Abstract O-CFA Analysis 147

(ttl t12)t

1 2

N w is n s

We o o by prcedn asaoeadosrigtht S,4 ~~)

Figure 3.2: Pictorial illustration of the clauses [app], [fin] and [vat].

(Ce,?e) • x

All of these are easily checked using the clauses [fo] and [var].

Ne, whre showe tt (Cn, t) is not an acceptable guess:

,p)• ((fni x => x (fn y =>

We do so by proceeding as above and observing that C• (4) • • (x).

Note that the clauses contain a number of inclusions of the form

lhs C rhs

where rhs is of the form C(e) or •(x) and where lhs is of the form c(e), •(x), or
{t}. These inclusions express how the higher-order entities may flow through
the expression.

It is important to observe that the clauses [fin] and [fun] do not contain
"recursive calls" demanding that subexpressions must be analysed. Instead
one relies on the clause [app] demanding this for all "subexpressions" that
may eventually be applied. This is a phenomenon common in program anal-
ysis, where one does not want to analyse unreachable program fragments:

148 CONTROL FLOW ANALYSIS

occasionally results obtained from these parts of the program can suppress
transformations in the reachable part of the program. It also allows us to
deal with open systems where functions may be supplied by the environment;
this is particularly important for languages involving concurrency. However,
note that this perspective is different from that of type inference, where even
unreachable fragments must be correctly typed.

In the terminology of Section 2.5 the analysis is flow-insensitive because FUN
contains no side effects and because we analyse the operand to a function call
even when the operator cannot evaluate to any function; see Exercise 3.3 for
how to improve on this. Also the analysis is context-insensitive because it
treats all function calls in the same way; we refer to Section 3.6 for how to
improve on this.

3.1.2 Well-definedness of the Analysis

Finally, we need to clarify that the clauses of Table 3.1 do indeed define a
relation. The difficulty here is that the clause [app] is not in a form that
allows us to define (C, p-) ý= e by structural induction in the expression e -

it requires checking the acceptability of (C, p) for an expression t'00 that is
not a subexpression of the application (t' t422)1. This leads to defining the
relation "'" of Table 3.1 by coinduction, that is as the greatest fixed point of
a certain functional. An alternative will be to define the analysis as the least
fixed point of the functional butjas we shall see in Example 3.6 and more
formally in Proposition 3.16, this may lead to problems.

The functional Q. Following the approach of Appendix B we shall
view Table 3.1 as defining a function:

Q: ((Cache x Env x Exp) true,false})

-+ ((Cache x Env x Exp) -+ {true, false})

As an example we have:

Q(Q)(C, ý, (let x = tt' in 4t2)t)

Q(C, ,tl') A Q(CAt2) A C(e,) g ý(x) A Ce2) 9 C(f)

Now by inspecting Table 3.1 it is easy to verify that the function Q con-
structed this way is a monotone function on the complete lattice

((Cache x Env x Exp) --+ {true, false}, C)

where the ordering _ is defined by:

Q1 9 Q2 iff V(C, ý, e) : (Qj (ý, ý, e) = true) =* (Q2 (C, p, e) = true)

Hence Q has fixed points and we shall define "p" coinductively:

3.1 Abstract O-CFA Analysis 149

ý= is the greatest fixed point of Q

The following example motivates the use of a coinductive (i.e. greatest fixed
point) definition as opposed to an inductive (i.e. least fixed point) definition.

Example 3.6 Consider the expression loop of Example 3.4

(let g = (fun f x => (f' (fn y => y2)3)4)5

in (g 6 (fn z => z7)8)9)10

and the suggested analysis result (Ctp,,p). To show (C1 p,,p) = loop it is,
according to the clause [let], sufficient to verify that

(C1 , pjp) H (fun f x => (fI (fn y => y2)3)4)5
(Cp j)H(l(=> z7)8)9

because Cip(5) g jpp(g) and Cip(9) C CIp(10). The first clause follows from

[fun] and for the second clause we use that Ctp (6) = {f} so it is, according to
[app], sufficient to verify that

(C11, j1,) (fin z => z7)8
(Cip , ýp) (f I (f n y => yl)3)4

because Cip(8) C ýjp(x), Cip(4) C p(9) and f E j 1p(f). The first two clauses
now follow from [var] and [fA]. For the third clause we proceed as above and
since Cip(1) = {f} it is sufficient to verify

(Clp,ýjp) 1 (fn y => y2)3

(C1 1, ,p) 1 (f' (in y => yl)1)4

because Cgp(3) _ ýjp(X), Cip(4) g Ci.(4) and f E •p(f).

Again the first two clauses axe straightforward using [var] and [fn] but in the
last clause where we have encountered a circularity: to verify (tip, ý'p) 1 (f1

(fn y => y2)3) 4 we have to verify (Ctp, ,jp) [= (f1 (in y => y2)3)41

To solve this we use coinduction: basically this amounts to assuming that
(Ci , , p) ý= (f' (fn y => y2)3)4 holds at the "inner level" and proving that
it also holds at the "outer level". This will give us the required proof. 0

150 CONTROL FLOW ANALYSIS

3.2 Theoretical Properties

In this section we shall investigate some more theoretical properties of the
Control Flow Analysis, namely:

"* semantic correctness, and

"* the existence of least solutions.

The semantic correctness result is important since it ensures that the infor-
mation from the analysis is indeed a safe description of what will happen
during the evaluation of the program. The result about the existence of least
solutions ensures that all programs can be analysed and furthermore that
there is a "best" or "most precise" analysis result.

As in Section 2.2, the material of this section may be skimmed through on a
first reading; however, it is frequently when conducting the correctness proof
that the final and subtle errors in the analysis are found and corrected!

3.2.1 Structural Operational Semantics

Configurations. We shall equip the language FUN with a Structural
Operational Semantics. We shall choose an approach based on explicit envi-
ronments rather than substitutions because (as discussed in the Concluding
Remarks) a substitution based semantics does not preserve the identity of
functions (and hence abstract values) during evaluation. So a function defini-
tion will evaluate to a closure containing the syntax of the function definition
together with an environment mapping its free variables to their values. For
this we introduce the following categories

v E Val values

p E Env environments

defined by:

V ::= cl closet inp

p ::= []IpIx P-v]

A function abstraction fn x => eo will then evaluate to a closure, written
close (fn x => eo) in p; similarly, the abstraction fun f x => eo will evaluate
to close (fun f x => eo) in p. Our definitions do not demand that all terms t
occurring in some close t in p in the semantics will be of the form fn x => e0

or fun f x => eo; however, it will be the case for the semantics presented
below.

As in Section 2.5 we shall need intermediate configurations to handle the
binding of local variables. We therefore introduce syntactic categories for

3.2 Theoretical Properties 151

intermediate expressions and intermediate terms

ie E IExp intermediate expressions
it E ITerm intermediate terms

that extend the syntax of expressions and terms as follows:

ie ::= it'

it ::= clxlfnx=>eolfunfx=>eolieie 2

I if ieo then el else e2 I let x = ie, in e2 I iel op ie2
I bind p in ie lIclose t in p

The r6le of the bind-construct is much as in Section 2.5: bind p in ie records
that the intermediate expression ie has to be evaluated in an environment
with the bindings p. (The sequence of environments of nested bind-constructs
may be viewed as an encoding of the frames of a run-time stack.) So while
close t in p is a fully evaluated value this is not the case for bind p in ie.
We shall need these intermediate terms because we are based on a small step
semantics; only the close-constructs will be needed for a big step variant of
the semantics.

Alternatively, the definitions of Val and Env could have been written Val =

Const + (Term x Env) and Env = Var -+-)fn Val (for a finite mapping) but
it is important to stress that all entities are defined mutually recursively in
the manner of context-free grammars. Formally, we defined an environment p
as a list but nevertheless we shall feel free to regard it as a finite mapping: we
write dom(p) for {x I p contains [x J- ...]}; we write p(x) = v if x E dom(p)
and the rightmost occurrence of [x -.] in p is [x '4 v], and we write p X
for the environment obtained from p by removing all occurrences of [x .-.]
with x V X. For the sake of readability we shall write [x i-+ v] for [][x i-+ v].

We have been very deliberate in when to use intermediate expressions and
when to use expressions although it is evident that all expressions are also
intermediate expressions. Since we do not evaluate the body of a function
before it is applied we continue to let the body be an expression rather
than an intermediate expression. Similar remarks apply to the branches of
the conditional and the body of the local definitions. Note that although
an environment only records the terms fn x => eo and fun f x => eo in the
closures bound into it, we do not lose the identity of the function abstractions
as e0 will be of the form to and hence t0 may be used as the "unique"
identification of the function abstraction.

Transitions. We are now ready to define the transition rules of the Struc-
tural Operational Semantics by means of judgements of the form

p I- iel -4 ie2

152 CONTROL FLOW ANALYSIS

[va] p P x t -+ v t if x E dom(p) and v = p(x)

[n] p F- (fn x => eo)' -+ (close (fn x => eo) in po)t
where Po = p I FV(fn x => eo)

[fun] p F- (fun f z => eo)l -+ (close (fun f x => eo) in po)t
where Po = p I FV(fun f x => eo)

[appl] p I ie, -+ ie•
p F- (iel ie2)1 -+ (ie' ie2)t

[app2] P I ie2 -- ie'2
p F (v' ie2)1 - (vf' ie2)t

[apppj] p ((close (fn x => el) in pi)" V2) y
(bind p,[x '-+ V2] in el)t

[appfun] p F- ((close (fun f x => el) in pl)" v t2)
(bind p2 [X ý- V2] in ej)t

where P2 pi[f - close (fun f x => el) in Pl]

[bind1] p, F- ie, - ie'l
p F- (bind Pi in iel)l -4 (bind p, in ie,)t

[bind 2] p F- (bind Pl in vt')t'-+ v1

Table 3.2: The Structural Operational Semantics of FUN (part 1).

given by the axioms and inference rules of Tables 3.2 and 3.3; they are ex-
plained below. The idea is that one step of computation of the expression
iel in the environment p will transform it into ie2 .

The value of a variable is obtained from the environment as expressed by the
axiom [var]. The axioms [fn] and [fun] construct the appropriate closures;
they restrict the environment p to the free variables of the abstraction. Note
that in [fun] it is only recorded that we have a recursively defined function;
the unfolding of the recursion will not happen until it is called.

The clauses for application shows that the semantics is a call-by-value seman-
tics: In an application we first evaluate the operator in a number of steps
using the rule [appi] and then we evaluate the operand in a number of steps
using the rule [app2]. The next stage is to use one of the rules [app,,] or
[appfu,,] to bind the actual parameter to the formal parameter and, in the
case of [appf,]J, to unfold the recursive function so that subsequent recursive
calls will be bound correctly. We shall use a bind-construct to contain the
body of the function together with the appropriate environment. Finally, we

3.2 Theoretical Properties 153

p 1- ieo -- ie'o
[ifl] p P (if ieo then el else e2) t

- (if ie'o then el else e2)'

[if2] p F- (if truelo then ttl else tt) -+ tt4

[if3] p P- (if falseto then t(1 else t12)t -+ tt

p F- ie- ie',

p P- (let x = ie, in e2)t -- (let x = ie' in e2)t

[let 2] p F- (let x = vt ' in e2)t -- (bind [x i-+ v] in e2)t

p F- ie, -4 ie',
[op1] p P- (ie, op ie2)t -- (ie', op ie2)t

[oP2] p P- ie2 -- ie'2
p P op ie2)t -(VI op ie)t

[0P3] p P- (v" OP V2)t 2 -Y vt if v = V1 Op V2

Table 3.3: The Structural Operational Semantics of FUN (part 2).

evaluate the bind-construct using rule [bind,] a number of times, and we get
the result of the application by usiing rule [bind2]. The interplay between
these rules is illustrated by the following example.

Example 3.7 Consider the expression ((fn x => x1) 2 (fn y => y3)4)5 of

Example 3.1. It has the following derivation sequence (explained below):

[] ((fn x => xl) 2 (fn y => y 3)4)5

((close (fn x => x') in [])2 (fn y => y3)4)5

((close (fn x => x') in [])2 (close (fn y => y3) in [])4)5

-+ (bind [x t-+ (close (fn y => y3) in [])] in xT)5

-- (bind [x F-4 (close (fn y => y3) in [])] in

(close (fn y => y3) in [])')5

(close (fn y => y3) in [])5

First [app1] and [fn] are used to evaluate the operator, then [app2] and [fn]
are used to evaluate the operand and [appfn] introduces the bind-construct
containing the local environment [x t-+ (close (fU y => y3) in [])] needed
to evaluate its body. So x1 is evaluated using [bind,] and [var], and finally
[bind2] is used to get rid of the local environment. M

The semantics of the conditional is the usual one: first the condition is eval-

154 CONTROL FLOW ANALYSIS

uated in a number of steps using rule [if1] and then the appropriate branch
is selected by rules [if2] and [if3]. For the local definitions we first compute
the value of the bound variable in a number of steps using rule [let,] and
then we introduce a bind-construct using rule [letk] reflecting that the body
of the let-construct has to be evaluated in an extended environment. The
rules [bind,] and [bind2] are now used to compute the result. For binary ex-
pressions we first evaluate the arguments using [opi] and [op 2] and then the
operation itself, denoted op, is performed using [oP3].

As in Chapter 2 the labels have no impact on the semantics but are merely
carried along. It is important to note that the outermost label never changes
while inner labels may disappear; see for example the rules [if2] and [bind2].
This is an important property of the semantics that is exploited by the O-CFA
analysis.

Example 3.8 Let us consider the expression, loop

(let g =(fun f x => (f' (fny=> y2)3)4)5

in (g6 (fn z => z7)8)9)10

of Example 3.2 and see how the informal explanation of its semantics is
captured in the formal semantics. First we introduce abbreviations for three
closures:

f = close (fun fi => (f' (fn y => y 2)3)4) in []
idy = close (fn y => y2) in[]
idý = close (fn z => z 7) in[]

Then we have the following derivation sequence

[] ~ loop

-- (let g = f 5 in (g6 (fn z => z7)8)9)10

"(bind [g ý-+ f] in (g' (ffnz => z7)8)9)10

-- (bind [g i-+ f] in (f6 (fn z => Z7)8)9)10

-- (bind [g -+ f] in (f6 id") 9)'°
(bind [g F-+ f] in

(bind [f '-+ f][x '-+ idz] in (fl (fn y => y2)3)4)9)10

(bind [g '-+ f] in

(bind [f 1-+ f][x -+ ide] in

(bind [f ý-+ f][x t-+ idy] in (fl (fn y => y2)3)4)4)9)i0

showing that the program does indeed loop.

3.2 Theoretical Properties 155

[bind] (C,p-) [- (bind p in it'O)t
iff (C, p)kit° A C(e 0o)_gC(t) A p R

[close] ([,- -- (close to in p)t

iff {to} g ()A p

Table 3.4: Abstract Control Flow Analysis for intermediate expressions.

3.2.2 Semantic Correctness

We shall formulate semantic correctness of the Control Flow Analysis as a
subject reduction result;, this is an approach borrowed from type theory and
merely says that an acceptable result of the analysis remains acceptable under
evaluation. However, in order to do that we need to extend the analysis to
intermediate expressions.

Analysis of intermediate expressions. The clauses for the con-
structs bind p in ie and close to in p are given in Table 3.4; the remaining
clauses are as in Table 3.1 (with the obvious replacements of expressions with
intermediate expressions).

The clause [bind] reflects that its body will be executed and hence whatever
it evaluates to will also be a possible value for the construct. Additionally, it
expresses that there is a certain relitionship R? between the local environment
(of the semantics) and the abstract environment (of the analysis). The clause
[close] is similar in spirit to the clauses for function abstraction: the term of
the closure is a possible value of the construct. Additionally, there has to be
a relationship RZ between the two environments.

Correctness relation. The purpose of the global abstract environ-
ment, •, is to model all of the local environments arising during evaluation.
We formalise this by defining the correctness relation

R : (Env x Env) -+ { true, false}

and demanding that p Ri ý for all local environments, p, occurring in the
intermediate expressions. We then define:

p RZ ý iff Vx E dom(p) C dom(ý) Vt, Vp :

(p(x) = close t. in P,) =:• (t, E. '(x) A p. Ri p)

This clearly demands that the function abstraction, t., in p(x) must be an
element of ý(x). It also shows that all local environments reachable from p,
e.g. p., must be modelled by ý as well. Note that the relation RZ is well-
defined because each recursive call is performed on a local environment that

156 CONTROL FLOW ANALYSIS

p - ie -4 ie' - ie -4 -

Figure 3.3: Preservation of analysis result.

is strictly smaller than that of the call itself; thus a simple proof by well-
founded induction (Appendix B) suffices for showing the well-definedness of
7R.

Example 3.9 Suppose that:

p = [x '-+ close t1 in p'][y '-4 close t 2 in P21
P, = []
P2 = [x - close t3 in P3]

P3 = [I
Then p RZ • amounts to {tI,t 3} g::(X) A {t2 } C X(y). u

We shall sometimes find it helpful to split the definition of RZ into two com-
ponents. For this we make use of the auxiliary relation

V : (Val x (Env x Val)) -- {true, false}

and define V and 1Z by mutual recursion:

v V(ý,) iff VtVp:(v=closetinp) =# (tEýY A pTZ)

p 7? ý iff Vx E dom(p) C dom(p-) : p(x) V (ý, ý(x))

Clearly the two definitions are equivalent.

Correctness result. The correctness result is now expressed by:

Theorem 3.10
If p I7 Z and p F- ie -+ie' then (C,-) kie implies (C, p-) k ie'.

This is illustrated in Figure 3.3 for a terminating evaluation sequence p I-
ie -- * vi; note that the result is analogous to that of Corollary 2.17 for the
Live Variables Analysis in Chapter 2.

3.2 Theoretical Properties 157

The intuitive content of the result is as follows:

If there is a possible evaluation of the program such that the
function at a call point evaluates to some abstraction, then this
abstraction has to be in the set of possible abstractions computed
by the analysis.

To see this assume that p I- t t -4* (close to in po)l and that (C, p-) k t' as
well as p 1? ý. Then Theorem 3.10 (and an immediate numerical induction)
gives that (C, p-) k (close to in p0)'. Now from the clause [close] of Table
3.4 we get that to E C(f) as was claimed. It is worth noticing that if the
program is closed, i.e. if it does not contain free variables, then p will be []
and the condition p 1Z ý is trivially fulfilled.

Note that the theorem expresses that all acceptable analysis results remain
acceptable under evaluation. One advantage of this is that we do not need to
rely on the existence of a least or "best" solution (to be proved in Subsection
3.2.3) in order to formulate the result. Indeed the result does not say that
the "best" solution remains "best" - merely that it remains acceptable. More
importantly, the result opens up the possibility that the efficient realisation
of Sections 3.3 and 3.4 computes a more approximate solution than the least
(perhaps using the techniques of Chapter 4). Finally, note that the formula-
tion of the theorem crucially depends on having defined the analysis for all
intermediate expressions rather than just all ordinary expressions.

We shall now turn to the proof of Theorem 3.10. We first state an important
observation:

Fact 3.11 If (tp) k it0l and C(ti) C C(f 2) then (ý,• p itý.

Proof By cases on the clauses for "0".

We then prove Theorem 3.10:

Proof We assume that p 7R " and (C, p-) i e and prove (C, p-) i e' by induction
on the structure of the inference tree for p I- ie -+ ie'. Most cases simply amount
to inspecting the defining clause for (C, p) ý= ie; note that this method of proof
applies to all fixed points of a recursive definition and in particular also to the
greatest fixed point. We only give the proofs for some of the more interesting cases.

The case [var]. Here p F- ie -+ ie' is:

p F- x, + v1 because x E dom(p) and v = p(x)

If v = c there is nothing to prove so suppose that v = close to in po. From p 71
we get v V (ý, ý(x)) and hence to E ý(x) and po 1Z ý. From (C, p- k ie we get
ý(x) C C(f), and hence to E C(t). Since to E C(t) and po 1Z ý we have established

p-) hie'.

158 CONTROL FLOW ANALYSIS

The case [fn]. Here p F- ie -+ ie' is:

p F- (fn x => eo)' -4 (close (fn x => eo) in po)'
where po = p I FV(fn x => eo)

From (C, p ý= ie we get (fn x => eo) E C(e); from p 7? p it is immediate to get

Po 1R '; this then establishes (C, p) [= ie'.

The case [app,]. Here p F- ie -- ie' is:

p F- (ie, ie2)1 - (ie'l ie2)1 because p F ie, -+ ie•

The defining clauses of (C, p-) ý= ie and (C, p) = ie' are equal except that the former
has (C, p) ý= ie1 where the latter has (C, p) ie'l. From the induction hypothesis
applied to

(C, p) P iel, p 7Z •, and p F- ie1 -4 ie•

we get (C, p) • ie', and the desired result then follows.

The case [appf,]. Here p F- ie -+ ie' is:

p F ((close (fn x => ttO) in pl) t" v2)1 -4 (bind p1[x '-4 V2] in t'°)l

From (C,p-) [= ie we have (C,p) • (close (fn x => tto) in pl)t1 which yields:

(fn =>4) EC(fi) and pi I

Further we have (C, p-) [vt2; in the. iase where v2 = c, it is immediate that

V2 V (,C(f 2))

and in the case where V2 = close t2 in p2 it follows from the definition of (C, p-)
v12. Finally, the first universally quantified formula of the definition of (C, p) ý= ie
gives: P(C,) t°, C(f 2) C ý(X), and C(eo) C C(e)

Now observe that v2 V (x,•(z)) since C(ýi) C •(z) follows from the clause (appf.).
Since pi RZ we now have

(C,p) P to°, C(t 0) C C(e), and (pldx '-+ V21) IZ

and this establishes the desired (C, p) ý= ie'.

The case [bind 2]. Here p F- ie -4 ie' is:

p F (bind p, in -+ vi

From (C,- F ie we have (C,p) P v" as well as C(e1) C C(e) and the desired
(C,p') P vt follows from Fact 3.11.

This completes the proof.

3.2 Theoretical Properties 159

Example 3.12 From Example 3.7 we have:

[F- ((fn x => x1) 2 (fn y => y3)4)5 -4* (close (fn y => y3) in [])5

Next let (Ce, &) be as in Example 3.3. Clearly [] &?. P and from Example
3.5 we have:

(Ce,e • (n x => xl) (f n y => y))

According to Theorem 3.10 we can now conclude:

(e •= (close (fn y -> y3) in [])5

Using Table 3.4 it is easy to check that this is indeed the case. u

3.2.3 Existence of Solutions

Having defined the analysis in Table 3.1 it is natural to ask the following
question: Does each expression e admit a Control Flow Analysis, i.e. does
there exist (C, p) such that (C, p-) ý= e? We shall show that the answer to this
question is yes.

However, this does not exclude the possibility of having many different analy-
ses for the same expression so an additional question is: Does each expression
e have a "least" Control Flow Ai.i.lysis, i.e. does there exists (Co,;o) such
that (Co, Po) , e and such that whenever (C, p) j= e then (Co,Po) is "less
than" (C, p)? Again, the answer will be yes.

Here "least" is with respect to the partial order defined by:

(CI, 1) E (C2 , 2) iff (VtE Lab: C1 (e) C C2 (e)) A

(Vx EVar :1 (x) gp2 (x))

It will be the topic of Sections 3.3 and 3.4 (and Mini Project 3.1) to show that
the least solution can be computed efficiently for all expressions. However, it
may be instructive to give a general proof for the existence of least solutions
also for intermediate expressions. To this end we recall the notion of a Moore
family (see Appendix A and Exercise 2.7):

A subset Y of a complete lattice T, = (L, E) is a Moore family if
and only if (fl Y') E Y for all Y' C Y.

This property is also called the model intersection property because whenever
we take the "intersection" of a number of "models" we still get a "model".

160 CONTROL FLOW ANALYSIS

Proposition 3.13
For all ie E IExp the set {(C,p) I (C,P) ie} is a Moore family.

It is an immediate corollary that all intermediate expressions ie admit a
Control Flow Analysis: Let Y' be the empty set; then flY' is an element of
{(C, p) I (C, p) 1= ie} showing that there exists at least one analysis of ie.

It is also an immediate corollary that all intermediate-expressions have a least
Control Flow Analysis: Let Y' be the set {(C,I) I (C,) ý= ie}; then [-Y' is
an element of {(C, p) I (C, p) [- ie} so it will also be an analysis of ie. Clearly

nfY' C (C, p) for all other analyses (C, p) of ie so it is the least analysis result.

In preparation for the proof of Proposition 3.13 we shall first establish an
auxiliary result for R and V:

Lemma 3.14
(i) For all p E Env the set {P p R? ý} is a Moore family.
(ii) For all v E Val the set {(•,) I v V (•,9)} is a Moore family.

Proof To prove (i) we proceed by well-founded induction on p (which is also the

manner in which the existence of the predicate was proved). Now assume that

Vi E I : p R ýi

for some index set I and let us show" that p 7R (flii). For this consider x, t., and
p. such that:

p(x) = close t. in Px
We then know

Vi E I : t. E ýj(x) A p. RZ ý
and using the induction hypothesis it follows that

t. E (n],'•)(x) Ap. 7z (n,'•)

(taking care when I = 0).

To prove (ii) we simply expand the definition of V and note that the result then
follows from (i).

We now prove Proposition 3.13 using coinduction (see Appendix B):

Proof The ternary relation [- of Tables 3.1 and 3.4 is the greatest fixed point of
a function Q as explained in Section 3.1. Now assume that

Vi E I: (C,, ýj) I= ie

and let us prove that n i *(Ci, i) ý= ie. We shall proceed by coinduction (see Ap-
pendix B) so we start by defining the ternary relation Q' by:

(C', -) Q' ie' iff (C',') =nli(C,,) A Vi E : (C i•,) =e'

3.2 Theoretical Properties 161

It is then immediate that we have:
[I ,(Zi,,'•) Q' ie

The coinduction proof principle requires that we prove

Q' _ Q(Q')

and this amounts to assuming (&',7) Q' ie' and proving that (&',;') (Q(Q')) ie'.
So let us assume that

Vi E I: (Ci,,) • ie'

and let us show that: n,(•,•) (Q (Q')) ie'

For this we consider each of the clauses for ie' in turn.

Here we shall only deal with the more complicated choice ie' = (it 1 it'2)t. From

Vi E I: (,,) (it•'i i2)Y

we get Vi E I: (C2, pi) ý= it"' and hence:

Similarly we get: n,(zi,,,) Q' it,,2

Next consider (fn x => t'o) E nif(C(Ij)) and let us prove that:

((n((x)), l(ci(eo)) g N,(C,(t)), n]dC,•,,) Q' to (3.1)

For all i E I we have that (CZ,,p) k ie' and since (fn x => t'o) E C2(fi) we have

Ci(1 2) _C pi(x), Ci(to) 9_ Ci(i), and (Ci, 'I) t'o0

and this then gives (3.1) as desired (taking care when I = 0). The case of
(fun f x => 40o) E ni(Cz(il)) is similar. This completes the proof.

Example 3.15 Let us return to Example 3.5 and consider the following
potential analysis results for ((fn x => x') 2 (fn y => y3)4)5:

(C I M(c oe l;7) , C e" ,X ,
1 {fn y => y 3 } {fn y => y3 } {fn y => y3 }
2 {fn x => x1} {fn x => x1 } {fn x => x1 }
3 0 {fn x => x1} {fn y => y3}
4 {fn y => y3 } {fn y => y3 } {fn y => y3 }
5 {fn y => y3} {fn y => y3} {fn y => y3}

x {fn y => y3} {fn y => y3} {fn y => y3}
Y 0 I{fn x => x} {fn y => y3}

162 CONTROL FLOW ANALYSIS

It is straightforward to verify that

(C', X) 1 ((fn x => x') (fn => y))
(Ce",Ye') ((fn x => x2(fny=> y 3)4)5

Now Proposition 3.13 ensures that also:

('nCt,,Pe n•' ((f n x => Xl)2 (f n y => y3)4)5

Neither (C', Pe) nor (CE, e) is a least solution. Their "intersection" (C" n-
C", We n'1 7.) is smaller and equals (Ce, M which turns out to be the least
analysis result for the expression. 0

3.2.4 Coinduction versus Induction

One of the important aspects of the development of the abstract Control
Flow Analysis in Table 3.1 is the coinductive definition of the acceptability
relation:

as the greatest fixed point of a function Q

An alternative might be an inductive definition of an acceptability relation:

=' as the least fixed point of the function Q.

However, in Example 3.6 we argued that this might be inappropriate and
here we are going to demonstrate that an important part of the development
of the previous subsection fails for the least fixed point of Q.

Proposition 3.16
There exists e, E Exp such that {(C,p) I (C,-) [-' e,} is not a
Moore family.

Proof (sketch) This proof is rather demanding and is best omitted on a first
reading. To make the proof tractable we consider

e.=t.

t = (fn x => (xi xt)t)t (fn x => (xt Xe)t)t

and take:

Lab. = {f}
Var, = {x}

Term. = {t.,fn x=> (xt xt)t, X1 xx}
IExp. = {tt It E Termn}

Vak1, = P({fn x => (xt xt)t}) = {@, {fn x => (xt xt)t}}

3.2 Theoretical Properties 163

This is in line with Exercise 3.2 (and the development of Subsection 3.3.2) and as
we shall see the proof of Proposition 3.13 is not invalidated.

Next let Q be the function defined by Table 3.1 and let Q be in the domain of Q.
The condition

Q = Q(Q)
is equivalent to:

Vt E Term. : V(C, p): ((C, p) Q tt iff (Z, p Q(Q) tt)

By considering the four possibilities of t E Term, this is then equivalent to the
conjunction of the following four conditions (where (C, p) is universally quantified):

(e,)Q t iff ý(z)_gC()

(c,') Q (f n X => (XI XI)I), iff {fn X => (I Xl),} g c(e)
(Z, p-) Q (x'x x)' if (, p) Q •A

CMt # 0 =ý ((C, Pý Q (XI X:) A
C(M) 9 •x())

(Z, p) Q t'* iff (Z,p-) Q (fn x => (X' zt)t)l A

C(e)$0=• ((C,•)Q(xxI)T A
c(f) g ;ý(X))

Here we have used that C(t) : 0 implies that C(t) = {fn x => (xt xt)t} as follows

from the definition of Va"-k in the beginning of this proof.

The conjunction of the above four conditions implies the conjunction of the following
four conditions:

(C,•)QX, iff ý(X)Cg()

(C,p@ Q (fn x => (x' xt)')t iff {fn x => (x x)t}cc()

(C,p)Q(x'x t)' iff ý(x) gC(f) A

((e) # 0 =- (Z'P) Q(x t XI) T) A
C(e) C •'(x)

(C,p) Q t if {fn x => (xt xt)} CC(t) A

(, p) Q (x' xe)' A
C(e) C ?(x)

This implication can be reversed and this shows that also the conjunct of the above
four conditions is equivalent to Q = Q(Q).

Using that ý(x) can only be 0 or {fn x => (2t xl)t}, and similarly for C(t), the
above four conditions are equivalent to the following:

(C,p)Qx t iff (X) CEC()

164 CONTROL FLOW ANALYSIS

(Z,p' Q (fn x => (xl x'•)')' iff {fn x => O(x x')'}= (

(Z,) Q (x t x)' if ý(x) = Z(t) A
(z(m e= 0 =:ý (Z',P- Q O(XI))

(Z,) Q t* if {Ifn x => (xt x')'} = C(e) = ý(x) A

(Z, P- Q (XI X)T

It follows that the conjunct of the above four conditions is once more equivalent to

Q = Q(Q).
The crucial case in the definition of (C, @) Q e is for e = (x' xt)t as this determines
the truth or falsity of all other cases. We shall now try to get a handle on the
candidates Q1,' " ,Q,., for satisfying Qi = Q(Qi). Concentrating on the condition
for (xt xt)t it follows that (C, p) Q, (xt xt)t must demand that C(t) -- (x). Since
each of C(t) and '(x) can only be {fn x => (xt xt)t} or 0 there are at most the
following four candidates for Qi:

(Z, P- Q, (X' Xt)t iff "Z(e = ý(X)

(C,) Q 2 (Xt xt)t iff C(e) = (x) =0

(C,) Q3 (xt xt)t iff C(f) = ý(x) $0

(Z,p) Q,(x' t)t if false

Verifying the condition

V(C,: (Z(,Cp) Q (xt xt)t '• ý(x)=C(=) A

(cm) $0 =- ('P,) Qi (xt it)t)
for i E {1, 2,3, 4} it follows that QI and Q2 satisfy the condition whereas Q3 and
Q4 do not.

It is now straightforward to verify also the remaining three conditions and it follows
that:

Qi = Q(Qi) for i=1,2

This means that Q1 equals • (the greatest fixed point of Q) and that Q2 equals
1' (the least fixed point of Q). One can then calculate that

(C,Z)Q1 t iff C(e)= (x)A0
(Z,) Q2 d. if false

and this shows that

{(C,p) I (C, @ Q, e.} = {(C, @ I C(f) = P(x) = {fn x => (xt xt)t}}

which is a singleton set and in fact a Moore family, whereas

{(C,) I (C,P) Q2 e.} =-0

which cannot be a Moore family (since a Moore family is never empty). This
completes the proof. N

3.3 Syntax Directed O-CFA Analysis 165

3.3 Syntax Directed O-CFA Analysis

We shall now show how to obtain efficient realisations of 0-CFA analyses. So
assume throughout this section that e, E Exp is the expression of interest
and that we want to find a "good" solution (C, p) satisfying (C, p) [e,.
This entails finding a solution that is as small as possible with respect to the
partial order E defined in Section 3.2 by:

(Cl, X) E (C2,M) if (We: C1(t) C2 (t)) A (Vx : ?•(x) C ý2(x))

Proposition 3.13 shows that a least solution does exist; however, the algo-
rithm that is implicit in the proof does not have tractable (i.e. polynomial)
complexity: it involves enumerating all candidate solutions, determining if
they are indeed solutions, and if so taking the greatest lower bound with
respect to the others found so far.

An alternative approach is somehow to obtain a finite set of constraints, say
of the form lhs C rhs (where lhs and rhs are much as described in Section
3.1), and then take the least solution to this system of constraints. The

most obvious method is to expand the formula (C,) [e, by unfolding
all "recursive calls", using memorisation to keep track of all the expansions
that have been performed so far, and stopping the expansion whenever a
previously expanded call is re-encountered.

Three phases. We shall take a more direct route motivated by the above
considerations; it has three phases---

(i) The specification of Table 3.1 is reformulated in a syntax directed man-
ner (Subsection 3.3.1).

(ii) The syntax directed specification is turned into an algorithm for con-
structing a finite set of constraints (Subsection 3.4.1).

(iii) The least solution of this set of constraints is computed (Subsection
3.4.2).

This is indeed a common phenomenon: a specification "[A" is reformulated
into a specification "I=B" ensuring that

(C, P A e. <- (C, p-)kB e.

so that "=B" is a safe approximation to "kA" and in particular the best
(i.e. least) solution to "hB e," is also a solution to "'A e.". This also
ensures that all solutions to "kB" are semantically correct (assuming that
this has already been established for all solutions to "[A").

If additionally (C, P Ae (C,• P Be

166 CONTROL FLOW ANALYSIS

then we can be assured that no solutions are lost and hence the best (i.e. least)
solution to "[-B e," will also be the best (i.e. least) solution to "[=A e,".
However, as we shall see, it may be necessary to restrict the attention to only
solutions (C, p-) satisfying some additional properties (e.g. that only program
fragments of e, appear in the range of C and p).

3.3.1 Syntax Directed Specification

In reformulating the specification of "'= e," into a more computationally
oriented specification "'8 e," we shall ensure that each function body is
analysed at most once rather than each time the function could be applied.
One way to achieve this is to analyse each function body exactly once as is
done in the syntax directed O-CFA analysis of Table 3.5; an alternative would
be to analyse only reachable function bodies and we refer to Mini Project 3.1
for how to achieve this. In Table 3.5 each function body is therefore anal-
ysed in the relevant clause for function abstraction rather than in the clause
for function application; thus we now risk analysing unreachable program
fragments.

Since semantic correctness was dealt with in Section 3.2 there is no longer any
need to consider intermediate expressions and consequently our specification
of

in Table 3.5 considers ordinary eixressions only. We shall take "•," to be
the largest relation that satisfies the specification; however, given the syntax
directed nature of the specification there is in fact only one relation that
satisfies the specification (see Exercise 3.9). Hence it would be technically
correct, but intuitively misleading, to claim that we take the least relation
that satisfies the specification.

Example 3.17 Consider the expression loop

(let g = (fun f x => (f' (fn y => y2)3)4)5

in (g 6 (fn z => z7)8)9)10

of Example 3.4. We shall verify that (C1 p, pp) ý=, loop where CIp and Pjp are
as in Example 3.4. Using the clause [let], it is sufficient to show

(C1p,,• 1p) I, (fun f x => (f' (fn y => y2)3)4)5 (3.2)
(Clp, PIp) •s(g' (f n z => z 7)8)9 (3.3)

since we have Clp(5) g Pip(g) and C1p(9) C CIp(10). To show (3.2) we use the
clause [fun] and it is sufficient to show

3.3 Syntax Directed O-CFA Analysis 167

[con] (C, p-) 1 ct always

[var] (t, p) x' x iff ý(x) g t(t)

p-) (f, #.n x => eo)'

iff {fn x => eo} C_ (t) A
(C,p) -. eo

fun] (t,p) 1, (fun f x => eo)l

ifi {I f x => eo} c_ (e) A
(C,p) -, eo A {fun f x => eo}C_ (f)

[app] (tC,-) 1=8 (t11 t2)1

if (Cf,ý)18 tI' A (p) C , tý=^A
(V(fn x => E°) E C(11)

CV 2) Cg (x) A Q(0) c C(t)) A
(V(fun f x => tto) e C(4)

CV(2) c ý(x) A C(to) g C(t))

[ip- (C,") 1=, (if tt° then tt' else t' 2)t

iff (C,,p) t A
p(-,)f=,ti A (C,)= A p- ••l4 A

C(e1) t C(L) A C(f2) C(f)
[let] p-,) 1=8 (let x t'j in t2)

if (,) = tt A t =8t 2 A
C(e1) C ý(x) A W(O) _ C(f)

[op] (p,) [= (ttl op t2)1 iff (C, #8 t• A (C,• #) t 2

Table 3.5: Syntax directed Control Flow Analysis.

(tip, ýp) [:-- (fl (fn y => y2)1)1

since f E Cip(5) and f E ip (f). Now Cip(1) = {f} so, according to clause [app]
this follows from

(tip, ýi) ,f•
(tip, ýip) #,(f n y => y 2)3

since Cip(3) _ ý%p(x) and C1p(4) g Cip(4). The first clause follows from [var]

since ;ip(f) C C1p(1) and for the last clause we observe that id, E C1p(3) and
(Cp, ýp) 1=8 y2 as follows from ýip(y) g Cip(2).

168 CONTROL FLOW ANALYSIS

To show (3.3) we observe that Cp (6) = {f} so using [app] it is sufficient to
show

(CP, ýIp) •.g6
(C.,p, ýj) (f, (n z=> zT)

since Ctp(8) C p(x) and Cp(4) C Clp(8). This is straightforward except for

the last clause where we observe that id, E Ctp(8) and (Ctp, ýip) [-. z 7 as

follows from 3ipi(y) g Ctp(7).

Note that because the analysis is syntax directed we have had no need for
coinduction, unlike what was the case in Example 3.6. m

3.3.2 Preservation of Solutions

The specification of the analysis in Table 3.5 uses potentially infinite value

spaces although this is not really necessary (as Exercise 3.2 demonstrates
for Table 3.1). We can easily restrict ourselves to entities occurring in the
original expression and this forms the basis for relating the results of the
analysis of Table 3.5 to those of the analysis of Table 3.1.

So let Lab. C Lab be the finite set of labels occurring in the program e. of
interest, let Var,, C Var be the finite set of variables occurrinx in e. and let
Term,, be the finite set of subterms occurring in e.. Define (CT, *) by:

T 0 if e V Lab*
Tcrm. if t E Lab*

= 0 if x V Var.
WTerm* if x E Var.

Then the claim

intuitively expresses that (C, p) is concerned only with subterms occurring in

the expression e.; obviously, we are primarily interested in analysis results
with that property. Actually, this condition can be "reformulated" as the
technically more manageable

(C, ý) E Cache* x Env*

where we define Cache. = Lab* -+ Val., Env* - Var. -+ Va1. and Va1. =

P(Term.).

We can now show that all the solutions to "1= e." that are "less than"

(.Tj, T) are solutions to "f= e." as well:

3.3 Syntax Directed O-CFA Analysis 169

Proposition 3.18
If (C, p-) [, e, and (C,) E (C,, ,r) then (C, p) ý= e,.

Proof Assume that (C,p) ý1, e, and that (C,p) C (ZT,*-,T). Furthermore let

Exp, be the set of expressions occurring in e,. and note that

Ve E Exp* : (C,) 1=- e (3.4)

is an immediate consequence of the syntax directed nature of the definition of 1=.
To show that (C, p) • e, we proceed by coinduction. We know that "[=" is defined
coinductively by the specification of Table 3.1, i.e. "[= = gfp(Q)" where Q is the
function (implicitly) defined by Table 3.1. Similarly, we know that "= = gfp(Q)"
where Q. is the function (implicitly) defined by Table 3.5.

Next write (C',) * e' for (C', Z) = (C, @) A e' E Exp,. It now suffices to show

(o,(1=,) n c=) Q(I . n Ft=*) (3.5)

because then "(1 n f=*) g Q(I=3 l n ý=*)" follows and hence by coinduction
"(ý=, n [*) C g " and since (C,) p) e. as well as (C,p@ 1-* e. we then have the
required (C, p) ý= e..

The proof of (3.5) amounts to a comparison of the right hand sides of Table 3.5
and Table 3.1: for each clause we shall assume that the right hand side of Table
3.5 holds for (C, ý, e) and that e E Exp* and we shall show that the corresponding
right hand side of Table 3.1 holds when all occurrences of "[=" are replaced by
"1=3n *".

The clauses [con], [var], [iA, [let] and [op] are trivial as the right hand sides of Tables
3.5 and 3.1 are similar and the subterms will all be in Exp.. The clauses [fn] and
[fun] are straightforward as the right hand sides of Table 3.5 imply the right-hand
sides of Table 3.1. Finally, we consider the clause [app]. For (fn x => to") E C(11)
we need to show that (C,p) 1=3 t'o; but since (C, p-) (C,, rý) this follows from
(3.4). For (fun f x => ttO) E C(1 1) we need to show that (C,p = t@ P, and that
(fun f x -> t'°) E •(f); the first follows from (3.4) and the second is an immediate
consequence of (C, @) 1=3 (fun f x => tto)t (for some t) that again follows from
(3.4).

We can also show an analogue of Proposition 3.13 for the syntax directed
analysis:

Proposition 3.19
(C, p-) E Cache, x Env, I (C, e,} is a Moore family.

This result has as immediate corollaries that:

170 CONTROL FLOW ANALYSIS

"* each expression e, has a Control Flow Analysis that is "less than"
(C., p.), and

"* each expression e, has a "least" Control Flow Analysis that is "less
than" (CT, 3T).

This means that the properties obtained for the analysis of Table 3.1 in
Subsection 3.2.3 also hold for the analysis of Table 3.5 with the additional
restriction on the range of the analysis functions. In particular, any analysis
result that is acceptable with respect to Table 3.5 (and properly restricted to
Cache* x Env,) is also an acceptable analysis result with respect to Table
3.1. The converse relationship is studied in Exercise 3.11 and Mini Project
3.1.

Proof We shall write (C*, *) also for the greatest element of Cache* x Env,.
It is immediate to show that

(a) * *,)[.e
(b) if (C1, 1) ýl= e and (C2 ,p2) J=, e then ((C1,, 1) nl (C2, 2)) s, e.

for all subexpressions e of e, by means of structural induction on e. This establishes
(a) and (b) also for e = e,. Next consider some

Y C {(Z, @ E ia~chet x E-nv., I (Z, p) 1-- e*}

and note than one can write Y = {(-i,Cp) I i E {1,...,n}} for some n > 0 since
Cache* x Env. is finite. That

flY E {(C, p) E Cache. x Env*. I p) 1,= e.}

then follows from (a) and (b) because fY = *T) n (Z1 , 1) F ... nFT (

3.4 Constraint Based O-CFA Analysis

We are now ready to consider efficient ways of finding the least solution
(C, ý) such that (C, p) ý1= e.. To do so we first construct a finite set C.[e.]
of constraints and conditional constraints of the form

lhs C rhs (3.6)

{t} C rhs' #- lhs C rhs (3.7)

where rhs is of the form C(t) or r(x), and lhs is of the form C(t), r(x), or {t},
and all occurrences of t are of the form fn x => e0 or fun f x -> e0. To
simplify the technical development we shall read (3.7) as

({t} C rhs' =• lhs) C rhs

3.4 Constraint Based O-CFA Analysis 171

[con] C.[c] = 0

[var] CIx'l = {r(x) C C(t)}

[f] C.[(fn x -> eo)'I = {{fn x => eo} C C(I)}
U C.[eo]

[fun] C,[(fun f x => eo)1I = {{fun I x => eo} _ C(t)}
u C.[eol U {{f-m f x => eo} C r(f)}

"(tt tt2)t] C, [tIllU C,[t'ý1
[app] C,(V 1 - 1 -2

U {{t} c C(e1) =: C(e2) c r(x)
t = (fn x => tto) E Term,}

U {{t} c C(V0) = C(WO) 9 C(f)
t = (fn x => t1o) E Term,}

U {{t} CC(e) =• C(e 2) C r(x)
t = (fun f x => tt0) E Term,}

U {{t} _ C(e1) • C 0) C(o)
It = (fun f x => t1°) E Term,}

[i] C.[(if tt° then tt' else tt42)] =C.[tto°U]C.[Itt1IU tC1]

U {cIC1) cM}
u{C(t 2) CV)}

[let] C.[(let x = tt' in t4 2)1] C.t*'] UC*.[t]

U {C(t 1) C r(x)} U {C(e2) C C(f)}
[op] C.[(tl' op t'2)1] = C.[tlj] U C.[t'2]

Table 3.6: Constraint based Control Flow Analysis.

and we shall write Is for lhs as well as {t} C rhs' =: lhs.

Informally, the constraints are obtained by expanding the clauses defining
(C, p) f=, e. into a finite set of constraints of the above form and then letting
C,.[e] be the set of individual conjuncts. One caveat is that all occurrences
of "C" are changed into "C" and that all occurrences of "P" are changed into
"r" to avoid confusion: C(e) will be a set of terms whereas C(t) is pure syntax
and similarly for ý(x) and r(x).

Formally, the constraint based O-CFA analysis is defined by the function C,
of Table 3.6: it makes use of the set Term* of subterms occurring in the
expression e, in order to generate only a finite number of constraints in the
clause for application; this is justified by Propositions 3.18 and 3.19.

If the size of the expression e, is n then it might seem that there could

172 CONTROL FLOW ANALYSIS

be 0(n 2) constraints of the form (3.6) and 0(n 4) constraints of the form
(3.7). However, inspection of the definition of C, ensures that at most 0(n)
constraints of the form (3.6) and 0(n 2) constraints of the form (3.7) are ever
generated: each of the 0(n) constituents only generate 0(1) constraints of
the form (3.6) and 0(n) constraints of the form (3.7).

Example 3.20 Consider the expression

((fn x => x') 2 (fn y => y3)4)5

of Example 3.7. We generate the following set of constraints

C,[((fn x => xl) 2 (fn y => y3)4)5
1 =

{ {fn x => x1} C C(2),

r(x) C C(1),

In y => y _ C(4),

r(y) C C(3),

{Ifn x => x'} g C(2) • C(4) g r(x),

{Ifn x => x'} C C(2) = C(1) g C(5),
{Ifn y => y3 } C C(2) =• C(4) _ r(y),

{fn y => y3} g C(2) =. C(3) C C(5) }

where we use that fn x => x' ariýd fn y => y3 are the only abstractions in
Term,. M

3.4.1 Preservation of Solutions

It is important to stress that while (C, p-) ýj= e, is a logical formula, C.,[e, is
a set of syntactic entities. To give meaning to the syntax we first translate
the "C" and "r" symbols into the sets " and "'":

(CPMCM] CV)
(C,=)[r(x)] = (x)

To deal with the possible forms of Is we additionally take:

(C [tJ= {t}

[s s(C,')lhs] if {t} C (C,.p)frhs'1
(Cp- If tJ 9 rhs' •lhs]= M otherwise

Next we define a satisfaction relation (C, p-) j=, (Is C rhs) on the individual
constraints:

(C,p) ý=c (is C rhs) iff (C,p)[Is] Cg (C,ý) [rhs]

3.4 Constraint Based O-CFA Analysis 173

This definition can be lifted to a set C of constraints by:

(C,) ý= C iff V(ls C rhs) E C: (C, p-) ý= (ls C rhs)

We then have the following result showing that all solutions to the set C,.[e.]
of constraints also satisfy the syntax directed specification of the Control
Flow Analysis and vice versa:

Proposition 3.21
(C,p-) ý=8 e. if and only if (C, p-) C.[e,.]

Thus the least solution (C,p-) to (C,p-) k8 e, equals the least solution to(,p)[-: C. [e.].

Proof A simple structural induction on e shows that

(Zp) 1=- e ifl (Zp) h= C[e]

for all subexpressions e of e..

3.4.2 Solving the Constraints

We shall present two approaches to solving the set of constraints C.[e.].
First we shall show that finding the least solution to C,.e.] is equivalent to
finding the least fixed point of a certain function; straightforward techniques
allow us to compute that in time 0(n 5) when the size of the expression e.
is n. Improvements upon this axe possible, but to obtain the best known
result we shall consider a graph representation of the problem; this will give
us a O(n 3) algorithm. This is indeed a common phenomenon in program
analysis: syntax directed specifications are appropriate for correctness con-
siderations but often they need to be "massaged" in order to obtain efficient
implementations.

Fixed point formulation. To show that finding the solution of the
set C.[e.] of constraints is a fixed point problem we shall define a function

F. : Cache. x Env. -+ Cache. x Env.

and show that it has a least fixed point Ii-p(F.) that is indeed the least solution
whose existence is guaranteed by Propositions 3.18 and 3.21.

We define the function F, by

F.(C, p-) = (FI(tp-),F2CP

174 CONTROL FLOW ANALYSIS

where:
Fi(tC,p)(f) = U{(C,P")[lsI J (isC_ C(t)) E C.[e.J}

F2 (C,p")(x) = U{(C,p-)[/s I (is C r(x))E C.[e.j}

To see that this defines a monotone function it suffices to consider a constraint

uhs' C rhs' #- lhs C rhs

in C.[e.] and to observe that Ihs' is of the form {t}; this ensures that
,1 (C2 ,A2) implies F2(CIj') _ Fi(C 2 ,A 2) (for i = 1,2) because if

It} C (Ctij)[rhs'] then also It} 9 (C2,A 2)[rhs'j. Since Cache. x Ennv is
a complete lattice this means that F. has a least fixed point and it turns out
to be the least solution also to the set C.[e.] of constraints:

Proposition 3.22
lfp(F.) =] I(t:,p--) I (t,p) k=. C.[e.]}

Proof It is easy to verify that:

F.(C,p) _ (C,-) iff (C,) ýI= C.[e.]

Using the formula lfp(f) = fli{x I f(x) C x) (see Appendix A) the result then
follows. 0

If the size of e. is n then an elemeht (C, p) of Cache. x Env., may be viewed

as an 0(n)-tuple of values from Val.. Since Val, is a lattice of height 0(n)
this means that Cache* x Va-.* has height 0(n2) and hence the formula

lfp(F.) = Ur F-(-L)

may be used to compute the least fixed point in at most 0(n 2) iterations.
A naive approach will need to consider all 0(n 2) constraints to determine
the value of each of the 0(n) components of the new iterant; this yields an
overall 0(n5) bound on the cost.

Graph formulation. An alternative method for computing the least
solution to the set C.[e.* of constraints is to use a graph formulation of
the constraints. The graph will have nodes C(t) and r(x) for t E Lab, and
x E Var.. Associated with each node p we have a data field D[p] that initially
is given by:

D[p] = {t I ({t} C p) E C*[e*]}

The graph will have edges for a subset of the constraints in C.,,je*.; each edge
will be decorated with the constraint that gives rise to it:

* a constraint Pi 9 P2 gives rise to an edge from Pi to P2, and

3.4 Constraint Based O-CFA Analysis 175

p D[p] E[p]

C(1) 0 [id, C C(2) = C(1) C C(5)]
C(2) id1 [id, C C(2) : C(3) c C(5), idy c C(2) =• C(4) C r(y),

id, C C(2) =• C(1) C C(5), id, C C(2) =. C(4) C r(x)]
C(3) 0 [idy g C(2) = C(3) g C(5)]
C(4) idy [idy C C(2) = C(4) C r(y), id., C C(2) =• C(4) c r(x)]
C(5) 0 [1
r(x) 0 [r(x) C C(1)]
r(y) 0 [r(y) C C(3)]

Figure 3.4: Initialisation of data structure for example program.

* a constraint {t} _ p #' P1 9 P2 gives rise to an edge from P, to p2 and
an edge from p to p2.

Having constructed the graph we now traverse all edges in order to propa-
gate information from one D[pi] to another D[p2]. We make certain only to
traverse an edge from P, to p2 when D[pl] is extended with a term not previ-
ously there (and this incorporates the situation where D[pi] is initially set to
a non-empty set). Furthermore, an edge decorated with {t} C p #. P, g p2
is only traversed if in fact t E D[14

To be more specific consider the algorithm of Figure 3.7. It takes as input a
set C,[e,] of constraints and produces as output a solution (C, p) E Cache, x
Env,. It operates on the following main data structures:

"* a worklist W i.e. a list of nodes whose outgoing edges should be tra-

versed;

"* a data array D that for each node gives an element of Val,; and

"* an edge array E that for each node gives a list of constraints from which
a list of the successor nodes can be computed.

The set Nodes consists of C(t) for all f in Lab, and r(x) for all x in Vart.

The first step of the algorithm is to initialise the data structures. The second
step is to build the graph and to perform the initial assignments to the data
fields. This is established using the procedure add(qd) that incorporates d
into D[q] and adds q to the worklist if d was not part of D[q]. The third step
is to continue propagating contributions along edges as long as the worklist
is non-empty. The fourth and final step is to record the solution in a more
familiar form.

176 CONTROL FLOW ANALYSIS

INPUT: C.[e.]

OUTPUT: (C, p)

METHOD: Step 1: Initialisation
W:= nil;
for q in Nodes do D[q] 0;
for q in Nodes do E[q] nil;

Step 2: Building the graph
for cc in C.[e.] do

case cc of
{t} C p: add(p,{t});
Pi C p2: E[pi] := cons(cc,E[pi]);
{t} c P =ý'p P1C p2:

E[pi] := cons(cc,E[pl]);
E[p] := cons(cc,E[p]);

Step 3: Iteration
while W $ nil do

q := head(W); W := tail(W);
for cc in E[q] do

case cc of
.Pl C P2 : add(p 2 , D[pj]);

.:{t 10 P =JG PP C P2:
if t E D[p] then add(p 2 , D[pi]);

Step 4: Recording the solution

for e in Lab. do C(e) :D[C()];
for x in Var. do ;ý(x) := D[r(x)];

USING: procedure add(q,d) is
if--, (d C D[q])
then D[q] := D[q] U d;

W := cons(q,W);

Table 3.7: Algorithm for solving constraints.

Example 3.23 Let us consider how the algorithm operates on the ex-
pression ((fn x => x') 2 (fn y => y3)4)5 of Example 3.20. After step 2 the
data structure W has been initialised to

W = [C(4), C(2)],

and the data structures D and E have been initialised as in Figure 3.4 where
we have written id., for {fn x => xz} and idy for {fn y => y3 }. The algo-

3.4 Constraint Based O-CFA Analysis 177

W [C(4),C(2)] [r(x),C(2)] [C(1),C(2)] [C(5),C(2)]] [C(2)]]

p Dip] D[p] D[p] Dip] D[p] 1 D[p]

C(1) 0 0 . idy idy idy idy
C(2) id., id., id,, idý id., id.,

C(3) 0 0 0 0 0 0
C(4) idy idy idy idy idy idy
C(5) 0 0 0 idy idy id4

r(x) 0idy idy idy id4 id
r(y) 0 0 0 0 0 0

Figure 3.5: Iteration steps of example program.

rithm will now iterate through the worklist and update the data structures W
and D as described by step 3. The various intermediate stages are recorded
in Figure 3.5. The algorithm computes the solution in the last column and
this agrees with the solution presented in Example 3.5.

The following result shows that the algorithm of Table 3.7 does indeed com-
pute the solution we want:

Proposition 3.24
Given input C,[e,] the algorithm of Table 3.7 terminates and the
result (C, p) produced by the algorithm satisfies

(C p-) C. [e.]}

and hence it is the least solution to C, [e,].

Proof It is immediate that steps 1, 2 and 4 terminate, and this leaves us with
step 3. It is immediate that the values of D[q] never decrease and that they can be
increased at most a finite number of times. It is also immediate that a node q is
added to the worklist only if some value of D[q] actually increased. For each node
placed on the worklist only a finite amount of calculation (bounded by the number
of outgoing edges) needs to be performed in order to remove the node from the
worklist. This guarantees termination.

Next let (C',•) be a solution to (C',C') c C.[e,]. It is possible to show that the
following invariant

Ve E Lab.: D[C(c)] C C'(f)

Vx E Var.: D[r(x)] C 7(x)

178 CONTROL FLOW ANALYSIS

is maintained at all points after step 1. It follows that (C,p) - (C',) upon
completion of the algorithm.

We prove that (C, p-) = C.[e,] by contradiction. So suppose there exists cc E C,[e,]
such that (C, p) •c cc does not hold. If cc is {t} C p then step 2 ensures that {t} g
D[p] and this is maintained throughout the algorithm; hence cc cannot have this
form. If cc is p1 C p2 it must be the case that the final value of D satisfies D[pi]
i 0 since otherwise (C, p) [c cc would hold; now consider the last time D[pi] was
modified and note that pi was placed on the worklist at that time (by the procedure
add); since the final worklist is empty we must have considered the constraint cc
(which is in E[pi]) and updated D[P2] accordingly; hence cc cannot have this form.
If cc is {t} C p =• p1 C_ p2 it must be the case that the final value of D satisfies
D[p] $ 0 as well as D[pi] 9 0; now consider the last time one of D[p] and D[pi] was
modified and note that p or pi was placed on the worklist at that time; since the
final worklist is empty we must have considered the constraint cc and updated D[p 2]
accordingly; hence cc cannot have this form. Thus (C, p) P, cc for all cc E C,[ej.

We have now shown that (C,p) k C,[e.] and that (C,p) _ (C',•') whenever
(C',) I C,[e,]. It now follows that

(Cp) =[](C,,) i (&,P) 1= C.[e*]}

as required.

The proof showing that the algorithm terminates can be refined to show that
it takes at most 0(n 3) steps if the original expression e, has size n. To see
this recall that C,[e,] contains at.inost 0(n) constraints of the form {t} C p
or pi C p2, and at most 0(n 2) c6iistraints of the form {t} g p =ý Pi C P2.
We therefore know that the graph has at most 0(n) nodes and 0(n 2) edges
and that each data field can be enlarged at most 0(n) times. Assuming
that the operations upon D[p] take unit time we can perform the following
calculations: step 1 takes time 0(n), step 2 takes time 0(n2), and step 4
takes time 0(n); step 3 traverses each of the 0(n 2) edges at most 0(n) times
and hence takes time 0(n3); it follows that the overall algorithm takes no
more than 0(n 3) basic steps.

Combining the three phases. From Proposition 3.24 we get that
the pair (C, p) computed by the algorithm of Table 3.7 is the least solution
to Clej, so in particular (C,) =C [ie.,]. Proposition 3.21 shows that a
solution to the constraints will also be an acceptable analysis result for the
syntax directed specification, hence (C, ý) j=, e,. Proposition 3.18 shows that
a solution that only involves program fragments of e, and that is acceptable
for the syntax directed specification, also is acceptable for the abstract spec-
ification, and therefore (C, •) [= e,. Thus we have the following important
corollary:

Corollary 3.25 Assume that (C, p) is the solution to the constraints
C[e,] computed by the algorithm of Table 3.7; then (C, p) ý= e,.

3.5 Adding Data Flow Analysis 179

It is not the case that any (C, p-) satisfying (C, p) [- e,, can be obtained using
the above approach - see Exercise 3.11 and Mini Project 3.1.

For many applications it is the ability to compute the least (C, p) satis-
fying (C, p) e, that is of primary interest, rather than the ability to
check (C, p) - e, for a proposed guess (C, p). However, the ability to check
(C, p) I e,, is indispensable for open systems where the environment e.g. pro-
vides a library to be used with e,. When analysing and optimising e, it is
(C, ý) that expresses the assumptions about the environment; indeed if an
existing library e satisfies (C, p) [= e for the (C, p) ý= e,, used to optimise e.,
then one can exchange the library e with any other e' as long as (C, p-) ý= e'
continues to hold, and the optimisation made in e, will continue to hold.

3.5 Adding Data Flow Analysis

In Section 3.1 we indicated that our Control Flow Analysis could be extended
with Data Flow Analysis components. Basically, this amounts to extending
the set Val to contain other abstract values than just abstractions. We shall
first see how this can be done when the data flow component is a powerset
and next we shall see how it can be generalised to complete lattices. We shall
present the two approaches as abstract specifications only (in the manner of
Section 3.1).

3.5.1 Abstract Values as Powersets

Abstract domains. There are several ways to extend the value domain
Val so as to specify both Control Flow Analysis and Data Flow Analysis.
A particularly simple approach is to use a set Data of abstract data values
(i.e. abstract properties of booleans and integers) since this allows us to define:

SE Vald = P(Term U Data) abstract values

For each constant c E Const we need an element dc E Data specifying the
abstract property of c. Similarly, for each operator op E Op we need a total
function

P:Vald X Vald -+ Vald

telling how op operates on abstract properties. Typically, 6p will have a
definition of the form

V1i oip- vý2 = Uldop(dl,d2) I dl E vl n Data, d2 E 52 n Data}

for some function dop : Data x Data -+ P*(Data) specifying how the
operator computes with the abstract properties of integers and booleans.

180 CONTROL FLOW ANALYSIS

Example 3.26 For a Detection of Signs Analysis we take Datasign = {tt,

if, -, 0, +} where tt and ff stand for the two truth values and -, 0, and + for
the negative numbers, the number 0, and the positive numbers, respectively.
It is then natural to define d,,,. = tt and d7 = + and similarly for the other
constants. Taking j as an example, it is natural to base its definition on the
following table

dt. tt ff - 0 +
tt 0 0 0 0 0
ff 0 0 0 0 0
- 0 0 H-} {-} {-,0,+}
0 0 0 {-} {0 +}
+ 0 0 {-,0,+} {+} {+}

and similarly for the other operators. u

Acceptability relation. The acceptability relation of the combined
analysis has the form

(C, P)de

and is presented in Table 3.8. Compared with the analysis of Table 3.1 the
clause [con] now records that d, is a possible value of c and the clause [op]
makes use of the function 6- described above. In the case of [iA we have
made sure only to analyse those branches of the conditional that the analysis
of the condition indicates the need for; hence we can be more precise than
in the pure Control Flow Analysis - the Data Flow Analysis component of
the analysis can influence the outcome of the Control Flow Analysis. In
the manner of Exercise 3.3 similar improvements can be made to many of
the clauses (see Exercise 3.14) and thereby the specification becomes more
flow-sensitive.

Example 3.27 Consider the expression:

(let f = (fn x => (if (xI > 02)3 then (fn y => y4)5

else (fn z => 256)7)8)9
in ((f' 0 311)12 013)14)15

A pure 0-CFA analysis will not be able to discover that the else-branch of
the conditional will never be executed so it will conclude that the subterm
with label 12 may evaluate to fn y => y4 as well as fn z => 256 as shown
in the first column of Figure 3.6. The second column of Figure 3.6 shows that
when we combine the analysis with a Detection of Signs Analysis (outlined
in Example 3.26) then the analysis can determine that only fn y => y4 is
a possible abstraction at label 12. Note that the Detection of Signs Analy-
sis (correctly) determines that the expression will evaluate to a value with
property {0}. m

4

3.5 Adding Data Flow Analysis 181

[COn] (C,,P) =d C' if {d,} C C(e)

[var] (t, P- =d X' iff ý(X) c C(t)

[P (,) ,[-d (fn x => eo)' iff {fn x => eo} tC(e)

[fun] (t, P • d (fun f x => eo)t iff {fun f x => eo} C C(e)

[app] (?,,9) d (t"' t')t
iff (C,,p) d t1' A (C,,) P ,d t2 A((vf• n => tto°) E t,(t,)

(C,,) I=d tt A
W(O)gc (x) A C(eo) cC()) A

(V(fun f X => t4) E C(e1)(?, =d t'- A
C(t2) g ý(x) A C(to) cC(e) A
{fun f x => tO}c(f))

[iA (, kd (if tt° then tf1 else t2)1

i -?,) ý=d tt00
iff (C, Pkdt0

(d,.. E C(10): ((C,,) kd t42 A C(41) C ())) A
(d4a1se E tV(•). =*' ((t,, p•# /2 A V(2)C ())

[lt] (, lP d (let X = ttl i - -- 2)t

iff (t,,) kd tp ' A (t, P d t2
2 A

t(1 1) c_ (x) A C(2) c C(t)

op] (C,,�) #d (t"' op t'2)1
iff (C,p) P=d tt' A (,) =d 42 A

Table 3.8: Abstract values as powersets.

The proof techniques introduced in Section 3.2 should suffice for proving the
correctness of the analysis with respect to the operational semantics. A slight
extension of the algorithmic techniques presented in Sections 3.3 and 3.4 (and
in Mini Project 3.1) suffices for obtaining an implementation of the analysis
provided that the set Data is finite.

Finally, we should stress that a solution to the analysis of Table 3.8 does
not immediately give a solution to the analysis of Table 3.1. More preisely,
(t,) kd e does not guarantee that (C',;Y) = e where Vy : C'(e) = C(t) n
Term and Vx : ;Y(x) = ý(x) n Term. The reason is that the Control Flow

182 CONTROL FLOW ANALYSIS

[Section 3.1 Subsection 3.5.1 Subsection 3.5.2

(C,) (C,) KC• A57
1 0 {+} 0 {+}

2 0 {0} 0 {0}
3 0 {tt} 0 {tt}
4 0 {0} 0 {0}
5 {fn y => y4 } {fn y => y4 } {fn y => y4 } 0

6 0 0 0
7 {fn z => 25 6 } 0 0 0
8 {fn y => y4, {fn y => y4 } {fn y => y4 } 0

fn z => 256}
9 {fn x => (...)} {fn x => (...) 8} {fn x => (...) 8 } 0

10 {fn x => (..) 8 } {fn x => (...)8 } {fn x => (...) 8 } 0

11 0 {+} 0 {+}
12 {fn y => y4 , {fn y => y4} {fn y => y4 } 0

fn z => 256}
13 0 {0} 0 {0}
14 0 {0} 0 {0}
15 0 {0} 0 {0}

f {fn x => (...) 8 } {fn x => (...) 8 } {fn x =>)8} 0
x 0 jjz{+} 0 {+}
y 0 {0} 0 {0}
z 0 0 0 0

Figure 3.6: Control Flow and Data Flow Analysis for example program.

Analysis part of Table 3.8 is influenced by the Data Flow Analysis part in
the clause [iA: if for example the abstract value of the condition does not
include dt,, then the then-branch will not be analysed.

3.5.2 Abstract Values as Complete Lattices

Abstract domains. Clearly Val-d = P(TermU Data) is isomorphic to
P(Term) x P(Data). This suggests that the abstract rache C : Lab -+ Vald
could be split into a term component and a data component and similarly
for the abstract environment : Var -+ Vald.

Having decoupled P(Term) and 'P(Data) we can now consider replacing
P(Data) by a more general collection of properties. An obvious possibility

3.5 Adding Data Flow Analysis 183

is to replace P(Data) by a complete lattice L and perform a development
closely related to that of the (forward) Monotone Frameworks of Chapter 2.

So let us define a monotone structure to consist of:

"* a complete lattice L, and

"* a set T of monotone functions of L x L -+ L.

An instance of a monotone structure then consists of the structure (L, F)
and

"• a mapping t. from the constants c E Const to values in L, and

"* a mapping f. from the binary operators op E Op to functions of Y.

Compared with the instances of the Monotone Frameworks of Section 2.3 we
omit the flow component since it will be the responsibility of the Control
Flow Analysis to determine this. The component t has been replaced by the
mapping t. giving the extremal value for all the constants and the component
f. mapping labels to transfer functions has been replaced by a mapping of
the binary operators to their interpretation.

Example 3.28 A monotone structure corresponding to the development
of Subsection 3.5.1 will have L to be P(Data) and Y to be the monotone
functions of P(Data) x P(Data) .-4 P(Data).

An instance of the monotone structure is then obtained by taking

S= {de}

for all constants c (and with dc E Data as above) and

fop(l1,12) = U{dop(di,d 2) I di E l1,d 2 E 12}

for all binary operators op (and where dp0 : Data x Data -+ P(Data) is as
above). E

Example 3.29 A monotone structure for Constant Propagation Analysis
will have L to be Z.T x P({tt, ff}) and F to be the monotone functions of
L x L -+ L.

An instance of the monotone structure is obtained by taking e.g. t• 7 (7, 0)
and ttru. = (_L, {tt}). For a binary operator such as + we can take:

((Z 1 + Z2 , 0) if 11 = (Z1,'"), l 2 = (Z2 ,'" "),
and zI, z2 E Z

f+(l1, 12) = (0,0) if1 1 = (Z1,.' "),12 = (z 2 ," "

and zl =_ or Z2 =1

(T, 0) otherwise

184 CONTROL FLOW ANALYSIS

We can now define the following abstract domains

v E Val = P(Term) abstract values

5 E Env = Var - Val abstract environments

t E Cache = Lab--+ Val abstract caches

to take care of the Control Flow Analysis and furthermore

d E Data = L abstract data values

6E DE~nv = Var -+ Data abstract data environments
b E DCache = Lab -+ Data abstract data caches

to take care of the Data Flow Analysis.

Acceptability relation. The acceptability relation now has the form

(C, D,p,5) ýD e

and it is defined by the clauses of Table 3.9. In the clause [con] we see that the
t. component of the instance is used to restrict the value of the b component
of the analysis and in the clause [op] we see how the f. component is used. The
clause [ill has explicit tests for the two branches as in the previous approach
thereby allowing the Control Flow Analysis to benefit from results obtained
by the Data Flow Analysis component. As in the previous subsection, similar
improvements can be made to mpa•y of the other clauses so as to produce a
more flow-sensitive analysis. :--

Example 3.30 Returning to the expression of Example 3.27 and the De-
tection of Signs Analysis we now get the analysis result of the last column of
Figure 3.6. So we see that the result is as before. M

The proof techniques introduced in Section 3.2 should suffice for proving the
correctness of the analysis with respect to the operational semantics. A slight
extension of the algorithmic techniques presented in Sections 3.3 and 3.4 (and
in Mini Project 3.1) suffices for obtaining an implementation of the analysis
provided that L satisfies the Ascending Chain Condition (as is the case for
Monotone Frameworks).

Staging the specification. Let us briefly consider the following al-
ternative clause for [iA where the data flow component cannot influence the
control flow component because we always make sure that that the analysis
result is acceptable for both branches:

(C, D,•,J) F--' (if to" then tt' else 4)
iff (C, D, =, J tO° A

(C,•D,;5,) [= tl A C(11) c C(t) A D(e 1) 9 D() A
(C, D, ý, J) k- t- A C(42) C C(t) A 5(e2) E D(i)

3.5 Adding Data Flow Analysis 185

[con] (t, b, A,6) [-D Ct iffL 1: b D(t)

[var] (t, D, A, 6) D Xt iff (X) g t(t) A 6(x) g D(e)

[fr] (b, A6 I=D (f n x => eo)' iff Ifn x => eo} g C(e)

[fUn] (C, [=,6 D (fun f x => eo)' iff Ifun f x => eo} CCe

[app] (t, b,A, t=D (tti' ý2)t
iff (tD, [=)D t~' A (C, b, Sk-D t'ýA

(V(f n x => tt)E tj

(C, b,~ [= t A
C(I 2) ý(x) A DV~2) g; (x) A
C(e0) t (f) A D(e0) C D(e)) A

(V(f un f x => tto) E C(f1)
bC,DA 3) =D tO A

t(4 2) g ý(x) A D(42) J (x) A
t(e0)cgC(f) A D(fo) D(t) A
If un fx=> t"} C(

[iA (t bA kD (if tt"o th#en t"elset'1
iff (C ,D,-_ kt 0 A

(gu D D(to) #- (C, D, ý,J) [=Dtý A
t(t 1) C t(f)A
D(l,) g; (e)) A

Ntas b D(1) =ý (t,Db, A,) kD 42ý A

t(1 2) g c(e)A2
b V2) E; D(f))

[let] bC,DA,) k-D (let x = 4' in t2)t

iff (C, D, 6) =D t" A (t,b,A)I=D t12 A
C(l1) cý(x) AD(e1) C 6(x) A
Cte 2) C(f) A b(4) C D(e)

iff (t, b, ,)D t~'l A (C, b, ,6=D 2 A

Table 3.9: Abstract values as complete lattices.

186 CONTROL FLOW ANALYSIS

Unlike what was the case for the analyses of Tables 3.8 and 3.9, a solution to
the analysis modified in this way does give rise to a solution to the analysis
of Table 3.1; to be precise (C, D, ,6) 1= e guarantees (C, p-) ý= e.

In terms of implementation this modification means that the constraints for
the control flow component (C and p-) can be solved first, and based on this
the constraints for the data flow component (D and 6) can be solved next. If
both sets of constraints are solved for their least solution this will still yield
the least solution of the combined set of constraints.

Example 3.31 Let us return to Example 3.30. If we modify the clause
for [iA as discussed above then the resulting analysis will have C and ý as in
the column for the pure analysis from Section 3.1 and D and 6 will associate
slightly larger sets with some of the labels and variables:

D(6) = {+}

D(14) = {0,+}

D(15) = {0,+}
b(z) = {0}

This analysis is less precise than those of Tables 3.8 and 3.9: it will only
determine that the expression will evaluate to a value with the property
{0,+}. .

3.6 Adding Context Information

The Control Flow Analyses presented so far are imprecise in that they cannot
distinguish the various instances of function calls from one another. In the
terminology of Section 2.5 the 0-CFA analysis is context-insensitive and in
the terminology of Control Flow Analysis it is mono-variant.

Example 3.32 Consider the expression:

(let f = (fn x => XI)2

in ((f'3 f'4)5 (fn y => y6)7)8)9

The least 0-CFA analysis is given by (Cid, Ad):

Cid(1) = {fn x => xl,fn y => y6}

Cid(2) = {f n x => x}

Cid(3) = {fn x => x'}

Cid(4) = {fn x => x'}

3.6 Adding Context Information 187

Cied(5) = {Ifn x => x',fn y => y6}

Cid(6) = {fn y => y6}

-id(7) = {Ifn y => y6 }

Cid(8) = {fn x => x' ,fn y => y6}

Cid(9) = {fn x => xl ,fn y => y6 }

Ad(f) = {Ifn x => x1 }

Ad(X) = {fn x => x',fn y => y6}
Ad(Y) = {fn y => y'}

So we see that x can be bound to fn x => x' as well as fn y => y' and
hence the overall expression (label 9) may evaluate to either of these two
abstractions. However, it is easy to see that in fact only fn y => y6 is a
possible result. 0

To get a more precise analysis it is useful to introduce a mechanism that
distinguishes different dynamic instances of variables and labels from one
another. This results in a context-sensitive analysis and in the terminology
of Control Flow Analysis the term poly-variant is used. There are several
approaches to how this can be done. One simple possibility is to expand the
program such that the problem does not arise.

Example 3.33 For the expression of Example 3.32 we could for example
consider

let fl = (in xl => xl)
in let f2 = (fn x2 => x2)

in (U1 f2) (fn y => y)

and then analyse the expanded expression: the 0-CFA analysis is now able
to deduce that xl can only be bound to fn x2 => x2 and that x2 can only
be bound to fn y => y so the overall expression will evaluate to fn y => y
only. 0

However, a more satisfactory solution to the problem is to extend the anal-
ysis with context information allowing it to distinguish between the various
instances of variables and program points and still analyse the original ex-
pression. Examples of such analyses include k-CFA analyses, uniform k-CFA
analyses and polynomial k-CFA analyses (for k > 0). This approach is clearly
related to the use of call-strings in interprocedural analysis as studied in Sec-
tion 2.5.

188 CONTROL FLOW ANALYSIS

[con] (C, pp-) [e ct always

[var] (C, -) e x' iff ý(x, ce(x)) C C(f, 6)

[fn] (cc) e (fn x -> eo)' iff {(fn x => eo,ceo)} 9C(t,6)
where ceo = ce I FV(fn x => eo)

[fun] (Cp,) kc (fun f x => eo) iff {(fun f x => eo, ceo)} _ C(e,6)
where ceo = ceI FV(fun f x => eo)

[app] (C,P) 7 (tt' 42)I

iff (C,) h tfl A (C,")e t2 A
(V(fn x => to°, ceo) E C(e,,6)

p , ' t° A

C(62,6) C ý(x, Jo) A C(e0, 60) CC(e, 6)
where 6o = [6, ei k
and ce'o = ceo[x '-+ 6o]) A

(V(fun f x => tto, ceo) E C(e1, 6)P-) °ce tto° A

C(12, 6) g '(x, 6o) A C(eo, 6o) g C(f, 6) A{(f un f x => t'o°, ceo)} c (bo)
where 6o = [6, ei k
and ce.= ceo[f -+ 60o,x 1-4 6o])

[p,•) [e (if t'° then t" else tt 2)

iff (C,p) tot A (C,) tl A (C, P -c A
C(e1,6) g C(t, 6) A C(1 2 , 6) C C(f, 6)

[let] (C,•) je (let x = tl' in 4t2)I

iff ,) tj A (C,• P tt A
t(ti, 6) g (x,•)z)A C 2,6) C(f, 6)
where ce' = ce[x '-+ 6]

[op] (t,A) [c (t', op t2)t iff (tp ýe t"' A (tA) ýc t42

Table 3.10: Control Flow Analysis with Contexts.

3.6.1 Uniform k-CFA Analysis

Abstract domains. A key idea is to introduce context to distinguish
between the various dynamic instances of variables and program points.
There are many choices concerning how to model contexts and how they

3.6 Adding Context Information 189

can be modified in the course of the analysis. In a uniform k-CFA analy-
sis (as well as in a k-CFA analysis) a context 8 records the last k dynamic
call points; hence in this case contexts will be sequences of labels of length at
most k and they will be updated whenever a function application is analysed.
This is modelled by taking:

6 E A = Lab:k context information

Since the contexts will be used to distinguish between the various instances
of the variables we will need a context environment to determine the context
associated with the current instance of a variable:

ce E CEnv = Var -- A context environments

The context envircnment will play a r6le similar to the environment of the
semantics; in particular, this means that we shall extend the abstract values
to contain a context environment:

iU E Val = P(Term x CEnv) abstract values

So in addition to recording the abstractions (f n x => e and fun f x => e)
we will also record the context environment at the definition point for the
free variables of the term. This should be compared with the Structural
Operational Semantics of Section 3.2 where the closures contain information
about the abstraction as well as the environment determining the values of
the free variables at the definitionr- point.

The abstract environment ý will now map a variable and a context to an
abstract value:

ý E Env = (Var x A) -- Val abstract environments

Typically we will use a context environment to find the context associated
with the variable of interest and then use it together with the variable to
access the abstract environment. This means that indirectly we get the effect
of having local abstract environments in the abstract values although 3 is still
a global entity as in the previous sections.

The uniform k-CFA analysis differs from the k-CFA analysis in performing
a similar development for the abstract cache that now maps a label and a
context to an abstract value:

CE Cache = (Lab x A) -- Val abstract caches

Given information about the context of interest we can determine the abstract
value associated with a label. Again we indirectly get the effect of having a
cache for each possible context although it is still a global entity. (In k-CFA
one has Cache = (Lab x CEnv) - Val.)

190 CONTROL FLOW ANALYSIS

Acceptability relation. The acceptability relation for uniform k-CFA
is presented in Table 3.10. It is defined by formulae of the form

(C,) " e

where ce is the current context environment and 6 is the current context.
The formula expresses that (C, p-) is an acceptable analysis of e in the context
specified by ce and J. The clauses for the various constructs are very much
as those in Table 3.1 and will be explained below.

In the clause [var] we use the current context environment ce to determine the
context ce(x) of the current instance of the variable x and then the abstract
value of the variable is given by ý(x, ce(x)). The current context is 6 so we

have to ensure that ý(x, ce(x)) C C(t, 6).

In the clause [fn] we record the current context environment as part of the
abstract value and (as in the Structural Operational Semantics of Table 3.2)
we restrict the context environment to the set of variables of interest for the
abstraction. The clause [fun] is similar.

In the clause [app] we analyse the two subexpressions using the same context
and context environment as the composite expression. When we find a po-
tential abstract value, say (fn x => tto, ceo), that the operator may evaluate
to, it will contain a local context environment ceo that was created at its
definition point. When analysing to0 we will have passed through the appli-
cation point t, so the current context will be updated to include e and this
will also be the context associated; *ith the variable x in the updated version
of the context environment ceo used for the analysis of tt°. The new context
is [6, t]lk which (as in Section 2.5) denotes the sequence [6, t] but possibly
truncated (by omitting elements on the left) so as have length at most k. In
the case where the operator has the form (fun f x => t t1, ceo) we proceed in
a similar way and note that f as well as x will be associated with the new
context in the analysis of the body of the function.

The clauses for [iA, [let] and [op] are fairly straightforward modifications of
those of Table 3.1; however, note that the context of the bound variable of
the let-construct is the current context (as no application point is passed).
- We shall dispense with proving the correctness of the analysis and with
showing how it can be implemented.
Example 3.34 We shall now specify a uniform 1-CFA analysis for the

expression of Example 3.33:

(let f = (fn x => x 1) 2 in ((f 3 f 4) 5 (fn y .=> y6)7) 8) 9

The initial context will be A, the empty sequence of labels. In the course
of the analysis the current context will be modified at the two application
points with labels 5 and 8; since we only records call strings of length at most

3.6 Adding Context Information 191

one the only contexts of interest will therefore be A, 5 and 8. There are four
context environments of interest:

ce0 = [] the initial (empty) context environment,
cel = ceo[f 1-4 A] the context environment for the analysis of the body

of the let-construct,
ce 2 = ceo[x - 5] the context environment used for the analysis of the

body of f initiated at the application point 5, and
ce3 = ce0 [x - 8] the context environment used for the analysis of the

body of f initiated at the application point 8.

Let us take Ct and P•d to be:

Cd(1,5)-{= {(fn x => x',ceo)} Cfd(1,8) --{(fn y => y6 ,ceo)}

Ctd(2, A) = {(fn x => xl,ceo)} Ct'(3, A) {(fn x => xl,ceo)}

Ctd(4, A) = {(fn x => xl,ceo)} Ctd(5,A) -{(fn x => xl,ceo)}
Cta(7,A) = {(fn y => y6 ,ceo)} Ctd(8,A) = {(fn y => y6 ,ceo)}

Ctd(9,A) = {(fn y => y6,ceo)}

;id((f,) = {(fn x => x',ceo)}

Pid(x, 5) {(fn x => x ,ceo)} I ,d(x, 8) --{(fn y => y6 ,ceo)}

We shall now show that this is an acceptable analysis result for the example
expressions: --

(Cdid) o (let 1 - (in x > xl) 2 in ((f3 f 4)5 (fn y => y)78)9

According to clause [let], it is sufficient to verify that

(Cid,Pcd) eo (fn x => xI)2

because C'd(2, A) g ;d(f, A) and C!d(8, A) g C'd(9, A). This is straightfor-
ward except for the last clause. Since C!d(5,A) = {(fn x => xl,ceo)} it is,
according to [app], sufficient to verify that

(Ctp,id) k=:e, (:f3 f4)id, A 6)
(Cid,P;Vd) kce (fnI y =>67

cCd i)•:e3 xl

because C. (7, A) _ pid(x, 8) and Cld(1, 8) g C' (8, A). This is straightforward

except for the first clause. Proceeding as above we see that C' (3, A) f {n
x => xl,ceo)} and it is sufficient to verify

192 CONTROL FLOW ANALYSIS

(r,~d) I=ce
1 f3cl= f4

(ti'd,;Vd) I=A'f

because Cd(4, A) _C iid(x, 5) and Ctd (1, 5) C Cid(5, A). This is straightforward.

The importance of this example is that it shows that the uniform 1-CFA
analysis is strong enough to determine that fn y => y6 is the only result
possible for the overall expression unlike what was the case for the O-CFA
analysis in Example 3.32. We can also see that, since Pd (y, 6) = 0 for all
J E {A, 5, 8} it follows that fn y => y6 is never called upon a function. .

The resulting analysis will have exponential worst case complexity even for
the case where k = 1. To see this assume that the expression has size n and
that it has p different variables. Then A has 0(n) elements and hence there
will be O(p . n) different pairs (x, J) and 0(n 2) different pairs (t, 6). This
means that (C,) can be seen as an 0(n 2) tuple of values from Val. Since
Val itself is a powerset of pairs of the form (t, ce) and there are 0(n • nP)

such pairs it follows that Val has height 0(n nP). Since p = 0(n) we have
the exponential worst case complexity claimed above.

This should be contrasted with the O-CFA analysis developed in the previous
sections. It corresponds to letting A be a singleton. Repeating the above
calculations we can see (C, p) as an.)(p+n) tuple of values from Val, and Val
will be a lattice of height 0(n). In total this gives us a polynomial analysis
as we already saw in Section 3.4.

The worst case complexity of the uniform k-CFA analysis (as well as the k-
CFA analysis) can be improved in different ways. One possibility is to reduce
the height of the lattice Val using the techniques of Chapter 4. Another
possibility is to replace all context environments with contexts, i.e. to have
Val = P(Term x A); clearly this will give a lattice of polynomial height.
This idea is closely related to the so-called polynomial k-CFA analysis where
the analogues of context environments are forced to be constant functions,
i.e. to map all variables to the same context. In the case of polynomial 1-CFA
the analysis is of complexity 0(n 6).

3.6.2 Interprocedural Analysis Revisited

Let us conclude this section by comparing the above development with that
of Section 2.5 where we considered interprocedural analysis for a simple im-
perative procedure language.

Recall that the abstract domain of interest in Section 2.5 has the form

A--+L

Concluding Remarks 193

where A is the context information and L is the complete lattice of abstract
values of interest. For each label I the analysis will determine two elements
A0 (I) and A.(I) of A -+ L describing the situation before and after the
elementary block labelled I is executed. So we have

A.,A. : Lab -+ (A -+ L)

and in the terminology of the present chapter we may regard these functions
as abstract caches. There is no analogue of the abstract environment in
Section 2.5 - the reason is that the procedure language is so simple that it is
not needed: the abstract environment records the context of the free variables
and since all free variables in the procedures are global variables there is no
need for this component.

We can now reformulate the development of this section as follows. We can
take the abstract domain of interest to be

A -• P(Term x CEnv)

and reformulate the abstract cache and the abstract environment as having
the functionalities:

t: Lab -- A -- P(Term x CEnv)

•: Var -- A -4 P(Term x CEnv)

Thus the abstract caches of the .interprocedural analysis and the uniform
k-CFA analysis have the same overall functionality.

Concluding Remarks

Control Flow Analysis for functional languages. Many of
the key ideas for Control Flow Analysis have been developed within the
context of functional languages. The concept of k-CFA analysis seems due
to Shivers [121, 122, 123] although the main focus was on O-CFA. Other
works on 0-CFA-like analyses include [128, 104, 41, 40]. The ideas behind
k-CFA and polynomial k-CFA analysis were further clarified in [59] that also
established the exponential complexity of k-CFA analysis for k > 0; it also
related a form of Set Based Analysis [53] to 0-CFA. The uniform k-CFA
analyses were introduced in [94] as a simplification of the k-CFA analyses;
an obvious variation over this is to record the set of the last k distinct call
points. Yet another variation over the same theme is Closure Analysis; an
early and often neglected development may be found in [118].

To the extent these developments go beyond 0-CFA they establish additional
context (called mementoes, tokens or contours) for representing information
concerning the dynamic call chain; this clearly links back to the use of call

194 CONTROL FLOW ANALYSIS

strings in Section 2.5. The formulation of the analyses (as well as the one
presented in Table 3.1) would often seem to be more appropriate for a dy-
namically scoped than for a statically scoped language: The 0-CFA analy-
sis coalesces information about variables having several defining occurrences
even if they differ in their scope; clearly the analysis can easily be modified
so that it more directly models static scope (see Exercise 3.7) rather than
relying on no variable having more than one defining occurrence.

Another way to establish context is to represent the static call chain. This
seems first to be described by [60] as part of their so-called "polymorphic
splitting" analysis. A more general set-up was formulated in [94] that also
argued for the need to base abstract specifications on coinductive methods -
bearing in mind that coinductive and inductive methods may coincide as in
the case of syntax directed specifications.

Most of the papers cited above directly formulate a syntax directed specifi-
cation, perhaps proving it semantically sound, and perhaps showing how to
obtain constraints so as to obtain an efficient implementation. The use of ab-
stract specifications first appeared in [60, 94] and has the advantage of being
more directly applicable to open systems (that allow to interface with the li-
brary routines provided by the environment) and also to the ideas of Abstract
Interpretation of Chapter 4. In particular, the notion of reachability suggests
itself rather naturally [14, 44], it becomes clearer how to integrate ideas from
Abstract Interpretation into Control Flow Analysis, and one does not inad-
vertently restrict oneself to closed-systems only. (The notion of reachability
is considered in Mini Project 3.1 which is based on [44].)

Only few papers [96] discuss the interplay between the choice of specification
style for the analysis and the choice of semantics. We have used a small-step
Structural Operational Semantics rather than a big-step semantics in order
to express the semantic correctness also of looping programs. We have used
an environment based semantics in order to ensure that we do not "modify"
the bodies of functions before they are called, so that function abstractions
can meaningfully be used in the value domains of our analysis [96]. As a
consequence we have had to introduce intermediate expressions (closures and
bindings) and have had to specify the abstract analysis also for intermediate
expressions; for the syntax directed specification and the constraint based
analysis this was not necessary given that semantic correctness had already
been dealt with. Alternative choices are clearly possible but are likely to
sacrifice at least some of the generality offered by the present approach.

Control Flow Analysis for other language paradigms. An-
other main application of Control Flow Analysis has been for object-oriented
languages: one simply tracks objects rather than functions [1, 95, 105]. As
a reminder of the close links between Data Flow Analysis ana Control Flow
Analysis we should also mention that some approaches [139, 107] are closer to
the presentation of Chapter 2. A common theme among the more advanced

Concluding Remarks 195

studies is the incorporation of context (related to k-CFA) and an abstract
store [102] (to deal with imperative aspects like method update). To increase
the precision, local versions of the abstract store need to exist at all program
points, and abstract reference counts are needed to incorporate a "kill" com-
ponent (in the manner of Chapter 2). We refer to the above literature for
further details of how to formulate such analyses and how to choose a proper
balance between precision and cost.

Control Flow Analysis for concurrent languages has received relatively little
attention [15]. However, variations of the techniques presented in this chapter
have been used to analyse functional languages extended with concurrency
primitives allowing processes to be created dynamically and to communicate
via shared locations or channels [58, 41, 44].

In this book we do not consider logic languages. However, we should point
out that Control Flow Analysis also has applications for logic languages and
that set based analysis was first developed for this class of languages [55, 56].

Set-Constraint Based Analysis. Control Flow Analysis is just one
approach to program analysis where the use of constraints pays off. In this
chapter we have have taken the following approach: (i) first we have given
an abstract specification of when a proposed solution is acceptable, (ii) then
we have developed an algorithm for generating a set of constraints expressing
that a proposed solution is acceptable, and (iii) finally we have solved the set
of constraints for the least solutiou. For the solution of set constraints in step
(iii), it is-unimportant how the constraints were in fact obtained. For this
reason, it is often said that set constraints allow to separate the specification
of an analysis from its implementation and that set constraints are able to
deal with forward analyses as well as backward analyses and indeed mixtures
of these.

Set constraints [55, 9] have a long history [110, 64]. They allow to express
general inclusions of the form

S1 c_52

where set expressions, S, set variables, V, and set constructors, C, may be
built as follows:

S ::= V 0 SuS2 I S nS2 I C(S,...,S)
(S1 c S2) =ý S2I (Si 0) # • S2Ic -'(s) I -SI

V ::= XIYI...

C ::= truelfalselOl...cons lInill...

Set constraints allow to consider constructors that are not just nullary and
this allows to record also the shape of data structures, e.g. cons(Si, S2) Unil
expresses possibly empty lists whose heads come from S and whose tails
come from S2 . The associated projection selects those terms (if any) having

196 CONTROL FLOW ANALYSIS

the required shape, e.g. cons-l(S) produces the heads that may be present
in S. We have seen conditional constraints before and it turns out that
projection is so powerful that it can be used to code conditional constraints.
Finally, it is sometimes possible to explicitly take the complement of a set
but this adds to the complexity of the development. (It means that solutions
can no longer be guaranteed using Tarski's Theorem and sometimes a version
of Banach's Theorem can be used instead.)

The complexity of solving a system of set constraints depends rather dra-
matically on the set forming operations allowed and therefore many versions
have been considered in the literature. We refer to [3, 108] for an overview
of what is known in this area; here we just mention [19] for a general result
and [53, 5] for some cubic time fragments.

However, it is worth pointing out that many of these results are worst-case
results; benchmark results of Jaganathan and Wright [60] shows e.g. that in
practice a 1-CFA analysis may be faster than a 0-CFA analysis despite the
fact that the former has exponential worst-case complexity and the latter
polynomial worst-case complexity. The reason seems to be that the 0-CFA
analysis explores most of its polynomial sized state space whereas the 1-CFA
analysis is so precise that it only explores a fraction of its exponentially sized
state space.

The basic idea behind many of the solution procedures for set constraints is
roughly as follows [4]:

1. Dynamically expand conditional constraints, based on the condition
being fulfilled, until no more expansion is possible.

2. Remove all conditional constraints and combine the remaining con-
straints to obtain the least solution.

This is not quite the algorithm used in Section 3.4 where we were only in-
terested in solving a rather limited class of constraints for 0-CFA analysis.
When generating the constraints in Table 3.6 we were able to "guess a uni-
verse" Term, that was sufficiently large and this allowed us to generate
explicit versions of the conditional constraints; in fact a superset of all those
to be considered in step 1 of the above algorithm. Therefore our subsequent
constraint solving algorithm in Table 3.7 merely needed to check the already
existing constraints and to determine whether or not they could contribute
to the solution. In practice, the above "lazy" algorithm is likely to perform
better than the "eager" algorithm of Tables 3.6 and 3.7.

A final note, to be expanded upon in Chapter 6, is that also state-of-the-art
algorithms for Data Flow Analysis work by internally regarding data flow
equations as presented in a constraint formulation. This is yet more evidence
of the close connections between Data Flow Analysis, Control Flow Analysis
and Set-Constraint Based Analysis.

Mini Projects 197

Mini Projects

Mini Project 3.1 Reachability Analysis

The syntax directed analysis of Table 3.5 analyses each subexpression of e,
"C'exactly once" rather than "at most once" as really called for. In this mini
project we shall study one way to amend this.

The idea is to introduce an abstract reachability component

A E Reach = Lab -+ P({on})

and to modify the syntax directed analysis to have a relation of the form
(C ý,) e

The idea is that fn x => to has Ion} _ R(t 0) if and only if the function is

indeed applied somewhere, and that the "recursive call" (C, •, R) 1= tto is
performed if and only if {on} C R(fo).

1. Modify Table 3.5 to incorporate this idea.

2. Show the following analogue of Proposition 3.18: If (C, ,R) • tt,
{on} C R(f,) and (C,p-) _ (Ct, •,v) then (C, p-) '* -t.

3. Determine whether or not the statements

if (C, p-) = e, then (C, ,R)k• e, for some

if (C,) = e. and (C, p-) _ (tT,,) then (C,eR) ," e, for some

hold in general.

Mini Project 3.2 Data Structures

The language considered so far only includes simple data like integers and
booleans. In this mini project we shall extend the language with more general
data structures:

e ::- l C(ei,-" ,e)' I (case eo of C(xi,"',x,) => el or x => e2)t

Here C E Constr denotes an n-ary data constructor. A data element is
constructed by C(ei, - ,en): it has tag C and its components are the values
of el, ..- , e,. The case construct will first determine the value vo of eo, if.
vo has the tag C then X1 , - ,xn will be bound to the components of vo and
el is evaluated. If vo does not have tag C then x is bound to vo and e2 is
evaluated.

As an example we may have Constr = {cons, nil} so we have the following
expression (omitting labels) for reversing a list:

198 CONTROL FLOW ANALYSIS

let append = fun app xs => fn ys =>
case xs of cons(z,zs) => cons(z,app zs ys)

or xs => ys
in fun rev xs => case xs of cons(y,ys) =>

append (rev ys) (cons(y,nil()))
or xs => nilC)

To specify a 0-CFA analysis for this language we shall take

Val = (ermU{C(tl,...,t,) I C E Constr, f 1,..., t E Lab})

As before the terms of interest are fn x => e0 and fun f x => eo for recording
the abstractions. The new contribution is a number of elements of the form
C(4,.-. , 1,) denoting a data element C(vl,. . ,v,,) whose i'th component
might have been created by the expression at program point ei.

1. Develop a syntax directed analogue of the analysis in Table 3.5.

2. Modify the constraint generation algorithm of Table 3.6 to handle the
new constructs and make the necessary changes to the constraint solv-
ing algorithm of Table 3.7.

For the more ambitious: are there any difficulties in developing an abstract
analogue of the analysis in Table 11?

Mini Project 3.3 A Prototype Implementation

In this mini project we shall implement the pure 0-CFA analysis considered
in Section 3.3. As implementation language we shall choose a functional
language such as Standard ML or Haskell. We can then define a suitable
data type for FUN expressions as follows:

type var = string

type label = int

datatype const = Num of int I True I False

datatype exp = Label of term • label

and term = Const of const Var of var
I Fn of var * exp I Fun of var * var * exp
I App of exp *exp If of exp * exp * exp
I Let of var exp exp Op of string * exp* exp

Now proceed as follows:

Exercises 199

1. Implement the constraint based control flow analysis of Section 3.4; this
includes defining an appropriate data structure constraints for (condi-
tional) constraints.

2. Implement the graph based algorithm of Section 3.4 for solving con-
straints; this involves choosing appropriate data structures for the work-
list and the two arrays used by the algorithm.

For the more ambitious: generalise your program to perform some of the more
advanced analyses, e.g. by incorporating data flow information or context
information. N

Exercises

Exercise 3.1 Consider the following expression (omitting labels):

let f = fn x => x 1
in let g = fn y => y+2

in let h = fn z => z+3
in (f g) + (f h)

Add labels to the program and Oess an analysis result. Use Table 3.1 to
verify that it is indeed an acceptable guess. 0

Exercise 3.2 The specification of the Control Flow Analysis in Table 3.1
uses potentially infinite value spaces and this is not really necessary. To see
this choose some expression e, E Exp that is to be analysed. Let Var, C_ Var
be the finite set of variables occurring in e,, let Lab,, C Lab be the finite set
of labels occurring in e,, and let Term, be the finite set of subterms of e,.
Next define

ý6 E Val, = P(Term,)
5 E Env, = Var, -+ Val,

C E C-che, = Lab, -+ V-"•

and note that these value spaces are finite. Show that the specification of
the analysis in Table 3.1 still makes sense when (C,) is restricted to be in
Cache* x Env,. u

Exercise 3.3 Modify the Control Flow Analysis of Table 3.1 to take ac-
count of the left to right evaluation order imposed by a call-by-value se-
mantics: in the clause [app] there is no need to analyse the operand if the
operator cannot produced any closures. Try to find a program where the
modified analysis accepts analysis results (C, p) rejected by Table 3.1. N

200 CONTROL FLOW ANALYSIS

Exercise 3.4 So far we have defined "(C, p) is an acceptable solution for
e" to mean that

(C,)= e (3.8)

but an alternative condition is that

3(C', ý'): (C', [--) e A (C',p-) (C,) (3.9)

Show that (3.8) implies (3.9) but not vice versa. Discuss which of (3.8) or
(3.9) is the preferable definition. u

Exercise 3.5 Consider an alternative specification of the analysis in Table
3.1 where the condition

(u f x--> t'o°) E~f

in [app] is replaced by

C(el) 9 W(f)

also in [app]. Show that the proof of Theorem 3.10 can be modified accord-
ingly. Discuss the relative precision of the two analyses. 0

Exercise 3.6 Reconsider our decision to use Val = P(Term) and con-
sider using Va'l = P(Exp) instead. Show that the specification of the Con-
trol Flow Analysis may be modified accordingly but that then Fact 3.11 (and
hence the correctness result) would fail. 0

Exercise 3.7 The operational semantics allow us to rename bound vari-
ables without changing the semantics; this is in accord with the language
being statically scoped (or lexically scoped) rather than dynamically scoped.
As an example

((fn x => x') 2 (fn y => y3)4)5 a ((fn x => xl)2 (fn x => x3)4)5

and clearly the two programs have the same semantics.

However, renaming bound variables changes the acceptability of a solution as
well as influences the precision of the analysis specified in Table 3.1. Develop
an abstract specification of a 0-CFA analysis that is more faithful to the static
scoping than that of Table 3.1; it should agree with the specification of Table
3.1 for expressions that do not have multiple defining occurrences. 0

Exercise 3.8 In Section 3.2 we equipped FUN with a call-by-value se-
mantics. An alternative would be to use a call-by-name semantics. It can be
obtained as a simple modification of the semantics of Tables 3.2 and 3.3 by

Exercises 201

allowing the environments p E Env to map variables to intermediate terms
(and not just values), by deleting the rules [app 2] and [let2] and then make
some obvious modifications to the axioms [va], [appf.], [appian] and [let1];
in the case of [var] we will take:

p - Xt -+ itt ifxEdom(p) andit=p(x)

Complete the specification of the call-by-name semantics of FUN and show
that the correctness result (Theorem 3.10) still holds for the analysis of Table
3.1.

What does that tell us about the precision of the analysis?

Exercise 3.9 Let • and = be two relations satisfying the specification
of Table 3.5. Show that

(c, e if(,p e

by structural induction on e.

Exercise 3.10 Consider Proposition 3.18 and determine whether or not
the statement

if (C, p-) e,, then (C, @ [-- e,

holds in general. -

Exercise 3.11 Give an example showing that both of the statements

if (C, @= e, then (C,) • e,

if (C, p-) e. and (t, E (T,;,T) then (C,p-) ý= e,

fail in general.

Exercise 3.12 Give a direct proof of the correctness of the syntax di-
rected analysis of Table 3.5, i.e. establish an analogue of Theorem 3.10. This
involves first extending the syntax directed analysis to the bind- and close-
constructs and next proving that if p 1? ý, p F- ie -+ ie' and (C, p) 1=- ie then
also (C,p) 1=. ie'.

Exercise 3.13 Consider the system C,[e,] that contains a constraint

ls, U ... U ls,, = rhs

whenever C,,[e,] contains the n > 1 constraints

ls gC rhs

202 CONTROL FLOW ANALYSIS

Show that
(C,)= C,[e*, implies (C, p) k=- C,[e,]

where (C, p) H, (Is = rhs) is defined in the obvious way. Also show that

(C,p) C,[e,] implies (C, p) IC C,[e.]

holds in the special case where (C, p) is least such that (C, p-) f- C,[e,]. .

Exercise 3.14 Use the ideas of Exercise 3.3 to develop an improvement
of Table 3.8 where expressions are only analysed when absolutely needed.
Next develop a syntax directed analysis using the same ideas. Discuss the
relationship between the two specifications: are they more closely related
than is the case for • and l= of Table 3.1 and 3.5 (see Exercises 3.10 and
3.11)? 0

Exercise 3.15 Modify the abstract specification of the uniform k-CFA
analysis so that it does not record the last k function calls but the last
k changes function calls: if the calling sequence is [1,2,2,1,1] then 2-CFA
records [1,1] but the modified analysis records [2,1]. Discuss which of the two
analyses (say for k = 2) is likely to be most useful in practice. E

Exercise 3.16 Let us consider.a language of first-order recursion equation

schemes: the programs have the form

define D, in e,

where D, is a sequence of function definitions of the form:

f (x)= e

Here f is a function name, x is the formal parameter and e is the body of
the function; the functions defined in D may be mutually recursive and the
parameter mechanism is call-by-value. The expressions are given by

e :: t

t ::= Clxfel if e0thene, elsee 2 lei ope 2

where c E Const and op E Op as before; we shall assume that f and x
belong to distinct syntactic categories. As an example we may define the
Fibonacci function by the following expression (omitting labels):

define fib(z) = if z<3 then 0
else fib (z-1) + fib (z-2)

in fib x

Exercises 203

Define a uniform k-CFA analysis for this language. For k = 0 and k = 1
compare the development with that for the procedure language in Section
2.5. 0

Exercise* 3.17 In Section 3.6 we showed how to extend the Control Flow
Analysis with contest similar to the call strings of Section 2.5. Investigate
the possibility of performing a similar development based on the assumption
sets of Section 2.5. m

204 CONTROL FLOW ANALYSIS

Chapter 4

Abstract Interpretation

The purpose of this chapter is to convey some of the essential ideas of Ab-
stract Interpretation. We shall mainly do so in a programming language
independent way and thus focus on the design of the property spaces, the
functions and computations upon them, and the relationships between them.

We first formulate a notion of correctness for a restricted class of analyses
as this will allow us to motivate better some of the key definitions in the
development. Then we cover the widening and narrowing techniques that can
be used to obtain approximations obf the least fixed point and for limiting the
number of computation steps needed. Next we consider Galois connections
and Galois insertions that allow a costly space of properties to be replaced
with one that is less costly. Galois connections can be constructed in a
systematic way and can be used to induce one specification of an analysis
from another.

4.1 A Mundane Approach to Correctness

To set the scene, imagine some programming language. Its semantics iden-
tifies some set V of values (like states, closures, double precision reals) and
specifies how a program p transforms one value v, to another v2; we may
write

P F- V1 `+ V2 (4.1)

for this without committing ourselves to the details of the semantics and
without necessarily imposing determinacy (that p - -v.-+ v2 and p I- vi -, V3
imply v2 = v3).

In a similar way, a program analysis identifies the set L of properties (like
shapes of states, abstract closures, lower and upper bounds for reals) and

205

206 ABSTRACT INTERPRETATION

specifies how a program p transforms one property 11 to another 12; we may
write

p t- l1 > 12 (4.2)

for this without committing ourselves to the method used for specification
of the analysis. However, unlike what is the case for the semantics, it is
customary to require I> to be deterministic and thereby define a function;
this will allow us to write fp(i1) = 12 to mean p [- 11 > 12.

In the rest of this section we shall show how to relate the semantics to the
analysis. We shall present two approaches based on correctness relations and
representation functions, respectively. In both cases we shall define a notion
of correctness of the analysis with respect to the semantics and we shall show
that the two notions are equivalent.

This is a mundane approach in the sense that it only applies to analyses
where properties directly describe sets of values. This is the case for the
Constant Propagation Analysis of Section 2.3, the Shape Analysis of Section
2.6 and the Control Flow Analysis of Chapter 3 but it is not the case for
the Live Variable Analysis of Section 2.1 where properties are related to
relations between values. In the literature, the terms first-order analyses
versus second-order analyses have been used to differentiate between these
classes of analyses. It is important to stress that the development of Sections
4.2 to 4.5 apply equally well to both classes.

We begin by showing how the development of Chapters 2 and 3 can be
rephrased in the style of (4.1) and (4.2).

Example 4.1 Consider the WHILE language of Chapter 2. Recall that
the semantics is a Structural Operational Semantics with transitions of the
forms (S, a) -+ (S', or') and (S, a) -+ a', where S and S' are statements of
Stint and a and a' are states of State = Var -+ Z. With S, being the
program of interest we shall now write

S.- a a2

for the reflexive transitive closure of the transition relation, i.e. for:

(S., 0 2

Note that the set V of values is the set State.

We shall now consider the Constant Propagation Analysis of Section 2.3.
Recall that the analysis of S, gives rise to a set of equations CP= formulated
in terms of an instance of a Monotone Framework: the properties L of interest
are given by Statecp = (Var, -+ ZT)_L, E is {init(S,)}, F is fHow(S,), and t
is Ax.T. Further recall that a solution to the equations is a pair (CPo, CP.)

4.1 A Mundane Approach to Correctness 207

of mappings CP. : Lab, -+ Statecp and CP. : Lab, -+ Statecp satisfying
the equations. Given a solution (CPo, CP.) to CP= we take

S. F- 61 > 62

to mean that:

S= 61 A 62 = U {CP.(f) I E final(S.)}

Thus for a program S,. with isolated entries, &I is the abstract state associated
with the entry point of S., and &2 is the abstract state associated with the
exit points; we use the least upper bound operation (U) on the complete
lattice Statecp to combine the contributions from the (possibly several) exit
points of S,,.

Example 4.2 Consider the FUN language of Chapter 3. Recall that the
semantics is given by a Structural Operational Semantics with transitions of
the form p I- ie -+ ie' where p is an environment of Env = Var "+fin Val and
ie and ie' are intermediate expressions of IExp. Let now e, be the closed
expression of interest. We shall write

e, F- v,1- v2

to mean that e, when given the argument v, will evaluate to the value V2,
i.e. that

[-(e, v l) t 2 -...* V t

where 11 and t 2 are fresh labels. Note that the set V of values now is the set
Val.

We shall next consider the pure Control Flow Analysis of Section 3.1. Recall
that the result of analysing the expression e, is a pair (C, o) satisfying (C, P)
e, as defined in Table 3.1. Here C is an element of Cache = Lab, + Val
and ý is an element of Env = Var,, -+ Val where Val = P(Term,). For
this analysis we shall take the properties L of interest to be pairs (P, ia) of
Env x Val and assume that (C, 2) ý= (e. ct')12 for some constant c. Then
we define

e. [2,1 2,2

to mean that when e, is given an argument with property (P1, v 1) then the

result of the application will have property (P2,& 2):

C(e1) = ý A C(t 2) = ý A ýj = =j

Note that the "dummy" constant c used as an argument to e, is used as a
place holder for all potential arguments being described by ýaj; for this idea
to work it is important that the analysis of c puts no constraints on (C, p) as
in indeed the case for the specification in Table 3.1.

208 ABSTRACT INTERPRETATION

4.1.1 Correctness Relations

Every program analysis should be correct with respect to the semantics. For a
class of (so-called first-order) program analyses this is established by directly
relating properties to values using a correctness relation:

R : V x L -+ {true, false}

The intention is that v R 1 formalises our claim that the value v is described
by the property 1.

Correctness formulation. To be useful one has to prove that the
correctness relation R is preserved under computation: if the relation holds
between the initial value and the initial property then it also holds between
the final value and the final property. This may be formulated as the impli-
cation

v, R i1 A p I- vi, -v 2 A p li 1 l 2 v2 R l 2 (4.3)

and is also expressed by the following diagram:

Pd ,V1 V2

R R

p - li 12

A relation R satisfying a condition like this is often called a logical relation
and the implication is sometimes written (p I- • --+ .) (R -* R) (p I -> .).

The theory of Abstract Interpretation comes to life when we augment the set
of properties L with a preorder structure and relate this to the correctness
relation R. The most common scenario is when L = (L, c, U, n, I, T) is a
complete lattice with partial ordering _ (see Appendix A). We then impose
the following relationship between R and L:

v R l1 A 11 _ 12 = v R 12 (4.4)

(VlEL'CL:v RI) = vR(f (L') (4.5)

Condition (4.4) says that the smaller the property is with respect to the
partial ordering, the better (i.e. more precise) it is. This is an "arbitrary"
decision in the sense that we could instead have decided that the larger the
property is, the better it is, as is indeed the case in much of the literature on

4.1 A Mundane Approach to Correctness 209

Data Flow Analysis; luckily the principle of duality from lattice theory (see
the Concluding Remarks) tells us that this difference is only a cosmetic one.

Condition (4.5) says that there is always a best property for describing a
value. This is important for having to perform only one analysis (using the
best property, i.e. the greatest lower bound of the candidates) instead of
several analyses (one for each of the candidates). Recall from Appendix A
that a subset Y of L is a Moore family if and only if (flY') E Y for all subsets
Y' of Y. We can then see that condition (4.5) is equivalent to the demand
that {l v R l} is a Moore family.

Condition (4.5) has two immediate consequences:

vRT

vRl1 A vRl 2 =ý vR(llfl12)

The first formula says that T describes any value and the second formula says
that if we have two descriptions of a value then their greatest lower bound is
also a description of the value.

Example 4.3 Returning to the Constant Propagation Analysis of Exam-

ple 4.1 we can now specify the relation

Rcp : State x Statecp -f {true, false}

between the values (i.e. the states) and the properties (i.e. the abstract
states):

a Rcp & iff Vx E FV(S,) : (6(x) = T V a(x) = 6(x))

Thus & may map some variables to T but if 6 maps a variable x to an element
in Z then this must also be the value of a(x).

Let us observe that the conditions (4.4) and (4.5) are fulfilled by the Con-
stant Propagation Analysis. Recall from Section 2.3 that (Statecp, Ecp) is
a complete lattice with the ordering Ecp. It is then straightforward to verify
that (4.4) and (4.5) do indeed hold. (Also compare with Exercise 2.7.) .

Example 4.4 For the Control Flow Analysis mentioned in Example 4.2

we shall define

RCFA : Val x (Env x Val) -+ {true, false}

to be the relation V of Section 3.2:

V RCFA (pM) iff v V (•)

210 ABSTRACT INTERPRETATION

Recall that we have two kinds of values v E Val, constants c and closures
close t in p, and that V is given by:

VV ý'iff true if v = c
ft E , iAVx E dom(p) :p(x) V (ý, (x)) ifv = close tin p

The correctness condition (4.3) can be reformulated as

(vl V (ý,aj) A [] Ft (e V•1)te2 --+* V,2 A (t,p) I= (e. Ct1)12 A
c(e) = 61 A C(e2) = 2) # v2 V (A,: 2)

and it follows from the correctness result established by Theorem 3.10 in
Section 3.2 (see Exercise 4.3).

Finally, let us observe that the Control Flow Analysis also satisfies the con-
ditions (4.4) and (4.5). For this we shall equip Env x Val with the partial
ordering gCFA defined by:

(ýj, 1) gCFA (& ,v2) iff ý1 c ý 2 A Vx : 1 (x) c ý 2(x)

This will turn Env x Val into a complete lattice. By induction on v E Val
one can then easily prove that (4.4) and (4.5) are fulfilled.

4.1.2 Representation Functions

An alternative approach to the urse of a correctness relation R : V x L --

{ true, false} between values and properties is to use a representation function:

fl : V -+ L

The idea is that /3 maps a value to the best property describing it. The

correctness criterion for the analysis will then be formulated as follows:

/3(v1) _ 11 A p FVI- V*v2 A p F- 1 l > 12 = 8 /(v 2) _ 12 (4.6)

This is also expressed by the following diagram:

p l V21

p F 11 > 12

Thus the idea is that if the initial value vi is safely described by 11 then the
final value v2 will be safely described by the result 12 of the analysis.

4.1 A Mundane Approach to Correctness 211

Equivalence of correctness formulations. Lemma 4.5 below
shows that the formulations (4.3) and (4.6) of the correctness of the analysis
are indeed equivalent (when R and /f are suitably related). To establish
this we shall first show how to define a correctness relation Ro from a given
representation function /3:

vR,51 iff /(v) El

Next we show how to define a representation function /R from a correctness
relation R:

1RR(v) = f{l I v R l}

Lemma 4.5

(i) Given 0 : V -+ L, then the relation Rp : V x L - {true, false} satisfies
conditions (4.4) and (4.5), and furthermore fOR, = /3.

(ii) Given R: V x L -+ { true, false} satisfying conditions (4.4) and (4.5),
then 1R is well-defined and RpR = R.

Hence the two formulations (4.3) and (4.6) of correctness are equivalent. *

Proof To prove (i) we first observe that condition (4.4) is immediate since C is
transitive. Condition (4.5) is immediate because when f(v) is a lower bound for L'
we have f/(v) E FlL'. The calculation #R.(v) = n{l I v Rp L} = n{1 v /(v) g l} =
f6(v) then concludes the proof of (i).-

To prove (ii) we observe that from v R I we get /R(V) E I and hence v Rp, 1.
Conversely, from v ROR I we get 3R(V) C 1; writing L' = {11 v R 1} it is clear that
(4.5) gives v R (nL') and this amounts to v R (/3R(v)); we then get the desired
result v R I by (4.4). 0

Motivated by these results we shall say that the relation R is generated by
the representation function / whenever v R I is equivalent to /3(v) C 1. This
relationship is illustrated in Figure 4.1: The relation R expresses that v is
described by all the properties above /(v) and 0 expresses that among all
the properties that describe v, #(v) is the best.

Example 4.6 For the Constant Propagation Analysis studied in Exam-

ples 4.1 and 4.3 we shall define

,•cP : State -+ Statecp

as the injection of State into Statecp: /3cp(a) = Ax.o(x). It is straightfor-
ward to verify that Rcp is generated by /3cp, i.e.

u Rcpa ,* /3cp(o) Ecp a

using the definition of the ordering Ecp on Statecp. 0

212 ABSTRACT INTERPRETATION

- - R

v 3 L

Figure 4.1: Correctness relation R generated by representation function /.

Example 4.7 For the Control Flow Analysis studied in Examples 4.2 and
4.4 we shall define

PCFA : Val -+ Env x Val

inductively on the structure of values v E Val:

r (Ax.0,0) ifv=c
(OCFA(P) {t}) if v = close t in p

The first clause reflects that we do not collect constants in a pure O-CFA
analysis. In the second clause we only have one closure so the abstract value
will be a singleton set and we construct the associated "minimal" abstract
environment by extending I

3 CFA to operate on environments. To do that
we shall "merge" all the abstract environments occurring in U{/j3 CFA(p(x)) I
x E Var,}; this reflects that the 0-CFA analysis uses one global abstract
environment to describe all the possible local environments of the semantics.
So we define 3CEA : Env -+ Env by:

/3&A(P)(X) = U{&(x) I /3cFA(p(y)) = (;,.y) and y E dom(p)}

{{ýj} ifx E dom(p) and ,CFA(p(x))= (&,V5){ 0 otherwise

To show that RCFA is generated by /3CFA we have to show that:

v RCFA (PV P4/cFA(v) ~CcFA(~)

This follows by induction on v E Val and we leave the details to Exercise
4.4. U

4.1 A Mundane Approach to Correctness 213

4.1.3 A Modest Generalisation

We shall conclude by performing a modest generalisation of the development
performed so far. A program p specifies how one value v, is transformed into
another value V2:

p I- v1 "-* V2

Here vl E 111 and v2 E 112 and we shall subsequently refrain from imposing
the condition that VI = V2; thus we shall allow the programs to have different
"argument" and "result" types - this will e.g. be the case for most functional
programs. The analysis of p specifies how a property l1 is transformed into
a property 12:

p lH 1> 12

Here ll E L1 and 12 E L2 and again we shall refrain from imposing the
restriction that L 1 = L 2 . As previously argued it is natural to demand that
p - 11 c> 12 specifies a function

fp : L 1 -+ L 2

given by fp(11) = 12 iff p - ll t> 12.

Turning to the correctness conditions we shall now assume that we have two
correctness relations, one for V1 and L, and one for V2 and L2 :

R1 V1 x L 1 -+ {true, false} generated by 01 :V1 -*- L1

R2 V2 x L 2 -+ {true, fase} generated by /32 : V2 -+ L 2

Correctness of fp now amounts to

vl R 11 A p[_-V1.`v v2 =* V2 R2 fM(l1)

for all vi E V1 , V2 E V2 and 11 E L1 . Using the concept of logical relations
(briefly mentioned above) this can be written as:

(p I-,-,. (R1 -*R)f

To be precise, -,- (R 1 -I R 2) f means that:

VV1 ,V 2 ,l1 : V1 ^-+ V2 A vl R 1 # 1= V2 R 2 f(ll)

Higher-order formulation. We can now ask whether the relation
R, -* R 2 defined above is a correctness relation. Lemma 4.8 below shows
that this is indeed the case and furthermore that we can find a representation
function i3 such that R1 -* R 2 is generated by 13. The representation function
13 can be defined from the representation functions 313 and 12 and it will be
denoted 01 -* 132:

(013 -* 02)("-) "All.1U{12(v2) 101 (vi) ; 11 A V1 `+ V2}

214 ABSTRACT INTERPRETATION

Lemma 4.8 If Ri is a correctness relation for Vi and Li that is generated
by the representation function fl/ : Vi -+ Li (for i = 1, 2) then R, -* R 2
is a correctness relation and it is generated by the representation function

31 -* 02. 3

Proof We shall prove -- (Ri -- R 2) f 4* (,13 -*, 32)("-') E f. We calculate:

(/31 -4* ,2)(-) 9 f -* V11• U[{2(v2) 1)3(v1) g lI A^Vl - V2} _ f(l1)

4* Vil,Vl,V2: (31(v) E l, A V1 V2 =• 132(V2) E f(l1))

V11 V1,Vl,2 : (vi Ri 11 Av, -1 -2 =ý - V2 R 2 f(11))
--+ (Ri -* R2).f

Note that it now follows (from Lemma 4.5) that if each Ri satisfies conditions (4.4)
and (4.5) then so does R, --* R 2.

Example 4.9 Consider the program plus with the semantics given by

plus I- (Z1, z2) --+ Z + z2

where Z1, z2 E Z. A very precise analysis might use the complete lattices
(P(Z), C) and (P(Z x Z), C) as follows:

fplus(ZZ) = {Z1 +Z 2 I (zl,z 2) E ZZ}

where ZZ C Z x Z. Consider now the correctness relations Rz and Rz xz

generated by the representation functions:

3z(z) = {z}

,OzxZ(zl,z2) = {(ZI,Z2)}

The correctness of the analysis of plus can now be expressed by

VZ,,Z2 ,z, ZZ:plusF- (Z,,Z2)-'. z A (Z1,Z 2) RZxz ZZ =:> z Rz fplu (ZZ)

or more succinctly

(plus I- -) (Rzxz -* Rz) fou.

The representation function IPzxz -* Oz satisfies

(A.zxz-/3z)(P f-. -.) = ZZ.{z I (zI, z2) E ZZ A p - (Z1, z 2) -z}

so the correctness can also be expressed as (flzxz -* /z)(plus I- .- ,: .) E
fplus. U

The above example illustrates how the abstract concepts can give a more
succinct formulation of the correctness of the analysis. In the following we
shall see several cases where we move freely between what we may call a
"concrete" formulation of a property and an "abstract" formulation of the
same property. And we shall see that the latter often will allow us to reuse
general results so that we do not have to redevelop parts of the theory for
each application considered.

4.2 Approximation of Fixed Points 215

t-.0 [-I'll 10,21-2,11 [-1o,0 0[

Figure 4.2: The complete lattice Interval = (Interval, _).

4.2 Approximation of Fixed Points

It should be clear by now that conriplete lattices play a crucial role in program
analysis and in the remainder of this chapter we shall tacitly assume that
property spaces such as L and M are indeed complete lattices. We refer to
Appendix A for the basic notions of complete lattices and monotone func-
tions. Here we present an interesting complete lattice that forms the basis of
many analyses over the integers.

Example 4.10 We shall now present a complete lattice that may be used
for Array Bound Analysis, i.e. for determining if an array index is always
within the bounds of the array - if this is the case then a number of run-time
checks can be eliminated.

The lattice (Interval, C) of intervals over Z may be described as follows.
The elements are

Interval = {I_} U {[z1, z2] I z < z 2 , zi E Z U {-oo}, z 2 E Z U {oo}}

where the ordering < on Z is extended to an ordering on Z' = Z U {-oo, oo}
by setting -co < z, z < co, and -co < co (for all z E Z). Intuitively, I
denotes the empty interval and [Z1, z 2] is the interval from zl to z 2 including
the end points if they are in Z. We shall use int to range over elements of
Interval.

216 ABSTRACT INTERPRETATION

The partial ordering _ on Interval is depicted in Figure 4.2; the idea is that
int E; int2 corresponds to {z I z is in intl} C {z I z is in int2 } where the
meaning of "is in" should be immediate. To give a succinct definition of the
partial ordering we define the infimum and supremum operations on intervals
as follows:

rI c ifint=_L
inf(int) = co if int= 1

Izl if int = [ZI, Z21

sup(int) = { -oc if int=.1

Z2 if int = [zI, z 2]

This allows us to define:

intl E int2 iff inf(int2) < inf(intl) A sup(int1) < sup(int2)

We claim that (Interval, E) is indeed a complete lattice. We shall prove this
by showing that each subset of Interval has a least upper bound and then
refer to Lemma A.2 of Appendix A to get that (Interval, E) is a complete
lattice. So let Y be a subset of Interval. The idea is that each interval int
of Y should be "contained in" the interval U Y defined by:

AL if Y C {I.}
L ' = [inf'{inf(int) I int E Y} , sup'{sup(int) I int E Y}]

otherwise

where inf' and sup' are the infimum and supremum operators on Z' corre-
sponding to the ordering < on ZV; they are given by inf'(0) = co, inf'(Z) = z'
if z' E Z is the least element of Z, and inf'(Z) = -oo otherwise; and simi-
larly sup'(0) = -co, sup'(Z) = z' if z' E Z is the greatest element of Z, and
sup'(Z) = co otherwise. It is now straightforward to show that U Y is indeed
the least upper bound of Y. 0

Given a complete lattice L = (L, E, u, n, _, T) the effect of a program, p, in
transforming one property, 11, into another, 12, i.e. p F- 11 t> 12, is normally
given by an equation

f(A1) = 12

for a monotone function f : L -+ L dependent on the program p. Note
that the demand that f is monotone is very natural for program analysis; it
merely says that if l1 describes at least the values that ll does then also f (l)
describes at least the values that f(l1) does.

For recursive or iterative program constructs we ideally want to obtain the
least fixed point, 14(f), as the result of a finite iterative process. However,
the iterative sequence (f1(_))n need not eventually stabilise nor need its
least upper bound necessarily equal lfp(f). This might suggest considering

4.2 Approximation of Fixed Points 217

the iterative sequence (fn(T))n and even when it does not eventually stabilise
we can always terminate the iteration at an arbitrary point in time. While
this is safe (thanks to condition (4.4) of Section 4.1) it turns out to be grossly
imprecise in practice.

Fixed points. We shall begin by recalling some of the properties of fixed
points of monotone functions over complete lattices; we refer to Appendix
A for the details of this development. So consider a monotone function f :
L -+ L on a complete lattice L = (L, E, u, n, _, T). A fixed point of f is an
element I E L such that f(1) = I and we write

Fix(f) = {'1 f(1) = 1}

for the set of fixed points. The function f is reductive at 1 if and only if
f(l) E I and we write

Red(f) = {l1I f(1) E l}

for the set of elements upon which f is reductive; we shall say that f itself
is reductive if Red(f) = L. Similarly, the function f is extensive at I if and
only if f(l) • 1 and we write

Ext(f) = {l j f(1) __ I}

for the set of elements upon which f is extensive; we shall say that f itself is
extensive if Ext(f) = L.

Since L is a complete lattice it is always the case that the set Fix(f) will have
a greatest lower bound in L and \e denote it by lfp(f); this is actually the
least fixed point of f because Tarski's Theorem (Proposition A.10) ensures
that:

lfp(f) = fFIx(f) = FRed(f) E Fix(f) _ Red(f)

Similarly, the set Fix(f) will have a least upper bound in L and we denote
it by gfp(f); this is actually the greatest fixed point of f because Tarski's
Theorem ensures that

gfp(f) = [j Fix(f) = U Ext(f) E Fix(f) _ Ext(f)

In Denotational Semantics it is customary to iterate to the least fixed point by
taking the least upper bound of the sequence (fn ())n. However, we have not
imposed any continuity requirements on f (e.g. that f(AL l) = Un(f(l•))
for all ascending chains (1n)0) and consequently we cannot be sure to actually
reach the fixed point. In a similar way one could consider the greatest lower
bound of the sequence (fn(T))n. One can show that

fn(jL) g H fn(_l) E lfp(f) E gfP(f) E -nnf(T) _ fn(T)

as is illustrated in Figure 4.3; indeed all inequalities (i.e. E) can be strict
(i.e. #).

218 ABSTRACT INTERPRETATION

S f(T)
Red(f) - / ---

0 n fn(T)

Fix(f F r .F pno

Ext(f) (_)

SL

Figure 4.3: Fixed points of f

4.2.1 Widening Operators

Since we cannot guarantee that the iterative sequence (fn(£)), eventually
stabilises nor that its least upper bound necessarily equals 4fp(f), we must
consider another way of approximating lfp(f). The idea is now to replace
it by a new sequence (fM)n that is known to eventually stabilise and to do
so with a value that is a safe (upper) approximation of the least fixed point.
The construction of the new sequence is parameterised on the operator V,
called a widening operator-, the precision of the approximated fixed point as
well as the cost of computing it depends on the actual choice of widening
operator.

Upper bound operators. In preparation for the development, an
operator 10 : L x L -+ L on a complete lattice L = (L, E) is called an upper
bound operator if

11 ýl U112 :3 12

for all 11, 12 E L, i.e. it always returns an element larger than both its ar-
guments. Note that we do not require 0 to be monotone, commutative,
associative, nor absorptive (i.e. that 1 0] 1 = 1).

Let (l,)n be a sequence of elements of L and let 0 : L x L -+ L be a total
function on L. We shall now use 0 to construct a new sequence (l€)n defined

4.2 Approximation of Fixed Points 219

by:
1, if n =0

l n1 In 4 ifn>0

The following result expresses that any sequence can be turned into an as-
cending chain by an upper bound operator:

Fact 4.11 If (In)n is a sequence and 0 is an upper bound operator then
(In,)n is an ascending chain; furthermore l, :_ U{0,11,..-, in} for all n. .

Proof To prove that (In). is an ascending chain it is sufficient to prove that
Icn 'ý+j for all n. If n = 0 we calculate Ic' = to C_ o 0 1Li = lt. For the inductive
step we have In0 E Ij 0 ILn+i l=+' as required.

To prove that ic D U{lo,l,... ,.i } we first observe that it holds trivially for
n = 0. For the inductive step we have /n+l° = In1 0 ln+1 _ U{Io, 1l, ln} U ln+=

U{lo, l ,.,n,ln+i} and the result follows.

Example 4.12 Consider the complete lattice (Interval, Q) of Figure 4.2
and let int be an arbitrary but fixed element of Interval. Consider the
following operator 0 int defined on Interval:

int, Cjint i int, U int2 if int E int V int2 C int
in [-cc, oc] otherwise

Note that the operation is not 'mmetric: for int = [0, 2] we e.g. have
[1,2]int [2, 3] = [1,3] whereas [2 , 3]tCint[1 , 2] = [-oo, oo].

It is immediate that 0 mnt is an upper bound operator. Consider now the
sequence:

[0, 0], [1, 1], [2,2], [3,3], [4,4], [5,5],•

If int = [0, oo], then the upper bound operator will transform the above
sequence into the ascending chain:

[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], •

However, if int = [0, 2], then we will get the following ascending chain

[0, 0], [0, 1], [0, 2], [0,3], [-cc, cc], [-cc, c],. ...

which eventually stabilises.

Widening operators. We can now introduce a special class of upper
bound operators that will help us to approximate the least fixed points: An
operator V : L x L -+ L is a widening operator if and only if:

e it is an upper bound operator, and

220 ABSTRACT INTERPRETATION

Red(f) -_ f f; + . .

..... R•-I

(s Y) ". t

S............... f V = J.

Figure 4.4: The widening operator V applied to f.

* for all ascending chains (ln),,-the ascending chain (lv)n eventually sta-
bilises.

Note that it follows from Fact 4.11 that (ln)n is indeed an ascending chain.

The idea is as follows: Given a monotone function f : L -+ L on a com-
plete lattice L and given a widening operator V on L, we shall calculate the
sequence (fý), defined by

J ifn=0

f~;.= - if n > 0 A f((f;-') g f; 1

f;z-' V f(f;- 1) otherwise

As in Fact 4.11 it follows that this is an ascending chain and Proposition 4.13
below will ensure that this sequence eventually stabilises. From Fact 4.14
below we shall see that this means that we will eventually have f(f;) E f•
for some value of m (corresponding to the second clause in the definition
of fv). This means that f is reductive at f• and from Tarski's Theorem
(Proposition A.10) we then know that f J lfp(f) must be the case; hence
we take

lfpv(f) =

as the desired safe approximation of lfp(f). This is illustrated in Figure 4.4.
We shall now establish the necessary results.

4.2 Approximation of Fixed Points 221

Proposition 4.13
If V is a widening operator then the ascending chain (fý)n even-
tually stabilises.

In preparation for the proof of Proposition 4.13 we shall first show the fol-
lowing technical result:

Fact 4.14 If V is a widening operator then:

(i) the sequence (f4), is an ascending chain;

(ii) if f(fp) g f; for some m then the sequence (fý)n eventually stabilises
and furthermore Vn > m : f4 = fF and Un f4 = fF;

(iii) if (f4)n eventually stabilises then there exists an m such that f(fF) E

fF; and

(iv) if (fý)n eventually stabilises then Un f4] lfP(f).

These claims also hold if V is just an upper bound operator. 0

Proof The proof of (i) is analogous to that of Fact 4.11 so we omit the details.

To prove (ii) we assume that f(f .C: fv for some m. By induction on n > m
we prove that f7 = f': for n = m + 1 it follows from the assumption and for the
inductive step we note that f(f4) E f; will be the case so f;+ = fý. Thus (f;)n
eventually stabilises and it follows that Un fý = fR.
To prove (iii) we assume that (fý)n eventually stabilises. This means that there
exists m such that Vn > m : f4 = f;. By way of contradiction assume that
f(f;) _ f; does not hold; then f; = f -;+ = f; V f(f;) :1 f(f;) and we have
the desired contradiction.

To prove (iv) we observe that (ii) and (iii) give Un fý = f; for some m where
f(f;ý) E fp. Hence f; E Red(f) and by Tarski's Theorem (Proposition A.10)
this shows f7 _ lfp(f). u

We now turn to the proof of Proposition 4.13:

Proof By way of contradiction we shall assume that the ascending chain (f;)n
never stabilises; i.e.:

Vno : 3n > no : fý 0 f;o

It follows that f(f--') E f;-1 never holds for any n > 0; because if it did,
then Fact 4.14 gives that (f4)n eventually stabilises and our hypothesis would be
contradicted. This means that the definition of (fý)n specialises to:

f; _L if n =0
f;-' V f(f;-') otherwise

222 ABSTRACT INTERPRETATION

Now define the sequence (I.),. by

1 . if n =0l,= f(f;-l) ifn>0

and note that (la)n is an ascending chain because (f;)n is an ascending chain (Fact
4.14) and f is monotone. We shall now prove that

Vn: In = f;

by induction on n: for n= 0 it is immediate and for n > 0 we have Iv = InV - 1 V =
f;-' V f(f--') = f4. Since (n),n is an ascending chain and V is a widening op-
erator it follows that the sequence (InV)n eventually stabilises, i.e. (fe)n eventually
stabilises. This provides the desired contradiction and proves the result. 0

Example 4.15 Consider the complete lattice (Interval, C) of Figure 4.2.
Let K be a finite set of integers, e.g. the set of integers explicitly mentioned
in a given program. We shall now define a widening operator VK based on
K. The idea is that [Z1 , z 2] VK [z3 , z 4] is something like

[LB(zi, z3) , UB(z 2, Z4)]

where LB(zl, z3) E {zl} U K U {-oo} is the best possible lower bound and
UB(z 2 , z4) E {z 2 } U K U {oo} is the best possible upper bound. In this way
a change in any of the bounds of the interval [Zl, z 2] can only take place in a
finite number of steps (corresponding to the elements of K).

For the precise definition we let zi E Z' = Z U {-co, oo} and write:
Zl if Z1 <• Z3

LBK(Zl,Z3) = k ifz 3 <zl A k=max{keKjk<z3}

-0o ifz 3 <zi A VkEK:z3<k

fz 2 ifz 4 _<z2
UBK(Z 2 ,Z4) = k ifz 2 <z 4 A k=min{kEKIz 4 •<k}

00 ifz 2 <z 4 A VkEK:k<z 4

We can now define V = VK by:

1 if intl = int2 = ._
intl V int2 = BK(inf(int),inf(int 2)), UBK(sup(intl), sup(int2))

otherwise

As an example consider the ascending chain (int4),:

[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7],-. .

and assume that K = {3,5}. Then (intVX. will be the chain

[0, 1], [0, 3], [0, 3], [0, 5], [0, 5], [0, oo], [0, 0o], • •

4.2 Approximation of Fixed Points 223

It is straightforward to show that V is indeed an upper bound operator. To
show that it is a widening operator we consider an ascending chain (intn)n
and must show that the ascending chain (intnV)n eventually stabilises. By way
of contradiction suppose that (intV)n does not eventually stabilise. Then at
least one of the following properties will hold:

(Vn : inf(intv) > -oo) A inf(UL int) = -oo

(Vn : sup(intnv) < oo) A suP(UH int) =0

Without loss of generality we can assume that the second property holds.
Hence there must exist an infinite sequence nl < n2 < ... such that

Vi: oo > sup(int ,+1) > sup(inti)

and by finiteness of K there must be some j such that

Vi >_ j: 00 > sup(int,+l) > sup(int~') > max(K)

where for the purpose of this definition we set max(O) = -oo. Since we also
have

int• = intV V intnj 1tnj +1 - inj+l

it must be the case that sup(int•,+l) > sup(int'v) as otherwise sup(intv +l)
= sup(intv). But then the constriuction yields

sup(intvj+il) = 00

and we have the desired contradiction. This shows that V is a widening
operator on the complete lattice of intervals. 0

4.2.2 Narrowing Operators

Using the technique of widening we managed to arrive at an upper approx-
imation f; of the least fixed point of f. However, we have f(fp) E_ f;
so f is reductive at fF and this immediately suggests a way of improving
the approximation by considering the iterative sequence (fn(f;))n. Since
fV E Red(f) this will be a descending chain with ff n(fV) E Red(f) and
hence fn(fp) ; lfp(f) for all n. Once again we have no reason to believe
that this descending chain eventually stabilises although it is of course safe
to stop at an arbitrary point. This scenario is not quite the one we saw above
but inspired by the notion of widening we can define the notion of narrowing
that encapsulates a termination criterion. This development can safely be
omitted on a first reading.

An operator A : L x L - L is a narrowing operator if:

224 ABSTRACT INTERPRETATION

.[f]l\f
..~fV.'

/ VIA,=[1•+ ..

[f]rn' =[fjrn'+1

1fP(W

Figure 4.5: The narrowing operator A applied to f.

* 12 _l =1 12 __ (11 A 12) __1 for all ll, 12 E L, and

* for all descending chains (ln)n the sequence (ln), eventually stabilises.

Note that we do not require A to be monotone, commutative, associative or
absorptive. One can show that (lA)n is a descending chain when (1n)n is a
descending chain (Exercise 4.10).

The idea is as follows: For fF satisfying f(f;) g f•, i.e. Ifpv(f) = fV, we
now construct the sequence ([f]nA)n by

[M { if n = 0

S[f],-I A f([f],-l1) if n >0

Lemma 4.16 below guarantees that this is a descending chain where all ele-
ments satisfy lfp(f) E_ [f]n. Proposition 4.17 below tells us that this chain
eventually stabilises so [f]' [f]•'+1 for some value m'. We shall therefore
take

1fp€(f) = SS

as the desired approximation of lfp(f). The complete development is illus-
trated in Figures 4.4 and 4.5. We shall now establish the required results.

4.2 Approximation of Fixed Points 225

Lemma 4.16 If A is a narrowing operator and f(f;) E fV then ([f]n)n

is a descending chain in Red(f) and

[f]n• ;] fnyfp) •__ lfp(f)

for all n. 8

Proof By induction on n we prove:

fn+l(f;,) g f([f]n) g [f]n+l CE [f]n (4.7)

For the basis (n = 0) it is immediate that

fn+l(f;) g; f([f],n) g; [f]n•

using that f(fF) E f;. By construction of [f]n+1 we then get
f([f]n) C: [f]n+l CE [f]n•

and together these two results establish the basis of the induction proof.

For the inductive step we may apply f to the induction hypothesis (4.7) and get

fn+2(f;) E; f2([f]n) E; f([f],n+l) E: f([f]n)

since f is assumed to be monotone. Using the induction hypothesis we also have
f([f],) C [f]n+l so we obtain:

fL+
2

(fr,) tf([f]n+l) E [f],+l

By construction of [f]•+2 we get

f([f]n+l) g [f]n+ 2 E [f]o÷'

and together these two results complete the proof of (4.7).

From (4.7) it now follows that ([f]A), is a descending chain in Red(f). It also
follows that fn (f;) E [f]A holds for n > 0 and it clearly also holds for n = 0.
From the assumption f(f;) E f• it is immediate that f(fn (f;)) g fn(f;) for

n > 0 and hence fn (f;) E Red(f). But then fn (f;) :_ lfp(f). This completes the

proof.

Proposition 4.17
If A is a narrowing operator and f(fV) g fF then the descending
chain ([f]•)n eventually stabilises.

Proof Define the sequence (ln)n by

S= f• ifn=0
In f([f]n-') ifn > 0

226 ABSTRACT INTERPRETATION

and note that this defines a descending chain because ([f]). is a descending chain
and because f([f]o) E; fp. Therefore the sequence (1A). eventually stabilises. We
now prove by induction on n that:

11= [fln

The basis (n = 0) is immediate. For the inductive step we calculate /ni+ =
l• A 1n+1 [f]A Af([f],) = [f]2+'. It thus follows that ([f],)n eventually
stabilises. 0

It is important to stress that narrowing operators are not the dual concept
of widening operators. In particular, the sequence (fM)n may step outside
Ext(f) in order to end in Red(f), whereas the sequence ([f],n stays in

Red(f) all the time.

Example 4.18 Consider the complete lattice (Interval, C) of Figure 4.2.
Basically there are two kinds of infinite descending chains in Interval: those
with elements of the form [-oo, z] and those with elements of the form [z, oo]
where z E Z. Consider an infinite sequence of the latter form; it will have
elements

[Z1, oo], [Z2, 00], [z3, 00],...

where zi < z 2 < z 3 < The idea is now to define a narrowing operator
AN that will force the sequence to stabilise when zi > N for some fixed non-
negative integer N. Similarly, for a descending chain with elements of the
form [-o0, zi] the narrowing operator will force it to stabilise when zi < -N.

Formally, we shall define A = AN by

intl Ait 2 = L ifintl=_1 V intk=1I

[ZI, z21 otherwise

where { inf(inti) if N < inf(int2) A sup(int2) = oo

I inf(int2) otherwise

z = sup(intl) if inf(int2) = -oo A sup(int2) < -N
z2 = sup(intk) otherwise

So consider e.g. the infinite descending chain ([n, 00o)n

[0, oo], [1, oo], [2, oo], [3, o0], [4, oo], [5, oo0, • • •

and assume that N = 3. Then the operator will give the sequence ([n, oo]A')n:

[0, 00], [1, oo], [2, oo0, [3, oo], [3, oo], [3,] •,

Let us show that A is indeed a narrowing operator. It is immediate to verify
that

int2 g int implies int2 E intl A int2 E int1

r

4.3 Galois Connections 227

by cases on whether inkt = I or int 2 5 -L. We shall then show that if (intn)n
is a descending chain then the sequence (intý)n eventually stabilises. So
assume that (intn)n is a descending chain. One can then show that (intn)n
is a descending chain (Exercise 4.9). Next suppose by way of contradiction
that (int4)n never eventually stabilises. It follows that there exists ni > 0
such that:

intn 5 [-cc, oo] for all n > nl

It furthermore follows for all n _> nl that intn must have:

sup(intý) = c, or inf(intn) = -<x

Without loss of generality let us assume that all n > ni have sup(intn) = cc
and inf(intn) E Z. Hence there exists n2 > n, such that:

inf(int) > N for all n > n2

But then int = int-2 for all n > n2 and we have the desired contradiction.
This shows that A is a narrowing operator. M

4.3 Galois Connections

Sometimes calculations on a complete lattice L may be too costly or even
uncomputable and this may motivate replacing L by a simpler lattice M. An
example is when L is the powerset of integers and M is a lattice of intervals.
So rather than performing the analysis p I- 11 > 12 in L, the idea will be to
find a description of the elements of L in M and to perform the analysis
p I- m1 > M2 in M. To express the relationship between L and M it is
customary to use an abstraction function

a:L-+M

giving a representation of the elements of L as elements of M and a concreti-
sation function

"-y: M -+ L

that expresses the meaning of elements of M in terms of elements of L. We
shall write

(L, a, -y, M)

or

L M

228 ABSTRACT INTERPRETATION

a(l)

L a M

Figure 4.6: The Galois connection (L, a, t, M).

for this setup and would expect that a and -y should be somehow related.
We shall study this relationship in the present section and then return to the
connection between p I- 11 E> 12 and p I- m1 r> m2 in Section 4.5; in Section 4.4
we shall study the systematic construction of such relationships.

We define (L, a, -, M) to be a Galois connection between the complete lat-
tices (L, C) and (M, _E) if and only if

a : L -+ M and y : M---+ L are monotone functions

that satisfy:

y o a - A.I (4.8)

a o7 - Am.m (4.9)

Conditions (4.8) and (4.9) express that we do not lose safety by going back
and forth between the two lattices although we may lose precision. In the
case of (4.8) this ensures that if we start with an element I E L we can first
find a description a(l) of it in M and next determine which element 7(a(l))
of L that describes a(l); this need not be 1 but it will be a safe approximation
to 1, i.e. I E__ 7(a(l)). This is illustrated in Figure 4.6.

Example 4.19 Let P(Z) = (P(Z), C) be the complete lattice of sets of
integers and let Interval = (Interval, C) be the complete lattice of Figure
4.2. We shall now define a Galois connection

(P(Z), azi, YzI, Interval)

between P(Z) and Interval.

4.3 Galois Connections 229

The concretisation function -tzI : Interval -+ P(Z) is defined by

-yzi(int) = {z E Z I inf(int) < z < sup(int)}

where inf and sup are as in Example 4.10. Thus -yzI will extract the set of ele-
ments described by the interval, e.g. -yzi([0, 3]) = {0, 1, 2, 3} and 7zi([0, oo]) =

{z E Z z > 0}.

The abstraction function azi : P(Z) - Interval is defined by

1_ ifZ =0
azi(Z) = [inf'(Z),sup'(Z)] otherwise

where inf' and sup' are as in Example 4.10. Thus azi will determine the
smallest interval that includes all the elements of the set, e.g. azi ({0, 1, 3}) -
[0, 3] and azi({2 * z I z > 0}) = [2, oo].

Let us verify that (P(Z), azi, -yzx, Interval) is indeed a Galois connection. It
is easy to see that azi and yzj are monotone functions. We shall next prove
that (4.8) holds, i.e. that yzI o azI J AZ.Z. If Z 5 0 we have:

7zI(azI(Z)) = 7zi([inf'(Z),sup'(Z)])
= {z E Z I inf'(Z) < z < sup'(Z)}

D Z

For Z = 0 we trivially have yzi(azi(0)) = 7zi(2_) = 0 so we have proved
(4.8). Intuitively, this condition ex:presses that if we start with a subset of Z,
find the smallest interval containing it, and next determine the corresponding
subset of Z, then we will get a (possibly) larger subset of Z than the one we
started with.

Finally, we shall prove (4.9), i.e. that azi o -yzI E Aint.int. Consider first
int = [Z1 , z2] where we have:

azi(yzl([zl,z2])) = azI({z E Z I zi < z _5 z2 })

= [Z1,Z2 1

For int = 1 we trivially have azIj(-yzi(_)) = azi(0) = 1 so we have proved
(4.9). Intuitively, the condition expresses that if we start with an interval,
determine the corresponding subset of Z, and next find the smallest interval
containing this set, then the resulting interval will include the interval we
started with; actually we showed that the two intervals are equal. M

Adjunctions. There is an alternative formulation of the Galois connec-
tion (L, a, y, M) that is frequently easier to work with. We define (L, a, -Y, M)
to be an adjunction between complete lattices L = (L, E) and M = (M, C)
if and only if

a : L -+ M and -y: M -+ L are total functions

230 ABSTRACT INTERPRETATION

that satisfy

a(l) E m < I C E-y(m) (4.10)

for all I E L and m E M.

Condition (4.10) expresses that a and 7 "respect" the orderings of the two
lattices: If an element I E L is safely described by the element m E M,
i.e. a(l) C m, then it is also the case that the element described by m is safe
with respect to 1, i.e. I E 7(nm).

Proposition 4.20
(L, a, -r, M) is an adjunction if and only if (L, a, 7 , M) is a Galois
connection.

Proof First assume that (L, a, y, M) is a Galois connection and let us show that
it is an adjunction. So assume first that a(l) E m; since -y is monotone we get
-y(a(/)) E 7(m); using that yoa AU.l we then get I E -y(a(/)) g 7y(m) as required.
The proof showing that 1 E 7(m) implies a(l) C m is analogous.

Next assume that (L, a, y, M) is an adjunction and let us prove that it is a Galois
connection. First we prove that 7 o a - V.l: for I E L we trivially have a(l) E a(l)
and using that a(l) E m =• I E y(m) we get 1 r y(a(/)) as required. The proof
showing that a o - C) Am.m is analogous. To complete the proof we also have to
show that a and - are monotone. To-see that ca is monotone suppose that 11 _; 12;
we have already proved that 7 o a D-XlU. so we have 1, E 12 C -Y(a(12)); using that

I E 7(m) => a(l) g; m we then get a(li) E a(12). The proof showing that -) is
monotone is analogous. M

Galois connections defined by extraction functions. We
shall now see that representation functions (introduced in Section 4.1) can be
used to define Galois connections. So consider once again the representation
function 0 : V -+ L mapping the values of V to the properties of the complete
lattice L. It gives rise to a Galois connection

(P (V), a, -y, L)

between P(V) and L where the abstraction and concretisation functions are
defined by

a(V') = J{I(V) I v E V'}
-y(l) = {v EVI3(v) E}

for V' C V and 1 E L. Let us pause for a minute to see that this indeed
defines an adjunction:

a(V')E 9;1 * UI,3(,,) I v EV'}EC

SVv E V' : 0(v) E:l
SiV, C (W)

4.3 Galois Connections 231

It follows from Proposition 4.20 that we also have a Galois connection.

A special case of the above construction that is frequently useful is when
L = (P(D), C) for some set D and we have an extraction function

77 : V -+ D

mapping the values of V to their descriptions in D. We will then define the
representation function 0, : V -+ P(D) by 03,(v) = {17(v)} and the Galois
connection between P(V) and 'P(D) will now be written

(P (V),an,7, -,,P(D))

where

a,7(V') = U{I3,(v) I v E V'} = 17()I v E V'}

-y%(D') = {v E V 1,6(v) C D'} = {v I 7(v) E D'}

for V' C V and D' C D.

Example 4.21 Let us consider the two complete lattices (P(Z), C) and
(P(Sign), C) where Sign = {-, 0, +}; see Figure 4.7. The extraction function

sign: Z -+ Sign

simply defines the signs of the integers and is specified by:

- ifz<O

sign(z)= 0 ifz=0
+ ifz>0

The above construction then gives us a Galois connection

(P(Z), a•sign, -Ysign, P(Sign))

with
asign(Z) = {sign(z) I z E Z}

"yig,(S) = {z E Z I sign(z) E S}

where Z C Z and S C Sign.

4.3.1 Properties of Galois Connections

We shall present three interesting results. The first result says that a Galois
connection is fully determined by either one of the abstraction and concreti-
sation functions:

232 ABSTRACT INTERPRETATION

{,o, +}
{,} {-,,+} {o,+}

{} +}

0

Figure 4.7: The complete lattice P'(Sign) = (P(Sign), C).

Lemma 4.22 If (L, a, -y, M) is a Galois connection then:

(i) a uniquely determines y by 7(m) = Ull I a(l) _ m} and y uniquely
determines a by a(l) fl{m i 1 c -y(m)}.

(ii) a is completely additive and y is completely multiplicative.

In particular a(_l) = 1 and 7 (T) = T. m

Proof To show (i) we shall first show that -y is determined by a. Since (L, a, f, M)
is an adjunction by Proposition 4.20 we have y(m) = U{l I I E ,y(m)} = Ull I
a(1) E m}. This shows that a uniquely determines y: if both (L, a, -yr, M) and
(L,a,y2, M) are Galois connection thi-en -yn(m) = U{l I a(l) E m} = -72(m) for all
m and hence -y1 = 72.

Similarly, we have a(l) = n{m i a(l) a m} = n{m I I C Ey(m)} and this shows
that y uniquely determines a.

To show (ii) consider L' C L; using Proposition 4.20 we then have

a(U L') EZm U L' ___

* VI E L' : E -y(m)

<* VI E L' :a(l) E m

* L{((1) I L E L'} E_ m

and it follows that a(U L') =Ua(l) I l E L'}.

The proof that -y(n-M') = n {-Y(m) I mE M'} is analogous.

Motivated by Lemma 4.22 we shall say that if (L, a, 7 , M) is a Galois con-
nection then a is the lower adjoint (or left adjoint) of -y and that - is the
upper adjoint (or right adjoint) of a.

The next result shows that it suffices to specify either a completely additive
abstraction function or a completely multiplicative concretisation function in
order to obtain a Galois connection:

4.3 Galois Connections 233

Lemma 4.23 If a : L -+ M is completely additive then there exists
- M -+ L such that (L, a, fM) is a Galois connection. Similarly, if
7- M -+ L is completely multiplicative then there exists a : L -+ M such
that (L, a, 7 , M) is a Galois connection.

Proof Consider the claim for a and define y by:

7Y(m) = I V'aQ1')Erm}

Then we have a(l) E m =: I E {l' I a(l') E m} =: I C y(m) where the last
implication follows from the definition of -y. For the other direction we first observe
that I E -y(m) =: a(l) E a(y(m)) because a is completely additive and hence
monotone. Now

a(7(m)) = A([J{l' I (') E M})

= U{La(') I aw') C m}

E m

so 1 C 7(m) =• a(l) C m. It follows that (L, a, -f, M) is an adjunction and hence a
Galois connection by Proposition 4.20.

The proof of the claim for -(is analogous.

The final result shows that we neither lose nor gain precision by iterating
abstraction and concretisation:

Fact 4.24 If (L, a, 7, M) is a Galois connection then a o 7 o a = a and
70ao7=. 0

Proof We have AUl E -y oa and since a is monotone we get a E a o (O0 a).
Similarly (a o -y) o a E a follows from a o -C Am.m. Thus a oy o a = a.

The proof of -y o a o 7-= y is analogous.

Example 4.25 As a somewhat more complex example consider the com-
plete lattices Interval = (Interval, E) and P(Sign) = (P(Sign), g) of Fig-
ures 4.2 and 4.7, respectively.

Let us define a concretisation function -ns : P(Sign) -+ Interval by:

As{-,0,+}) = [-00,oo] yns({-,0}) = [-oo,0]
fs(-,+) = [-oo,0oo] 's({0,+}) = [0,o0]

ns({-}) = [-•o,-1] ys({0}) = [0,0]
-nS({+}) = [1,oo1 -AIs(() = 1

To determine whether or not there exists an abstraction function

als : Interval -4 P(Sign)

234 ABSTRACT INTERPRETATION

such that (Interval, als, -as, P(Sign)) is a Galois connection, we shall sim-
ply determine whether or not -As is completely multiplicative: If it is, then
Lemma 4.23 guarantees that there does indeed exist a Galois connection and
Lemma 4.22 tells us how to construct the abstraction function. If "As is
not completely multiplicative then Lemma 4.22 guarantees that there cannot
exist a Galois connection. In order to determine whether or not -As is com-
pletely multiplicative we shall use Lemma A.4 of Appendix A: It is immediate
to verify that P(Sign) is finite and that yIs satisfies conditions (i) and (ii)
of Lemma A.4. To verify condition (iii) we need to compare -ns(Si n S2) to
7ys (S1) n -is(S2) for all pairs (S1 , S2) E P(Sign) x P(Sign) of incomparable
sets of signs, i.e. all pairs in the following list:

({-, 0}, {-, +}), ({-, 0}, {0, +}), ({-, 0}, {+}),
Q -, +}, 10, +D, (I{-,+}, I0OD, ({0, +}, {-}),
({-}, {O}), ({-}, {+}), ({0}, {+})

In checking the pair ({-, 0}, {-, +}) we calculate

-As(Q-,0} n {-,+}) = Qs({-}) = [-00,-i]
-As({-,o}) nlyjs(1-, [-oo,0] n [-oo,=oo = [-oo,0]

and we deduce that -As is not completely multiplicative. Hence according
to Lemma 4.22 we cannot find any aIS : Interval -+ P(Sign) such that
(Interval, ais, -ns, P(Sign)) is a Galois connection. 0

The mundane approach to correctness. We shall now return
to further motivating that the cbhnection between L and M should be a
Galois connection. Recall from Section 4.1 that the semantic correctness of
an analysis may be expressed by a correctness relation R between the values
of V and the properties of L or it may be expressed by a representation
function #3 mapping the values of V to their description in L. When we
replace L with some other complete lattice M we would obviously like the
correctness results still to hold. We shall now see that if there is a Galois
connection (L, a, -y, M) between L and M then we can construct a correctness
relation between V and M and a representation function from V to M.

Let us first focus on the correctness relations. So let R : V x L -+ { true, false}
be a correctness relation that satisfies the conditions (4.4) and (4.5) of Section
4.1. Further let (L, a, y, M) be a Galois connection between the complete
lattices L and M. It is then natural to define S : V x M -4 { true, false} by

v S m iff v R ((y(m))

and we shall now argue that this is a correctness relation between V and M
fulfilling conditions corresponding to (4.4) and (4.5). We have

(v S mi) A mi E m 2 v R (,y(mi)) A -Y(m 1) _ Y(m 2)

Sv R (Y(m 2))

Sv Sm 2

4.3 Galois Connections 235

using that -y is monotone and that R satisfies condition (4.4); this shows that
S also satisfies condition (4.4). Also for all M' C M we have

(VmEM':v Sm) =• (VmEM':vR(-y(m)))

Sv R ('y(m)I m EM'})

= v R (7-fl M'))

using that y is completely multiplicative (Lemma 4.22) and that R satisfies
condition (4.5); this shows that S also satisfies condition (4.5). Hence S
defines a correctness relation between V and M.

Continuing the above line of reasoning assume now that R is generated by the
representation function 3 : V -+ L, i.e. v R I < /3(v) _ 1. Since (L, a, y, M)
is a Galois connection and hence an adjunction (Proposition 4.20) we may
calculate

v S m <* v R (-(m))

O M(v) E 7(m)
(a o/)(v) E:m

showing that S is generated by a o /3: V -+ M. This shows how the Galois
connection facilitates the definition of correctness relations and representa-
tion functions and concludes our motivation for why it is natural to require
that the connection between L arif M is specified by a Galois connection.

4.3.2 Galois Insertions

For a Galois connection (L, a, 7, M) there may be several elements of M that
describe the same element of L, i.e. 7 need not be injective, and this means
that M may contain elements that are not relevant for the approximation of
L.

The concept of Galois insertion is intended to rectify this: (L, a, 7, M) is a
Galois insertion between the complete lattices L = (L, E) and M = (M, E)
if and only if

a : L -+ M and 7: M -+ L are monotone functions

that satisfy:

'oa 1 A.l

a oY = Am.m

Thus we now require that we do not lose precision by first doing a concretisa-
tion and next an abstraction. As a consequence M cannot contain elements

236 ABSTRACT INTERPRETATION

L M
a

Figure 4.8: The Galois insertion (L, a, 7 , M).

that do not describe elements of L, i.e. M does not contain superfluous ele-

ments.

Example 4.26 The calculations of Example 4.19 show that

(P(Z), azI, -YzI, Interval)

is indeed a Galois insertion: we start with an interval, use yzI to determine
the set of integers it describes and next use azi to determine the smallest
interval containing this set and we get exactly the same interval as we started
with. 0

The concept of a Galois insertion is illustrated in Figure 4.8 and is further
clarified by:

Lemma 4.27 For a Galois connection (L, a, -fM) the following claims
are equivalent:

(i) (L, a, -y, M) is a Galois insertion;

(ii) a is surjective: Vm E M : 31 E L : a(l) = m;

(iii) y is injective: Vm 1,m 2 E M : y(mi) = Y(m2) = m 1 = M 2 ; and

(iv) -y is an order-similarity: Vm 1 , M2 E M
y(nl) E_ 7f(m2) • 1 ml E M2.

Proof First we prove that (i) =• (iii). For this we calculate

Y(Ml) = -Y(m2) =* a(oY(ml)) = a(-Y(m2)) =' m1 = M2

where the last step follows from (i).

4.3 Galois Connections 237

Next we prove that (iii) =ý. (ii). For m E M we have -,(a(-y(m)) = -y(m) by Fact
4.24 and hence a(-y(m)) = m by (iii).

Now we prove that (ii) =. (iv). That m _ M2 =* -Y(ml) : -t(m2) is immediate
since -y is monotone. Next suppose that -y(mi) _ -y(m2); by monotonicity of a this
gives a(-Y(ml)) _ a(-Y(m2)); using (ii) we can write ml = a(li) and m2 = a(l2) for
some 11,12 E L; using Fact 4.24 this then gives m E; m2 as desired.

Finally we prove that (iv) =: (i). For this we calculate

'(-t(M1)) m2 * -Y(ml) _ Y(m2) 0* MI 9_ M2

where the first step is using Proposition 4.20 and the last step is using (iv). This
shows that a(y(mi)) and ml have the same upper bounds and hence axe equal. n

Lemma 4.27 has an interesting consequence for a Galois connection given by
an extraction function 77: V -+ D: it is a Galois insertion if and only if q is
surjective.

Example 4.28 Consider the complete lattices (P(Z), g) and (P(Sign x
Parity), C) where Sign = {-, 0, +} as before and Parity = {odd, even}.
Define the extraction function signparity: Z -+ Sign x Parity by:

signparity(z) = (sign(z),odd) if z is odd
(sign(z), even) if z is even

This gives rise to a Galois connection (P(Z), asignparty, 7Ysignparit,%n P,(Sign x
Parity)). The property (0, odd) describes no integers so clearly signparity is
not surjective and we have an example of a Galois connection that is not a
Galois insertion. 0

Construction of Galois insertions. Given a Galois connection
(L, a, y, M) it is always possible to obtain a Galois insertion by enforcing
that the concretisation function -y is injective. Basically, this amounts to
removing elements from the complete lattice M using a reduction operator

c:M- M

defined from the Galois connection. We have the following result:

Proposition 4.29
Let (L, a, y, M) be a Galois connection and define the reduction
operator ,: M -+ M by

c(m) = F y~m' I-(m) = 'y(m')}
Then -[M] = ({c(m) I m E M}, gM) is a complete latdce and
(L, a, -Y, '[M]) is a Galois insertion.

238 ABSTRACT INTERPRETATION

L a M

Figure 4.9: The reduction operator g: M -+ M.

This is illustrated in Figure 4.9: The idea is that two elements of M are
identified by ' if they map to the same value by -y; in particular, m and
a(7y(m)) will be identified.

In preparation for the proof we shall first show the following two results:

Fact 4.30 Let (L, a, y, M) be a Galois connection. Then

a[L] = ({a(1) I I E L}, 9M)

is a complete lattice. a

Proof Clearly a[L] g M is partially ordered by the ordering _EM of M = (M, EM).
We now want to show for M' C a[L] C M that

U.[L]M' = UMM'

We first show that UM M' E a[L] which means that there exists I E L such that
a(l) = UM M'. For this take 1 = UL -Y1M'] which clearly exists in L. Since
a o 0f o a = a (Fact 4.24) and a is completely additive (Lemma 4.22) we then have

a(,) = a(UL-Y[M'])
= UMa[l-[M']]
= UMMI

thus showing UM M' E a[L]. Since UM M' is the least upper bound of M' in M
it follows that it also is in a[L]. By Lemma A.2 we then have the result. 0

Fact 4.31 If (L,a, yM) is a Galois connection and

;(m) = nf{m I ,(m,') = -.(-)}

4.4 Systematic Design of Calois Connections 239

then
'(M) = a(-Y(m))

and hence a[L] = ,[M]. 0

Proof We have ;(m) E a(-y(m)) because -y(m) = -y(a(Qy(m))) using Fact 4.24.
That a(-y(m)) E -(m) is equivalent to y(m) g -y(c(m)) using Proposition 4.20 and

((m)) --= n-w(m') I y(m') = -y(m)} = -y(m) follows from Lemma 4.22.

Next consider a(l) for I E L; by Fact 4.24 we have a(l) = a(y(a(1))) and hence
a(l) = ((a(1)); this shows a[L] C ;[M]. Finally consider 4(m) for m E M; then
-(m) = a(-y(m)); this shows ;[M] 9 a[M].

We now turn to the proof of Proposition 4.29:

Proof Facts 4.30 and 4.31 give that 4[M] = a[L] is a complete lattice. Since
(L, a, -y, M) is an adjunction (Proposition 4.20) it follows that also (L, a, Y, a[L])
is. Since a is surjective on a[L] it follows from Lemma 4.27 that we have a Galois
insertion. U

Reduction operators defined by extraction functions. We
shall now specialise the construction of Proposition 4.29 to the setting where
a Galois connection (P(V), a,1, y,,, P(D)) is given by an extraction function
77: V -+ D. Then the reduction operator ;, is given by

ý (D') = D' n ?}[V]

where i7[V] = {17(v) I v E V} denotds the image of 77 and furthermore % [P(D)]
is isomorphic (see Appendix A) to P(71[V]) (see Exercise 4.14). The result-
ing Galois insertion will therefore be isomorphic to (P(V), a, 1 , 7 P(}I[V])):
Formally, the Galois connection (L1 , a,, -f, My) is isomorphic to the Ga-
lois connection (L2 , a2, -Y2, M2) when there are isomorphisms OL : L1 -+ L2

and OM : M1 -4 M2 (see Appendix A) such that a 2 = OM o a, o 1 1 and
"72 = OL 071 0 OM-i.

Example 4.32 Returning to Example 4.28 we can use the above tech-
nique to construct a Galois insertion. Now

signparity[Z] = {(-, odd), (-,even), (0, even), (+, odd), (+, even)}

showing that (P(Z), asignparity ,9signparity, P (signparity[Z])) is the resulting Ga-
lois insertion.

4.4 Systematic Design of Galois Connections

Sequential composition. When developing a program analysis it is
often useful to do so in stages: The starting point will typically be a com-
plete lattice (LO, E) fairly closely related to the semantics; an example is

240 ABSTRACT INTERPRETATION

(P(V), C). We may then decide to use a more approximate set of prop-
erties and introduce the complete lattice (L 1, E) related to L0 by a Galois
connection (Lo,al, -yr, L 1). This step can then be repeated any number of
times: We replace one complete lattice Li of properties with a more ap-
proximate complete lattice (Li+l, E) related to Li by a Galois connection
(Li, ai+l, ,y+l, IL+j). This process will stop when we have an analysis with
the required computational properties. So the situation can be depicted as
follows:

71 72 73 7k
Lo L, L2 ""Lk

a, a2 63 ak

The above sequence of approximations of the analysis could as well have been
done in one step, i.e. the "functional composition" of two Galois connections
is also a Galois connection. Formally, if (Lo, a,, 71 , L 1) and (L1 , a 2 , 72, L2)
are Galois connections, then also

(Lo, a2 o a,, 71 o 7 2 , L2)

is a Galois connection. To verify this we simply observe that a 2 (a, (lo)) _
12 -=* al(lo) [72(12) 4* lo : 7'1(72 (12)) and, using Proposition 4.20, this
shows the result. A similar result holds for Galois insertions because the
functional composition of surjective functions yields a surjective function.

Each of the Galois connections (Lf, ai+H, 7i+1, Li+y) may have been obtained
by combining other Galois connectibns and we shall shortly introduce a num-
ber of techniques for doing so. We shall illustrate these techniques in a se-
quence of examples that in the end will give us a finite complete lattice that
has turned out to be very useful in practice for performing an Array Bound
Analysis.

Example 4.33 One of the components in the Array Bound Analysis is
concerned with approximating the difference in magnitude between two num-
bers (typically the bound and the index). We shall proceed in two stages:
First we shall approximate pairs (Z1 , Z2) of integers by their difference in
magnitude Iz1l - Iz2 1 and next we shall further approximate this difference
using a finite lattice. The two Galois connections will be defined by extrac-
tion functions and they will then be combined by taking their functional
composition.

The first stage is specified by the Galois connection

(P1(Z x Z), adiff, 7diff, P(Z))

where diff: Z x Z -- Z is the extraction function calculating the difference
in magnitude:

diff(z1, z 2) = IzI-IzI21

4.4 Systematic Design of Galois Connections 241

The abstraction and concretisation functions adiff and -ydiff will then be

adiff(ZZ) = {Iz I-1z2j I (zi,z 2) E ZZ}

INK M = {(z 1,z2) Iz Il- z21 E Z}

for ZZ C Z x Z and Z C Z.

The second stage is specified by the Galois connection

(P(Z), arange, 7range, P(Range))

where Range = {<-1,-1, 0, +1, >+1}. The extraction function range Z
Range clarifies the meaning of the elements of Range:

S<-1 ifz<-1
-1 if z = -1

range(z) 0 if z = 0
+1 if z= 1
>+I if z > 1

The abstraction and concretisation functions arange and 1'range will then be

arange(Z) = {range(z) Iz E Z}

7range(R) = {z I range(z) E R}

for Z C Z and R C Range. .

We then have that the functional composition

(P(Z x Z),aRyR,P(Range))

where aR = arange 0 adiff and ^fR = Ndiff 0 7range, is a Galois connection. We
obtain the following formulae for the abstraction and concretisation functions:

aR(ZZ) = {range(lzlI-jz2 l) I (ZI,Z2) E ZZ}

-yR(R) = {(zi,z2) I range(Izxl-lz 2 1) E R}

Using Exercise 4.15 we see that this is the Galois connection specified by the
extraction function range o diff: Z x Z -+ Range. M

A catalogue of combination techniques. We have seen that the
"functional (or sequential) composition" of Galois connections gives rise to
a new Galois connection. It is also useful to be able to do "parallel com-
binations" and this will be the topic for the remainder of this section. We
may have analyses for the individual components of a composite structure
and may want to combine them into an analysis for the whole structure; we
shall see two techniques for that: the independent attribute method and the
relational method. We shall also show how Galois connections can be used

242 ABSTRACT INTERPRETATION

to approximate the total function spaces and the monotone function spaces.
Alternatively, we may have several analyses of the same structure and may
want to combine them into one analysis and here the direct product and the
direct tensor product allow us to do that. Using the notion of Galois inser-
tions this leads to a study of the reduced product and the reduced tensor
product.

The benefit of having such a catalogue of techniques is that a relative small
set of "basic" analyses, whose correctness have been established, can be used
to construct rather sophisticated analyses and, from an implementation point
of view, opens up the possibility of reusing existing implementations. Finally,
it is worth stressing that the complete lattices used in program analysis ob-
viously can be constructed without using these techniques but that it often
provides additional insights to view them as combinations of simpler Galois
connection.

4.4.1 Component-wise Combinations

The first techniques we shall consider are applicable when we have several
analyses of individual components of a structure and we want to combine
them into a single analysis.

Independent attribute method. Let (L1,aj,y1, M1) and (L 2 ,cx2 ,
^f2, M 2) be Galois connections. The independent attribute method will then
give rise to a Galois connection

(L1 x L2,a,'7,M1 X M2)

where:

a(11,12) = (aj(li),a 2 (l2))

-'(ml,m 2) = (71(m1),7 2 (m2))

To see that this indeed does define a Galois connection we simply calculate

a(/1, 12) _ý (MI, M2) <* (a, (11), a2 (12)) _: (Ml, M2)

* ai(11) g; m, A a 2 (12) __ m 2

<* 1 g; f(ml) A 12 E- 72 (m2)
€*(11,/12) 9 (71 (MI),72 (M2))

€•(11, 12) ; "'Y(Ml, M2)

and use Proposition 4.20. A similar result holds for Galois insertions (Exercise
4.17).

4.4 Systematic Design of Galois Connections 243

Example 4.34 The Array Bound Analysis will contain a component that
performs a Detection of Signs Analysis on pairs of integers. As a starting
point, we take the Galois connection

(M(Z), siign, 7sign, P(Sign))

specified by the extraction function sign in Example 4.21. It can be used
to analyse both components of a pair of integers so using the independent
attribute method we will get a Galois connection

(P(Z) x P(Z), ass, yss,P(Sign) x P7(Sign))

where ass and -yss are given by

ass(Z1,Z 2) = ({sign(z) fz e Zi},{sign(z) lz E Z2 })

yss(S1 ,S 2) = ({z [sign(z) E S1 },{z I sign(z) E S2 })

where Zi C Z and Si C Sign.

This Galois connection cannot be described using an extraction function be-
cause neither P(Z) x 7P(Z) nor P(Sign) x P(Sign) is a powerset. However,
they are both isomorphic to powersets:

'P(Z) x P (Z) P Q({1,2} x Z)

P(Sign)xP(Sign) - P({1,2}x Sign)

By defining the extraction functjb.'n twosigns {1, 2} x Z -+ {1, 2} x Sign
using the formula twosigns(i, z) = (i, sign(z)) we obtain a Galois connection

(-P({1, 2} x Z), aOtwsigns,, twosigns, P({1, 2} x Sign))

that is isomorphic to (P(Z) x P(Z), ass, yss, P(Sign) x 7P(Sign)).

In general the independent attribute method often leads to imprecision. An
expression like (x, -x) in the source language may have a value in {(z, -z) I
z E Z} but in the present setting where we use P(Z) x P(Z) to represent sets
of pairs of integers we cannot do better than representing {(z, -z) I z E Z}
by (Z, Z) and hence the best property describing it in the analysis of Example
4.34 will be ass(Z, Z) = ({-,0,+}, {-,0,+}). Thus we lose all information
about the relative signs of the two components. N

Relational method. In the independent attribute method there is ab-
solutely no interplay between the two pairs of abstraction and concretisation
functions. It is possible to do better by allowing the two components of the
analysis to interact with one another so as to get more precise descriptions.

Let (P(Vi),a a,-yi,,P(D1)) and (P(V2), a 2 ,-f2 , P(D2)) be Galois connections.
The relational method will give rise to the Galois connection

(P(V1 x V2),a, -y,P(Di x D 2))

244 ABSTRACT INTERPRETATION

where

a(VV) = U{ai({vj}) x a2({V2}) (v1,v2) E VV}

7 (DD) = {(v1,V2) a(v}) Xa2({V2}) C DD}

where VV C V1 x V2 and DD C D1 x D2 . Let us check that this does indeed
define a Galois connection. From the definition it is immediate that a is
completely additive and hence that there exists a Galois connection (Lemma
4.23). It remains to show that y (as defined above) is the upper adjoint of
a. For this we can use Lemma 4.22 and calculate

7(DD) = {(Vl,V2) Ial({vl}) "- a2({v2}) g DD}
= {(V1,V2) I a({(V1,V2)}) 9 DD}

= U{VV]a(VV)_DD}

where we have used that a is completely additive. This shows the required
result.

It is instructive to see how the relational method is simplified if the Galois
connections (1'(Vi), aj, -yi, P(Dj)) are given by extraction functions 77i V: -4
DA, i.e. if ai(Vi') = {rj(vi) I vi E Vi'} and yj(Dý) = {vi I i7(Vi) E D•}. We
then have

a(VV) = l(V),112(V2)) I (vI,v2) E VV}

7y(DD) = {(viV 2)1(?71(Vj)fl2(V2)) E DD}

which also can be obtained directly from the extraction function 77 : V1 x V2 -+

D1 x D2 defined by (Vl, v2) = (71(VI), 772 (v2)).

Example 4.35 Let us return to Example 4.34 and show how the rela-
tional method can be used to construct a more precise analysis. We will now
get a Galois connection

(P(Z x Z), ass,, yssi, P (Sign x Sign))

where ass, and yss, are given by

ass,(ZZ) = {(sign(zl),sign(z 2)) I (zl,z 2) E ZZ}
"IysS'(SS) = {(Zl,Z2) I (sign(zi),sign(z 2)) E SS}

where ZZ C Z x Z and SS C_ Sign x Sign. This corresponds to us-
ing an extraction function twosigns' : Z x Z -+ Sign x Sign defined by
twosigns'(zl, z 2) = (sign (zl), sign(z 2)).

Once again consider the expression (x,-x) in the source language that has
a value in {(z, -z) I z E Z}. In the present setting {(z, -z) I z E Z} is an

4.4 Systematic Design of Galois Connections 245

element of P(Z x Z) and it is described by the set ass,({(z, -z) I z E Z}) -
{(-,+), (0,0), (+, -)} of 1'(Sign x Sign). Hence the information about the
relative signs of the two components is preserved. This will be the Galois
connection that we will use in our further development of the Array Bound
Analysis. 0

The above treatment of the relational method can be extended in a very
general way. Let us write P(V1)®P(V2) for P(V1 x V2) and similarly P(DI)®
P(D 2) for P(DI x D2). It is possible to perform a more general development
using a notion of tensor product for which L, ® L2 exists even when the
complete lattices L1 and L 2 are not powersets. We refer to the Concluding
Remarks for information about this.

Total function space. In Appendix A it is established that if L is a
complete lattice then so is the total function space S -4 L for S being a set.
We have a similar result for Galois connections:

Let (L, a, y, M) be a Galois connection and let S be a set. Then we obtain
a Galois connection

(S -+ L, a','y', S -+ M)

by taking

a'(f) = o f
Y'(g,) = Y0og

To see this we first observe that a' and -y' are monotone functions because a
and -y are; furthermore

3,'(a'(f)) = yoaof D f

a'(y'(g)) = o- oog E_ g

follow since (L, a, -y, M) is a Galois connection. A similar result holds for
Galois insertions.

Example 4.36 Assume that we have some analysis mapping the program
variables to properties from the complete lattice L, i.e. operating on the ab-
stract states Var -+ L. Given a Galois connection (L, a, Y, M) the above
construction will show us how the abstract states of Var -+ L are approxi-
mated by the abstract states of Var -+ M. 0

Monotone function space. In Appendix A it is established that the
monotone function space between two complete lattices is a complete lattice.
We have a similar result for Galois connections:

Let (L1 , a,, -ti, M1) and (L2 , a 2 , 72, M2) be Galois connectiens. Then we
obtain the Galois connection

(L1 -+ L2,a, I,M 1 -+ M2)

246 ABSTRACT INTERPRETATION

by taking

a(f) = a2ofo-Yl

9'(g) = 792ogoal

To check this we first observe that the functions a and -y are monotone
because a2 and -'2 are; next we calculate

-y(a(f)) = (72oa2)OfO('Y1oa1) f I
a(-y(g)) = (a2oy2)ogo(a1oy1) _ 9

using the monotonicity of f : L1 -4 L2 and g : M, -+ M 2 together with (4.8)
and (4.9). A similar result holds for Galois insertions (Exercise 4.17).

This construction is illustrated by the following commuting diagrams:

f l (g)
L, L2 L1 , L2

7M 1,M C1 a, I1M2

a(f) g

4.4.2 Other Combinations

So far our constructions have shown how to combine Galois connections deal-
ing with individual components of the data into Galois connections dealing
with composite data. We shall now show how two analyses dealing with the
same data can be combined into one analysis; this amounts to performing two
analyses in parallel. We shall consider two variants of this analysis, one "cor-
responding" to the independent attribute method and one "corresponding"
to the relational method.

Direct product. Let (L,al,-y1,M1) and (L,a 2 ,-y2 ,M2) be Galois con-
nections. The direct product of the two Galois connection will be the Galois
connection

(L,a,9-,M, x M2)

where a and -(are given by:

a(l) = (a1(),a2(1))

9Y(ml,m 2) = -'Y(m 1)'l-Y 2 (m 2)

4.4 Systematic Design of Galois Connections 247

To see that this indeed defines a Galois connection we calculate

a(l) E; (m1,m 2) -=* al(1) gm, Aa 2 (l) _:.m2

44 _E_,y1 (m1)An _-Y2(m2)
'=* I r- lf(Ml, Mr2)

and then use Proposition 4.20 to get the result.

Example 4.37 Let us consider how this construction can be used to com-
bine the detection of signs analysis for pairs of integers given in Example 4.35
with the analysis of difference in magnitude given in Example 4.33. We get
the Galois connection

(P(Z x Z), aSSR,YSSR, P(Sign x Sign) x P(Range))

where aSSR and -YSSR are given by:

aSsR(ZZ) = ({(sign(z 1),sign(z 2)) I (z 1,z 2) E ZZ},

{range(Izjj-Iz2 l)I (z1, Z2) E ZZ})

7SsR(SS,R) = {(zl,z2) I (sign(z1),sign(z 2)) E SS}
n{(z,,z2) I range(Izj- Jz21) E R}

Note that the expression (x, 3-%-) in the source language has a value in
{(z,3 * z) I z E Z} which is described by aSSR({(z,3 * z) I z E Z}) =
({(-, -), (0, 0), (+, +)}, {0, <-I}). Thus we do not exploit the fact that if the
pair is described by (0, 0) then the difference in magnitude will indeed be
described by 0 whereas if the pair is described by (-, -) or (+, +) then the
difference in magnitude will indeed be described by <-1. 0

Direct tensor product. In the direct product there is no interplay
between the two abstraction functions and as we saw above this gives rise
to the same loss of precision as in the independent attribute method. It
is possible to do better by letting the two components interact with one
another. Again we shall only consider the simple case of powersets so let
(P(V), ao,"-yi, P(Di)) be Galois connections. Then the direct tensor product
is the Galois connection

(P(V),a,f, P(Di x D2))

where a and -y are defined by:

aC(V') = U{ai({v}) x a2 ({v}) v E V'}

'y(DD) = {v Ial([v}) x a2({v})c DD}

248 ABSTRACT INTERPRETATION

where V' C V and DD C D1 x D2 . To verify that this defines a Galois
connection we calculate

a(V') C DD 4e' Vv E V': al({V}) x a 2 ({v}) C DD
V VvEV':vEy(DD)

4€ V' C y(DD)

and then use Proposition 4.20.

The construction can be simplified if the two Galois connections (P(V), ai,
/y,,P(Di)) are given by extraction functions 77i : V -+ Di, i.e. if ai(V')

177i(v) I v E V'} and -yj(Dý) = {v I 77i(v) E Dý}. Then we have

a(V') = {(271(v),r)2(v)) vEV'}

-((DD) = {v 1 (771(V),r7 2 (v)) E DD}

which also can be obtained directly from the extraction function 77 : V -+
D1 x D2 defined by 77(v) = (71(V), 72(V)).

Example 4.38 Let us return to Example 4.37 and show how the direct
tensor product gives a more precise analysis. We will now get a Galois con-
nection

(P (Z x Z), asSR',,yssR', P (Sign x Sign x Range))

where

aSSR'(ZZ) = {(sign(zl),sigh'(z 2),range(lz l l-1z 21)) I (Zl,Z 2) E ZZ}

7ssR'(SSR) = {(zl,z2) (sign(zi),sign(z 2),range(IzlI-Iz21)) ESSR}

for ZZ C Z x Z and SSR C Sign x Sign x Range.

It is worth pointing out that this Galois connection is also obtainable from
the extraction function

twosignsrange: Z x Z -+ Sign x Sign x Range

defined by twosignsrange(zi, z2) = (sign(zi), sign(z 2), range(Izli - 1z21)).

Returning to the precision of the analysis we will now have asSR' ({(z, 3 * z) I
z E Z}) = {(-,-, <-1), (0, 0, 0), (+,+, <-1)} and hence have a more precise
description than in Example 4.37.

However, it is worth noticing that the above Galois connection is not a Ga-
lois insertion. To see this consider the two elements 0 and {(0, 0, <-1)} of
P(Sign x Sign x Range) and observe that

'YS'0 = 0 = ^IS'1(,0, <- 1)})

Thus -YSSR' is not injective and hence Lemma 4.27 shows that we do not have
a Galois insertion.

4.4 Systematic Design of Galois Connections 249

Reduced product and reduced tensor product. The con-
struction of Proposition 4.29 gives us a general method for turning a Galois
connection into a Galois insertion. This technique can now be combined
with the other techniques for combining Galois connections and this is of
particular interest for the direct product and the direct tensor product.

Let (L, al,, 1, Ml) and (L, a 2,Y2, M2) be Galois connections. Then the re-
duced product is the Galois insertion

(L, i, -y, [M1 x M2])

where

a(l) = (ai(1),a2(l))

-Y(ml,m2) = 71(mj)fn7 2(M2)

';m(,m2) =]I{(ml,ml) I 7 i(ml)fn7 2(m2) = 7 (ml)n-2 (ml)}

To see that this is indeed a Galois insertion recall that we already know
that the direct product (L, a, -f, Mi x M2) is a Galois connection and that
Proposition 4.29 then shows that (L, a, y, ;[MI x M2]) is a Galois insertion.

Next let (P(V), aj, -t, 1P(Dj)) be Galois connections. Then the reduced tensor
product is the Galois insertion

(P(V), a,-/, -[7(D1 x D2)])

where

a(V') = Uj{ai({v}) x a2({v}) v E V'}

7 (DD) = {v I al({V}) x a2({V}) C DD}

c(DD) = ni{D1 I7(DD) = y(DOY)}

Again it follows from Proposition 4.29 that this is indeed a Galois insertion.

Example 4.39 Let us return to Example 4.38 where we noted that the
complete lattice P(Sign x Sign x Range) contains more than one element
that describes the empty set of P(Z x Z). The superfluous elements will
be removed by the construction of Proposition 4.29. The function ;SSR' will
amount to

'SSR, (SSR) = n{ SS! f YSSR, (SSR) = -YssR, (SSR')}

where SSR, SSR' C Sign x Sign x Range. In particular, (SSR' will map the
singleton sets constructed from the 16 elements

(-,o,'<- 1), (-,o,-1), (-,o,0),
(0,-, o), (o,-, +1)) (0, -, >+1),
(0,0, <-1), (oo,-1), (0,0,+1), (0,0, >+1),
(0,+,0), (0,+,+1), (o,+,>+i),
(+,o, <-1), (+,0,-1), (+,o,o)

250 ABSTRACT INTERPRETATION

to the empty set. The remaining 29 elements of Sign x Sign x Range are

(_7-,) -, < 1), (-) -, - 1), (-, -, 0), (-, -, +I), (-, -, >+1 ,
(- 707,+1)7 (-, 0, >+1),
(-, + ,< -1 , (-, +,-1), (-, +70)1 (-, + ,1+1), (- + >+1),
(0, -, <-1), (0,-, -1, (0,0,0), (0,+),<-1), (01+1-1),
(+, -, < -1), (+) -, -1), (+)-,70)7 (+,I-1 +1), (+, -, >+I)

(+,70,+1), (+, 0, >+1),
(+, +, <-), (+,+,-1), (+, +,), (+, +,+1), (+, +, >+I)

and they describe disjoint subsets of Z x Z. Let us call the above set of 29
elements for AB (for Array Bound); then USSR, [P(Sign x Sign x Range)] is
isomorphic to P(AB).

To conclude the development of the complete lattice and the associated Ga-
lois connection for the Array Bound Analysis we shall simply construct the
reduced tensor product of the Galois connections of Examples 4.35 and 4.33.
This will yield a Galois insertion isomorphic to

(P (Z x Z), aSSR', -SSR', P(AB))

Note that from an implementation point of view the last step of the con-
struction has paid off: if we had stopped with the direct tensor product in
Example 4.38 then the properties would need 45 bits for their representation
whereas now 29 bits suffice.

Summary. The Array Bound Analysis has been designed from three simple
Galois connections specified by extraction functions:

(i) an analysis approximating integers by their sign (Example 4.21),

(ii) an analysis approximating pairs of integers by their difference in mag-
nitude (Example 4.33), and

(iii) an analysis approximating integers by their closeness to 0, 1 and -1
(Example 4.33).

We have illustrated different ways of combining these analyses:

(iv) the relational product of analysis (i) with itself,

(v) the functional composition of analysis (ii) and (iii), and

(vi) the reduced tensor product of analysis (iv) and (v).

It is worth noting that because the resulting complete lattice P(AB) is a
powerset then it is indeed possible to obtain the very same Galois insertion
using an extraction function twosignsrange' : Z x Z -+ AB.

4.5 Induced Operations 251

4.5 Induced Operations

We shall now show that Galois connections are indeed useful for transforming
computations into more approximate computations that have better time-,
space-, or termination behaviour. We can do so in two different ways. In
both cases we assume that we have an analysis using the complete lattice L
and that we have a Galois connection (L, a•,y, M).

One possibility is to replace the analysis using L with an analysis using M.
In Subsection 4.5.1 we shall show that if the analysis using M is an upper
approximation to the analysis induced from L then the correctness properties
are preserved. We shall illustrate this approach in Subsection 4.5.2 for the
Monotone Frameworks considered in Chapter 2.

An alternative is only to use the complete lattice M for approximating the
fixed point computations in L. So rather than performing all computations
on the more approximate lattice M the idea is only to use M to ensure con-
vergence of fixed point computations and not needlessly reduce the precision
of all other operations. We shall illustrate this in Subsection 4.5.3.

4.5.1 Inducing along the Abstraction Function

Now suppose that we have Galois connections (Li, aj, 'Yi, Mi) such that each
Mi is a more approximate version of Li (for i = 1, 2). One way to make use
of this is to replace an existing aj-alysis fp : L1 -+ L2 with a new and more
approximate analysis gp : M1 -+ M 2. We already saw in Section 4.4 that

a 2 o fp o -11 is a candidate for gp

(just as -t2 o gp o a, would be a candidate for fp). The analysis a 2 o fp o0 7 is
said to be induced by fp and the two Galois connections. This is illustrated
by the diagram:

fp
L, - L2

7 1a2
rM1 -M2

a 2 0 fp 0 71

Example 4.40 Let us return to Example 4.9 where we studied the simple

program plus and specified the very precise analysis

fpl. (ZZ) = {z1 + z 2 I (zI,z 2) E ZZ}

252 ABSTRACT INTERPRETATION

using the complete lattices (P(Z), C) and (P(Z x Z), g). In Example 4.21
we introduced the Galois connection

((Z), a•sign, Isign, P'(Sign))

for approximating sets of integers by sets of signs. In Example 4.35 we used
the relational method to get the Galois connection

(P (Z x Z),ass,,yss,,P(Sign x Sign))

operating on pairs of integers. We now want to induce a more approximate
analysis for the plus program

gplus P: P(Sign x Sign) -+ P(Sign)

from the existing analysis fplu,. To do so we take

gplus = asign o fplus o "ss'

and simply calculate (for SS C Sign x Sign)

gplu,(ss) = asigU(fpIu,(7ss. (SS)))
= asign(fplus({(Zl,Z2) E Z X Z I (sign(zi),sign(z 2)) E SS}))

= asign({zI + z2 I zl,z2 E Z, (sign(zl),sign(z2)) E SS})
= {sign(z 1 + z 2) I zl,z 2 E Z, (sign(zi),sign(z 2)) E SS}

= U D{1 S 82 I (SlrS2) E SS}

where E : Sign x Sign -+ P(Sign) is the "addition" operator on signs (so
e.g. +E@+ = {+} and +eD- = 1-,0,+}). 0

The mundane approach to correctness. We shall now follow
the approach of Section 4.1 and show that correctness of fp carries over to
gp. For this assume that:

R, : Vi x Li -+ { true, false} is generated by 83i : Vi -+ Li

The correctness of the analysis fp : L 1 -+ L 2 is then expressed by

(p P.- .- (R1 --, R2) f
where R1 -* R 2 is generated by #I -* 6/2 (Lemma 4.8). As argued in Section

4.3 we get a correctness relation Si for Vi and Mi by letting

Si : Vi x Mi -+ {true, false} be generated by a• o,3i : Vi -+ Mi

which is equivalent to saying that vi Si mi ý* vi R, (-yi (mi)). The correctness
relation for the analysis using MI and M 2 will be S --* S2 which will be
generated by (a, o,31) -* (a2 0/32) (Lemma 4.8). We now have the following
useful result:

4.5 Induced Operations 253

Lemma 4.41 If (Li,ai, i-y,Mi) are Galois connections, and O i Vi -+ Li
are representation functions then

((al 0 1) -* (a2 0,32))(• a 2 0 (A8 -* 62) (-)) 0 71/

holds for all -- +.

Proof To see this we simply calculate

((al o,1)-*(a2 o012))(-)(ml) = [j{a2 062(V 2)) I ai(/l(vi)) g; ml A vi - v2}

= a2(U{132(V2) I 61i(vi) g; -yi(mi) A v, "- V2})

= a2((/3-P2)(.-')(yl(ml)))

and the result follows.

We shall now show that Lemma 4.41 yields:

(pl-.-,-.)(Ri -*R 2) f A a 2 ofPo 1_.gp =:€ (p -.- '.)(S 1 -*S 2)g,

This just means that if fp is correct and if gp is an upper approximation to
the induced analysis then also 9p is correct. So suppose that

(p I. '-.)(RI -* R2) f

and that a 2 o fp o71 C gp. Since (Li, ai, 'y, Mi) are Galois connections and ffp
and gp are monotone we get fp g-_y2 o gp o a, as illustrated in the diagrams:

L,1 jL2 Lj L2

71 1a2 0eI 72

inII
M1 .M2 M1 ,M2

9P, 9P,

It follows that (631 -- #132)(P -- •-,.) _ 72 o gp o a, and hence

a/20 (0•1 -'* 02)(P [-" " -") 0 71 -- 9p

By Lemma 4.41 this is the desired result.

We shall say that a function fp : L1 -+ L2 is optimal for the program p if
and only if correctness of a function f' : L1 -4 L2 amounts to fp E_ f'. An
equivalent formulation is that fp is optimal if and only if

(01 --• 02) (P i-- • -x .) = fp

Lemma 4.41 may then be read as saying that if fp : L1 -+ L2 is optimal then
so is a2 o fp 0 71 : M 1 -+ M 2.

254 ABSTRACT INTERPRETATION

Fixed points in the induced analysis. Let us next consider the
situation where the analysis fp : L1 -+ L2 requires the computation of the
least fixed point of a monotone function F : (L1 -+ L 2) -+ (L 1 -+ L 2) so
that fp = lfp(F). The Galois connections (Li, aj, -i, M2) give rise to a Galois
connection (L1 -+ L2 , a, -y, M1 -+- M2) between the monotone function spaces
as shown in Section 4.4. We can now apply our technique of inducing and
let G: (M1 -+ M2) -+ (M 1 - M2) be an upper approximation to a o F o Y.
It will be natural to take gp: M1 -+ M 2 to be gp = lfp(G). That correctness
of fp carries over to gp follows from the following general result:

Lemma 4.42 Assume that (L, a, y, M) is a Galois connection and let f:
L -+ L and g : M -+ M be monotone functions satisfying that g is an upper
approximation to the function induced by f, i.e.:

aoffoycg

Then for all m E M:

g(m) _E: M #-f(fm) Y

and furthermore lfp(f) E_ y(Ifp(g)) and a(lfp(f)) Eg lfp(g).

Proof First assume g(m) g; m. The assumption a o f o -y E g gives a(f(-Y(m))) CE
g(m) and hence a(f (-y(m))) g; m. Using that a Galois connection is an adjunction
(Proposition 4.20) we get f(-y(m)) 9jy(m) as required.

To prove the second result we obseriie that {-y(m) I g(m) g; m} Cf {l I f(1) g; l}
follows from the previous result. Hence we get (using Lemma 4.22):

Y(lm I g(m) g m}) =nfly(m) I 9(m) E m} Q nil I f(,) c '}
Using Taxski's Theorem (Proposition A.10) twice we have lfp(g) = nRed(g) =

fl{m I g(m) E_ m} and lfp(f) = []Red(f) = nv{l I f(l) g; l} so it follows that
'y(lfp(g)) ;_ lfp(f) as required. Then a(lfp(f)) C lfp(g) follows because a Galois
connection is an adjunction. X

4.5.2 Application to Data Flow Analysis

Generalised Monotone Frameworks. To illustrate how these
techniques can be applied we shall now consider a generalisation of the Mono-
tone Frameworks of Section 2.3. So let a generalised Monotone Framework
consist of:

* a complete lattice L = (L, E).

Here we do not demand that L satisfies the Ascending Chain Condition and
we do not specify the space _T of transfer functions as we shall be taking

r

4.5 Induced Operations 255

Y to be the entire space of monotone functions from L to L (which clearly
contains the identity function and is closed under composition of functions).

An instance A of a generalised Monotone Framework then consists of:

"* the complete lattice, L, of the framework;

"* a finite flow, F C Lab x Lab;

"* a finite set of extremal labels, E C Lab;

"* an extremal value, t E L; and

"* a mapping, f., from the labels Lab of F and E to monotone transfer
functions from L to L.

As in Chapter 2 this gives rise to a set A=- of constraints

= r • ifeEE
A.(f)] U{A.(f') I (I',) E F}U t' where 6 =

E .L iff V•E

A.(t) _fl(Ao(f))

where I ranges over the labels Lab of F and E. We write (A., A.) k A;]
whenever A., A. : Lab -+ L is a solution to the constraints A-•. It is useful
to consider the associated monotone function

f: (Lab -+ L) x (Lab -4-L) -+ (Lab -+ L) x (Lab -+ L)

defined by:

f(Ao,A.) = A (.LJ{A.(t') I (t',t) E F}ut , A.f,(Ao(f)))

We then have the following important result (in the manner of Section 4.4):

(A., A.) Q f(Ao, A.) is equivalent to (A., A.) [- A:'

Galois connections and Monotone Frameworks. Let now
(L, a, -y, M) be a Galois connection and consider an instance B of the gener-
alised Monotone Framework M that satisfies

"• the mapping g. from the labels Lab of F and E to monotone transfer

functions of M -+ M satisfies gt Q a o o ^I for all t; and

"* the extremal value 3 satisfies 3 - a(t)

and otherwise B is as A, i.e. has the same F and E.

As above we get a set of constraints B-3 and we write (B., B.) k= B- when-
ever B., B. : Lab -+ M is a solution to the constraints. The alternative

256 ABSTRACT INTERPRETATION

formulation is (B., B.) _ Y(B., B.) where §: (Lab -+ M) x (Lab -+ M) -+
(Lab -+ M) x (Lab -+ M) is the monotone function associated with the
constraints.

We shall now see that whenever we have a solution to the constraints obtained
from B then we also have a solution to the constraints obtained from A. This
can be expressed by:

(B., B.) J B-• implies (-y o Bo,y o B.) • A'

We can give a direct ("concrete") proof of this result but it is instructive to
see how it follows from the general ("abstract") results established earlier.
The idea is to "lift" the Galois connection (L, a, -y, M) to a Galois connection

((Lab -+ L) x (Lab -+ L), a', -', (Lab -+ M) x (Lab -- M))

using the techniques for total function spaces and the independent attribute
method presented in Section 4.4. The assumptions g, J a o ft o y (for all t)
and 3 J a(t) can then be used to establish

Y a o o -y'

as the following calculations show

(a' o fo y')(Bo,B.) = (At.U{aQ,(i(B.(1'))) I (t',t) E F} U a(AE),
At a(fty(7(S()))))

E §(Bo,B.)

where we have used Lemma 4.22. We can now use Lemma 4.42 to obtain

§(B., B.) E (Bo, B.) implies f(7'(Bo, B.)) E 7 '(Bo, B.)

and it follows that if (B.,B.) ý= B- then (- o Bo,-y o B.) [- A- as stated
above.

The mundane approach to correctness. The above result shows
that any solution to the constraints obtained for B also is a solution to the
constraints obtained from A. We shall now show that semantic correctness of
A implies semantic correctness of B.

Let us reconsider the approach taken to semantic correctness in Section 4.1;
here F = flow(S,) and E = {init(S,)}. For the analysis A this calls for using
a representation function

f : State -+ L

and the correctness of all solutions to A- then amounts to the claim:

Assume that (A.,A.) ý= A9 and (S,,,0) 0-+* U2;

then 3(al) _ t implies13(oa2) ; U{A.(e) I f E fina/(S,)}. (4.11)

4.5 Induced Operations 257

For the analysis B it follows from Section 4.3 that it is natural to use the
representation function

a a/ ~: State -+ M

and the correctness of all solutions to B-• then amounts to the claim:

Assume that (B.,B.) I B- and (S*,,`) -+* 0`2; (412)
then (a o/ 3)(az) E 3 implies (a o 0)(0`2) g U{{B.() I t E finaJ(S.)}.

We know that B is an upper approximation of the analysis induced from A
and shall now prove that (4.11) implies (4.12). To do so we shall need to
strengthen the relationship between the extremal values of A and B and we

assume that 3 satisfies -y(3) =

from which 3 :3 a(t) readily follows. For the proof that (4.11) implies (4.12)
suppose that:

(B.,B.) ý= B-, (S,,or) o,* 2 and (ao 3)(a,) D3

It follows that:

(-oB.,-oB.) (A;, (S,,oj) -* o2 and 0(al) E[-(3) Ct

From (4.11) we get 03(02) _ Lj{y op B.(t) I t E final(S,)} and hence N9(u2) E
7y(U{B.(e) I t E final(S,)}) showing the desired (a o 03)(o 2) g U{B.(e) I f E
final(S*) }.

A Worked Example

As a concrete example we shall now consider an analysis SS for the WHILE

language that approximates how sets of states are transformed into sets of
states. First we prove that it is correct. Then we show that the Constant
Propagation Analysis of Section 2.3 is an upper approximation of an analysis
induced from SS. This will then establish the correctness of the Constant
Propagation Analysis.

Sets of states analysis. The analysis SS approximating the sets of
states will be a generalised Monotone Framework with:

* the complete lattice (P(State), C).

Given a label consistent statement S, in Stint we can now specify the in-
stance as follows:

* the flow F is flow(S,);

258 ABSTRACT INTERPRETATION

"* the set E of extremal labels is {init(S,)};

"* the extremal value t is State; and

"* the transfer functions are given by fs s:

flss(F) = {a[x-+A[aj],r[aE ,} if[x:=a]tisinS,.

ftss(r) = E if [skip]t is in S,,

ftss(•) = E if [b]t is in S.

where E C State.

Correctness. The following result shows that this analysis is correct in
the sense explained above:

Lemma 4.43 Assume that (SSo,SS.) H SS- and (S*,,a) -+* a2 ; then
al E State implies a2 E U{SS.(f) I E final(S.)}.

Proof From Section 2.2 we have:

(S, a) -+ (S', a') implies final(S) D final(S') A flow(S) D flow(S')

and as in Chapter 2 it is immediate that

flow(S) ;_ flow(S') A (SS., SS.) SS-2(S) implies (SS., SS.) ý SS-?(S')

It then suffices to show

(SS.,SS.) = SS-?(S) A (S,a) -+ a' A a E SSo(init(S))
implies a' E U{SS.(f) I t E final(S)}

(SS.,SS.) • SS-?(S) A (S,a) -4 (S',a') A a E SSo(init(S))
implies a' E SS (init(S'))

since then an induction on the length of the derivation sequence (S., al) -+* a2 will
give the result. The proof proceeds by induction on the inference in the semantics.
We only consider a few of the interesting cases.

The case ([x := a]', a) -+ a[x ý-4 A[ala]. Then SS-(S) will contain the equation

SS.(f) ;_ {f[x -+ .4[ala] I oa E SS,(f)}

and since init([X := a]) = t and final([x := a]t) = {I} we see that that the required
relationship holds: if a E SSo(f) then a[x '-+ A[a]oa] E SS.(t).

The case (S,; S 2, a) -+ (Sl; S2, a') because (SI, a) -- (S', a'). From the assumption
a E SSo (init(Si; S2)) we get a E SSo (init(Si)) and the induction hypothesis gives
a' E SSo(init(S,)). But then a' E SSo(init(Sj; S2)) as required.

The case (Si;S 2,a) -+ (S2,a') because (Si,a) -+ a'. From the assumption a E
SSo(init(Si; S2)) we get a E SS,(init(Si)) and the induction hypothesis gives a' E
U{SS.(t) I f E final(Sl)}. We have

{(f,init(S2)) I fE final(Si)} _ flow(SI;S 2)

4.5 Induced Operations 259

and since we have the constraints

SS0() U U{ss.(') I (et,) E flow(Si;S 2)1

for all t we get
SSo(init(S2)) .U{SS.() I e E

and hence a' E SS,(init(S2)) as required.

The remaining cases follow the same pattern and are omitted.

Remark. The SS analysis is unlikely to be optimal and hence is unlikely to
equal the collecting semantics (see Exercise 4.5). This may be demonstrated
by exhibiting an example where U{SS.(e) I f E finaJ(S,)} is strictly larger
than {a' I (S, a) -* a'Aa E State} and it is fairly easy to do so. To obtain
a specification of the collecting semantics we should let transfer functions be
associated with edges rather than nodes as this would allow us to record the
outcome of tests (see Exercise 2.11). 0

Constant Propagation Analysis. The analysis of Section 2.3 is
specified by a generalised Monotone Framework consisting of

e the complete lattice Statecp = ((Var _4 ZT)±, _).

The instance for the statement S, is determined by

"* the flow F is flow(S*);

"* the set E of extremal labels is {init(S,)};

"* the extremal value t is Ax.T; and

"* the transfer functions are given by the mapping feP defined in Table
2.7.

Galois connection. The relationship between the two analyses is es-
tablished by defining the representation function

/3cP : State -+ Statecp

by, 3cp (a) = a (as in Example 4.7). As in Section 4.3 this gives rise to a Galois

connection (P1(State), acp, tcp, Statecp) where acp(E) = UL{/cp(a) I a E
E} and ycP(() = {a I #cp(a) E_ 6}. One can now show that for all labels t

OP :• aCP 0 fSS, 0 o P

as well as 7cp(AXx.T) = State. Let us only consider the case where [x := a]t

occurs in S,, and calculate

acp(fesS(ycp(a))) = acp(fSS({" Io E i}))

260 ABSTRACT INTERPRETATION

= acp({u[x - A[ajo] I a E__ a}

E a[Ux{t-+L [a] I a E: a}]

C fcP()

and where the last step follows from U{A[a]c I or E } E_ Acp[al& which
can be proved by a straightforward structural induction on a.

Thus we conclude that CP is an upper approximation to the analysis induced
from SS by the Galois connection and hence it is correct.

4.5.3 Inducing along the Concretisation Function

Widening operator induced by Galois connection. Suppose
that we have a Galois connection (L, a, -, M) between the complete lattices
L and M, and also a monotone function f : L -+ L. Often the motivation
for approximating f arises because a fixed point of f is desired, and the
ascending chain (fn(_L)), does not eventually stabilise (or may do so in too
many iterations). Ir stead of using a o f oy : M -+ M to remedy this situation
it is often possible to consider a widening operator VM : M x M -+ M and
use it to define VL : L x L -+ L by the formula:

11 VL 12 -((l)VM a(12))

If VL turns out to be a widening operator we then know how to approximate
the least fixed point of f : L -+ L while calculating over L. This has the
advantage that the coarser structure of M is only used to ensure convergence
and does not needlessly reduce the precision of all other operations. The
following result gives sufficient criteria for this approach to work:

Proposition 4.44
Let (L, a, y, M) be a Galois connection and let VM : M x M -+ M
be an upper bound operator. Then the formula

Ll VL 12 = -/(a(l1) VM 0(12))

defines an upper bound operator VL : L x L -+ L. It defines
a widening operator if one of the following two conditions are
fulfilled:

(i) M satisfies the Ascending Chain Condition, or
(ii) (L, a, y, M) is a Galois insertion and VM : M x M -+ M is

a widening operator.

4.5 Induced Operations 261

Proof First we prove that VL is an upper bound operator. Since VM is an upper
bound operator we have a(l4) [; a(11)VMa(12). Using that a Galois connection is
an adjunction we get 1i E_ Y(a(lI)VMa(12)), i.e. 1i 9 IIVL12.

Assume now that condition 4 i) is fulfilled and consider an ascending chain (1.)n
in L. We know that also (L), is an ascending chain and that lnvL E y[M] for
n > 0. Hence (a(lVL))n is an ascending chain and since M satisfies the Ascending
Chain Condition there exists no Ž? 1 such that a(lnL) = a(1v) for all n> no. So
Y(a(lnL)) = Y(a(l.V)) for all n > no and using that -y o a o -y (Fact 4.24) we
get jnVL = jV• for all n > no. This completes the proof.

Assume next that condition (ii) is fulfilled and consider again an ascending chain
(1)n in L. Since a is monotone it follows that (a(1n)n) is an ascending chain in M.
Now, VM is a widening operator on M so there exists no such that (a(In))vM -

(a(1n,))V' for n > no. We shall now prove that

(a(In))VM = a(lInL) (4.13)

for all n > 0. The case n = 0 is immediate since (aS!0))VM = a(lo) - a(lvL). For
the induction step we assume that (a(l,))VM = a(l L). Then

(a(ln+i))VM = (a(ln))VM VM a(ln+l)

= a•(VL) VM aQ(,+i)

and

a(/Q+l) = a(IVL VL 1n+1)

= MOO(a(•L) VM o(L,+i)))

= a(LIVL) VM 0(1n+1)

since (L, a, -y, M) is a Galois insertion.

Using (4.13) we thus have that there exists no such that a(lnL) = a(lnVoL) for all
n >lo. But then -y(a(~L) =y(a(/oL)) and hence lVL = lVo- for all n > no

because (L, a, -y, M) is a Galois insertion. This completes the proof. m

Precision of induced widening operator. The following result
compares the precision of using the widening operator VL with the precision
of using the widening operator VM.

Lemma 4.45 If (L, a, -y, M) is a Galois insertion such that 'Y(-1-M) = --L,
and if VM : M x M -+ M is a widening operator, then the widening operator
VL : L x L -+ L defined by 11 VL 12 =- 1 (hl) VM a(12)) satisfies

IfPvL (f) = y(IfpvM (a o f 0 7))

for all monotone functions f : L -+ L. m

Proof By Proposition 4.44 we already know that VL is a widening operator. Hence
there exists nf >_ 0 such that lfpvL (f) =f = f; for all n > nf. Next write

fýL L

262 ABSTRACT INTERPRETATION

g = a o f o 0 and recall that VM is a widening operator. Hence there exists n, _> 0
such that lfPVM (g) = V= for all n > ri. To obtain the desired result it
therefore suffices to prove

fJL = 7(9MV) (4.14)

by induction on n. The base case (n = 0) is immediate since fv0L = .- L and

g°M = J-M and we assumed that .- L = -Y(J-M).

To prepare for the induction step we prove that (4.14) implies that:

f(fL) g fL ** g(M) M (4.15)

For "=*" we calculate (using (4.14) and that (L, a, f, M) is a Galois connection):

fM•L) &_ a• Y= M~fL)) 9; MfL)

ay(f((gn))) 9 a(-y(gn•)
V VM

n="g(gn) gVM

For "€=" we calculate (using (4.14) and that (L, a, , M) is a Galois connection):

g(gn gM _=K(g(gM)) (g
= _ (a(f (_(gn g;) E__ (gnM

Returning to the induction step (n > 0) of the proof of (4.14) we calculate:

"f-' VL f(f[') otherwise
f Z if _(g' gn-l

S f;'L VL f(f;j-) otherwise

57(gYM) if g(gvM) E_ n-1
_fOk(Y n-1)) VMapyg-1)) M-V

7(a(7(9M~)) VM o M(f(y(gv)))) otherwise

g(M if g(gv') E gn-1

a(_f(g vM)) VM g(gn M) otherwise '

,Y gY-1 if g(gn-) g; gYM
= 7 gMVM n-1

-M VM g(gvM1) otherwise}
_ (gn

In this calculation we have used that (4.14) and (4.15) hold for n - 1, the definition
of VL, and that (L, a, y, M) is a Galois insertion. 0

This result then provides the formal justification for the motivating remarks
in the beginning of the subsection. To be specific let M be of finite height,

Concluding Remarks 263

let (L, a, y, M) be a Galois insertion satisfying -y(IM) = JLL, and let VM be
the least upper bound operator UM. Then the above lemma shows that

l1PvL (f) =Y(fp(a o f o 7))

which means that 1FV, (f) equals the result we would have obtained if we
decided to work with a o f o y : M -+ M instead of the given f : L -+ L;
furthermore the number of iterations needed turn out to be the same. Since
the greater precision of L over M is available for all other operations, this
suggests that the use of widening operators is often preferable to the approach
of Subsection 4.5.1.

Concluding Remarks

In this chapter we have only been able to touch upon a few of the central
concepts of Abstract Interpretation: this has mainly been based on [27, 29, 25]
and [30] while the series of examples leading up to Example 4.39 ure based
on [140]. Much more can be said both about the development of the theory
and about its applications. In this section we briefly discuss some of the more
important concepts that have been omitted so far.

Upper closure operators.. An upper closure operator p : L -+ L is
a monotone function that is extensive (i.e. satisfies p J A1.l) and idempotent
(i.e. p o p = p). Such operators arise naturally in Abstract Interpretation [29]
because whenever (L, a, 7, M) is a Galois connection the function 7o a : L -+
L is easily seen to be an upper closure operator. Furthermore, if p : L -+ L
is an upper closure operator then the image p[L] = {p(l) I E L} of L under
p equals the set Fix(p) = {l E L I I = p(l)} of fixed points of p and is a
complete lattice under the partial ordering of L; in fact (L, p, AI.l, p[L]) is a
Galois insertion.

It follows that upper closure operators may be used to represent Galois con-
nections by simply demanding that the more approximate space M is actually
a subset of L and that no essential features are lost by doing this. This then
opens up for directly comparing the precision of various Galois connections
over the same complete lattice L by simply relating the closure operators.
The relation pi C P2 is naturally defined by VI E L : pi (l) 9 p2 (1) but turns
out to be equivalent to the condition that p2 (L) C pi(L) and represents the
fact that P2 is more approximate than pl.

Having defined an ordering on the set of upper closure operators on L one
can next show that it is itself a complete lattice: the least element is given
by the upper closure operator A1.1 and the greatest element by Al.T. The
binary greatest lower bound operator n is of special interest: it gives rise to
the construction of the reduced product [29] as we saw it in Section 4.3.

264 ABSTRACT INTERPRETATION

A number of additional constructs can be explained by means of upper clo-
sure operators: we just mention reduced cardinal power [29] and disjunctive
completion [29]. By "inverting" some of these constructions it may then be
possible to find the "optimal bases" with respect to a given combination: for
reduced product the notion of pseudo-complementation has been used to find
the minimal factors [23, 24], and for disjunctive completion one can identify
the basic irreducible properties that are inherently necessary for the analysis
[47, 48].

Stronger properties on the complete lattices. Being a com-
plete lattice is a rather weak notion compared to being a powerset. By
considering more structure on the complete lattices, say distributivity, and
identifying the elements that correspond to singletons, e.g. atoms or join irre-
ducible elements, it is frequently possible to lift some of the stronger results
that hold for powersets to a larger class of complete lattices.

Since powersets are isomorphic to bit vectors this gives a way of finding more
general conditions on analyses for when they are as efficient as the Bit Vector
Frameworks. This is of particular interest in the case of fixed points, where
one can use properties of distributive lattices and distributive analyses to
give rather low bounds on the number of iterations needed for the ascending
chain (fn(_L))n to stabilise [99, 90].

Another line of work concerns the development of the tensor product for
complete lattices that are not also powersets [83, 85, 87]. Several notions of
tensor product have been studied in lattice theory but the development of
tensor products suitable for program analysis was first done in [83].

Concrete analyses. In this chapter we have concentrated on introduc-
ing some of the key notions in the theory of Abstract Interpretation and only
occasionally have we hinted at concrete applications.

One of the main applications of Abstract Interpretation has been in the area
of logic programming. To implement a program efficiently it is important to
have precise information about the substitutions that may reach the various
program points; a central question to be asked for a substitution is whether or
not it is ground. A number of analyses have been designed for this and most
of these build upon the framework of Abstract Interpretation. This includes
the design of iteration strategies based on widening, and the decomposition
of base domains using the techniques mentioned above under upper closure
operators.

Another main application of Abstract Interpretation has been to approxi-
mate subsets of n-dimensional vector spaces over integers or rationals. For
the purpose of this discussion we shall limit ourselves to at most two di-
mensions (the line and the plane). In the case of one dimension there are
two main techniques. One we already illustrated: the lattice of intervals,
and it may be generalised to consider (possibly finite) unions of intervals.

Concluding Remarks 265

The other technique records sets of numbers modulo some base value, e.g.
{x I x mod ki = k2 }. Clearly these two analyses can be combined. In the case
of two (or more) dimensions it is straightforward to perform an independent
attribute analysis where the techniques above are applied component-wise
for each dimension.

A large effort has been conducted to develop more interesting relational analy-
ses for two (or more) dimensions where the choice of axes is of less importance
for the ability to approximate subsets of vector space. An early method was
the affine subspaces of Karr [711 where sets of the form {(x, y) I klx + k2 y =
k3 } can be described. The generalisation from equality to inequality, and
allowing to take intersections of such subsets, was considered by Cousot and
Halbwachs [31] and resulted in a study of convex polygons. Generalisations
and combinations of these ideas have been developed by Granger [50, 51] and
by Masdupuy [79].

An interesting line of work pioneered by Deutsch [34, 35] is to change the
problem of describing regular sets of words over a finite alphabet to the
problem of describing sets of integer vectors. This is by no means trivial but
once it has been achieved it opens up for using all of the above techniques to
represent also regular sets of words. This is very important for the analysis of
higher-order and concurrent programs, as shown by Deutsch and Colby [21,
22], since it can describe the shape of activation records and communication
patterns in much greater precision than other comparative techniques.

We should also mention techniques for building the abstract space of prop-
erties "dynamically" [16] and for using widening and narrowing to improve
the performance of chaotic iteration [17].

Duality. The dual Ed of a partial ordering E is obtained by defining
11 Ed 12 if and only if 12 g 11; thus we could write Cd as _. Any concept
defined in terms of partial orderings can be dualised by replacing all partial
orderings by their dual. In this way the dual least element is the greatest
element, and the dual least upper bound is the greatest lower bound etc. The
principle of lattice duality of Lattice Theory says that if any statement about
partially ordered sets is true then so is the dual statement. (Interestingly the
concept of monotonicity is its own dual.) However, we should like to point
out that the dual of a complete lattice may of course differ from the complete
lattice itself; pictorially we represent this by drawing the complete lattice
"up-side down".

The principle of lattice duality is important for program analysis because it
gives an easy way of relating the literature on Abstract Interpretation to the
"classical" literature on Data Flow Analysis: simply dualise the complete
lattices. So in Abstract Interpretation the greatest element is trivially safe
and conveys no information whereas in "classical" Data Flow Analysis it is
the least element that has this role. Similarly, in Abstract Interpretation we

266 ABSTRACT INTERPRETATION

are interested in least fixed points whereas in "classical" Data Flow Analysis
we are interested in greatest fixed points.

Staying within the basic approach of Abstract Interpretation, that going up
in the complete lattice means losing information, it is still possible to dualise
much of the development: in particular we can define the notion of dual Ga-
lois connections. To see why this may be worthwhile consider the following
scenario. In program analysis we aim at establishing an element It E L for
describing the set of values that may reach a given program point t. In pro-
gram transformation it is frequently the case that a certain transformation

is valid only if the set of values that reach a certain point have certain
properties; we may formulate this as the condition It g I=. Now if we want
to be more approximate we approximate i1 to I' and I-z to l• and formulate
the approximate condition lI E M. To ensure that It E & implies it E i• we

demand that it E l' and that I! C lw. Thus properties of program points are
approximated by going up in the complete lattice, for which Galois connec-
tions are useful, whereas enabling conditions for program transformations are
approximated by going down in the complete lattice, and for this the concept
of dual Galois connections is useful.

A final word of advice concerns the interplay between Abstract Interpretation
and Denotational Semantics. In Denotational Semantics the least element
conveys absolutely no information, and we learn more when things get larger
according to the partial order; had there been a greatest element it would
have denoted conflicting information. This is quite opposite to the situation
in Abstract Interpretation where tile greatest element conveys absolutely no
information and we learn more when things get smaller according to the par-
tial order; the least element often denotes non-reachability. Hence it would
be dangerous to simply apply too many of the intuitions from Denotational
Semantics when performing Abstract Interpretation not least because both
formalisms ask for least fixed points and therefore are not duals of one an-
other.

Mini Projects

Mini Project 4.1 A Galois Connection for Lists

In a series of examples leading up to Example 4.39 we constructed a Galois
insertion for recording the relationship between pairs of integers; it was given
by

(P(Z x Z),a ssR,, 7ssR,, P(AB))

where AB C Sign x Sign x Range contained only 29 elements (out of the
45 possibilities).

Mini Projects 267

In this mini project we are going to construct a Galois insertion for recording
the relationship between pairs of lists. Let V be the domain of lists of finite
length over some simple data type. We write x = [Xl,' " ., x,] for a list with
n elements whose first element is x1 ; when n = 0 we write x = []. Next let
x = [xl,. .. , x,,] and y = [Yi,"', Ym] be two lists. They have the same head
if and only if n > 0, m > 0 and x, = yl. The list x is a suffix of y if and only
if there exists k > 0 such that n + k = m and xi = yi+-k for i E {1, ,n}.
Finally we write length(x) = n and length(y) = m.

The Galois insertion should have the form

(P(V x V), a, y, P (LR))

where LR C P({H, S}) x Range. Here H means that the lists have the same
head, S means that the shorter list is a suffix of the other, and the range
components describe length(x) - length(y) where x is the first list and y the
second list.

Complete the details of the specification.

Mini Project 4.2 Correctness of the Shape Analysis

We shall now return to the Shape Analysis of Section 2.6 and show how it
gives rise to a Galois connection. Recall that the semantics uses configura-
tions with a state a E State and a heap component w E Heap and that the
analysis works on shape graphs con-sisting of an abstract state S, an abstract
heap H and a sharing component is.

We shall begin by defining a function vars that given a location and a state
will determine the associated abstract location:

vars(6)(a) = nx where X = {x I u(x) = 6}

Proceed as follows:

1. Define a representation function

/3SA : State x Heap -+ P(SG)

that to each state and heap associates a singleton set with a compatible
shape graph (as defined in Section 2.6) and construct the associated
Galois connection

(P(State x Heap), aSA,7SA,P(SG))

Is it a Galois insertion?

To establish the correctness of the analysis we shall follow the approach of
Section 4.5.2:

268 ABSTRACT INTERPRETATION

2. Specify an analysis SH approximating the sets of pairs of states and
heaps as a generalised Monotone Framework over the complete lat-
tice (P(State x Heap), g); write ftSH for the associated transfer func-
tions. Prove the correctness of the analysis SH (i.e. prove anl analogue
of Lemma 4.43).

3. Show that f1sA] aSA ofISHo 7SA for all transfer functions and conclude
that the Shape Analysis is correct. Determine whether or not J1SA =
aSA o0fsH 0 7SA holds for all transfer functions. (See Exercise 2.22.) a

Mini Project 4.3 Application to Control Flow Analysis

In this mini project we shall perform an analogue of the development of
Subsection 4.5.2 for the Control and Data Flow Analysis of Section 3.5.

1. Specify a "sets of values" analysis

(Csv, ýsv) ý=sv e

in the manner of Section 3.5.1 (by taking Data = Val where Val is as
in Section 3.2). Formulate and prove a semantic correctness result in
the manner of Example 4.40 and Theorem 3.10.

2. Let a monotone structure (L, .) be given as in Section 3.5.2 and con-
sider a Galois connection (P-(Val), a, f, L). Motivated by the judge-
ments of the acceptability relation (C, D, ý, d) hD e construct a Galois
connection:

({(tsv, ýsv) I." "},,•,', {(t, b,,) I'" "..

Formulate and prove a result intended to establish

(C,5D,ý, d) [-De ý 7'((t,5b,;3, j)) ý=sv e

and argue that this shows the semantic correctness of the Control and
Data Flow Analysis.

Exercises

Exercise 4.1 For the complete lattice (Sign', E) of Figure 4.10 define a
correctness relation Rzs, : Z x Sign' -+ { true, false}. Verify that it indeed has
the properties (4.4) and (4.5). Next define a representation function 3zs, :
Z -+ Sign' and show that the Rzs, constructed above is indeed generated by
Izs'. •

Exercises 269

T

-0 0+

S 0 +

I

Figure 4.10: The complete lattice (Sign', _.).

Exercise 4.2 Show that if (4.4) and (4.5) hold for R and L then we also
have:

v R A1 A v R l 2 =# v R (11 U 12)

and more generally:

(VIEL'0 :v RI) •ý vR(UL')

Give an example showing that v .R I fails even though (4.4) and (4.5) are
fulfilled. -

Exercise 4.3 Show that the Control Flow Analysis of Chapter 3 is indeed
correct in the sense of condition (4.3) as claimed in Example 4.4. To do so
first show that

(t, I [:v- iff V (V , V ())
whenever v is a value (i.e. a closure or a constant). Next show that

[- (e,, vfl)t -. * vt A (t,p) [(e, vl4')t # (t,• I= =t

is a corollary of Theorem 3.7. Finally assume the premise of (4.3) and use
the above results to obtain the desired result. 0

Exercise 4.4 Show that the relation RCFA defined in Example 4.4 is gen-
erated by the representation function /?CFA also defined in Example 4.7. To
do so prove that

v RCFA (p,v) iff PcFA(v) __CFA (?,)

by induction on the size of v; only the case where v is close t in p is non-
trivial. m

270 ABSTRACT INTERPRETATION

Exercise 4.5 Define Li = (P(Vi), C) (for i = 1, 2) and define fp : L 1 -4

L2 by
fp(lh) = {v 2 E V2 I 3v2 E l1 : p -V -' v 2 }

Show that fp is monotone. Next show that (p I- • "-, .)(R1 -* R 2) fp where
vi R, li is defined by vi E li. Also, show that for f' : L1 -+ L2 we have
(p I- - - .)(R1 -* R 2) f' if and only if fp E_ f'. A semantics that associates a
program p with fp as defined here is sometimes called a collecting semantics.
Finally, note that R, is generated by /3i defined by /3(v 2) = {vi}; show that
fp = (01l -'• 02) (P ý--. -x .).-

Exercise 4.6 Show that all of

SA(1 1, 12).T

A A(11 ,12). ll ifl 2 El 11
T otherwise

12 if 1l = I

A(1,12 l)Ul2 ifl 12 l91 A li-
T otherwise

11 l U 12 if 1l _; l".V 12 E_ 11
A(112-T otherwis e

are upper bound operators (where I' is some element of L). Determine which
of them that are also widening operators. Try to find sufficient conditions on
I' such that the operator involving I' is a widening operator. 0

Exercise 4.7 Show that if L satisfies the Ascending Chain Condition then
an operator on L is a widening operator if and only if it is an upper bound
operator. Conclude that if L satisfies the Ascending Chain Condition then
the least upper bound operator U : L x L -+ L is a widening operator. M

Exercise 4.8 Consider changing the definition of fo from fo = ± to
f- l0 for some lo E L. Possible assumptions on 10 are:

10 =/(±);

10 = f27(-);

l Lo E Ext(f);

e 1o arbitrary.

Exercises 271

Which of these suffice for proving Fact 4.14 and Proposition 4.13? a

Exercise 4.9 Let VK be as in Example 4.15 and define

{ int U int if intgEint V intkEint,
int1 V int2 = int VK int otherwise

where int is an interval satisfying inf(inte) > -oo and sup(int) < o0. Show
that

Vint,, ntk intiVintk C intl VK int2

and that the inequality may be strict. Show that V is an upper bound
operator. Determine whether or not V is a widening operator. m

Exercise 4.10 Let (ln)n be a descending chain and let A : L x L -+ L be
a total function that satisfies I' C l' =: I' E (lI A 12) E l' for all l1, 1' E L.

Show that the sequence (lft)n is a descending chain and that IA _ In for all
n2. a

Exercise 4.11 Consider the following alternative strategy to narrowing
for improving the approximation fF E Red(f) to the fixed point lfp(f) of f :
L -+ L. A descending chain truncator is a function T that maps descending
chains (In)n to a non-negative number such that

if (ln), and (l)n are descending chains and Vn < T((ln)n) : I = I'
then T((/)n)) = T((/•)n).

This ensures that T is finitely calculatable. The truncated descending chain
then is

(f;,.. f n(f;),.. f '(f•))

where m' = T((fn(fF))n) and the desired approximation to lfp(f) is

]Vpv = fm'(f(m)

Prove that this development can be used as an alternative to narrowing and
try to determine the relationship between the two concepts. 0

Exercise 4.12 Show that if L satisfies the Descending Chain Condition
then the binary greatest lower bound operator n : L x L -+ L is a narrowing
operator. •

272 ABSTRACT INTERPRETATION

Exercise 4.13 Consider the complete lattice Interval of Figure 4.2 and
the complete lattice Sign' of Figure 4.10 and define -As' by

-ns'(T) = [-oo,ool] ys,(-0) = [-0:,0]
7is,(0+) = [0,C] -As,(-) = [-0o,-1]

ns'(0) = [0,0] -As'(+) = [1, o]
As,(G) = I

Show that there exists a Galois connection between Interval and Sign' with
-ns' as the upper adjoint. 0

Exercise 4.14 Let (P(V),a,1,<,P(D)) be a Galois connection that is
given by an extraction function 77: V -+ D. Show that a,, is surjective if and
only if 77 is. Conclude that (P(V),a,,,,7,P(D)) is a Galois insertion if and
only if 7 is surjective. Next show that ;,[JP(D)] = a,7[P(V)] is isomorphic
(see Appendix A) to P(71[V]) where 77[V] is the image of 77 and finally verify
that q(V') = V' n 71[V]. u

Exercise 4.15 Assume that the Galois connections (P(Di), aTd+, ,1 7+1 ,
P(Di+,)) are given by the extraction functions 7i+1 : Di -+ Di+l. Show that
the composition of the Galois connections, (P(Do), a, -y, P(D 2)), will have
a = a,72 o a,1 = a7720 17, and 7 = y,% o 72 = 7,720o•1; i.e. the Galois connection
is given by the extraction function 772 o 711.

Exercise 4.16 Let (P(V1),a1,-y1,P(D1)) and (1'(V2),a 2,f 2,P(D 2)) be
Galois connections given by the extraction functions 77, : V1 - D1 and 72 :

V2 -+ D2. Furthermore assume that V1 and V2 are disjoint and similarly for
D1 and D2. Define an extraction function

77: V1 U V2 -+ D1 UD2

by
77(M)= 71 (v) if VE V1

772(v) if v E V2

Show that this defines a Galois connection

(P(V1 U V2), a,7, -y,,, P(Dl U D 2))

and reformulate it as an isomorphic Galois connection

(P(VI1) x P(V 2),a, ,'yP(D 1) x P(D 2))

in the manner of the independent attribute method. How important is it
that V1 and V2 are disjoint and that D, and D 2 are disjoint? M

Exercises 273

Exercise 4.17 Let (LI, a,, -'y, MI) and (L 2 , a 2 ,7 2 , M 2) be Galois inser-
tions. First define

a(lI,12) = (aj(1l),a2(12))

"Y(ml,m 2) = (-Y(MI),-2(M2))

and show that (L1 x L2 , a, -y, M1 x M2) is a Galois insertion. Then define

a(f) = a2Ofo 1

"y(g) = -2 o g o a,

and show that (L1 -+ L 2 , a, Y, M 1 -+ M 2) is a Galois insertion. 0

Exercise 4.18 Let (P(Vi),aj,y1,P(D])) and (P(V 2),a 2,-y2 ,P(D 2)) be
Galois insertions. Define

a(VV) = U{ai({vi)x a2({v2}) I (Vl,v2) E VV}

y7 (DD) = {(v1,v2) lai({vl}) X a2({V2}) g DD}

and determine whether or not (P(V1 x V2),a,'yP(Di x D2)) is a Galois
insertion. U

Exercise 4.19 Let (L, al,'yi, .M4) and (L, a2,7y2, M2) be Galois insertions.
Define

a(l) = (al(l),a2(0)

"Y(mim2) = y1 (ml)fnlY 2 (m 2)

and determine whether or not (L, a, y, M1 x M2) is a Galois insertion. *

Exercise 4.20 Let (Li, al, -yl, M1) be a Galois connection and define

a(f) = a1 Ofo Y1
-y(g) = -iogoal

(in the manner of Section 4.4). Do any of the following equalities

a(AU.l) = Am.m 7,(Am.m) = Al.l
a(f 1 of 2) = a(fl) o0a(f 2) 7y(glo g2) = -Y(g1) o- Y(g9)

necessarily hold? Which of the equalities hold when (L1 , a,, y1, Mi) is known
to be a Galois insertion? u

274 ABSTRACT INTERPRETATION

Exercise 4.21 Consider the Galois insertion

(M(Z x Z),aSSR',-yssR',P(AB))

developed in Example 4.39. Determine for each of the sets

{(x,y) I = y}
{(X,y) x=-y}

{f(,y) I=y+l}
{(z,y) x =y+3}

{(X,y) I X y}
{(x,y) I X y+l}
{(x,y) I x2 +y2 < 100}

the best description in P(AB). 0

Exercise 4.22 Let (Li, aj, -y, M/) be Galois connections for i = 1, 2,3.
Use the approach of Section 4.4 to define

a(f) .

7(g) =

such that ((L 1 x L2) -4 L3 ,a,y7, (AM1 x M2) -4 M 3) is a Galois connection.

Next let all of (Li, aj, -yi, M,) be t~h Galois connection

(1'(Z), azI, -yzI, Interval)

of Example 4.19 that relates the set of integers to the intervals. Let plus
P(Z) x 7P(Z) -+ 7P(Z) be the "pointwise" application of addition defined by:

A(Z1, Z 2).{z1 +Z 2 I z1 E Zl A Z2 E Z 2 }

Next define
a(plus) = \(inti, int)....

and supply the details of the definition.

Exercise 4.23 Let L be the complete lattice of sets of integers, let M
be the complete lattice of intervals of Example 4.10, let (L, a, Y, M) be the
Galois insertion of Example 4.19, and let VM : M x M -4 M be the widening
operator of Example 4.15. Observe that the formula

l1VLl2 = "7(O1()VMa(12))

defines a widening operator VL : L x L -+ L and develop a formula for it (in
the manner of the formula for VM of Example 4.15).

Exercises 275

Exercise 4.24 Suppose that (L, a, y, M) is a Galois connection or a Ga-
lois insertion and that possibly M satisfies the Descending Chain Condition.
Let AM M x M -+ M be a narrowing operator and try to determine if the
formula

l1ALl2 = 7(-(ll)AMa(12))

defines a narrowing operator AL L x L -+ L.

276 ABSTRACT INTERPRETATION

Chapter 5

Type and Effect Systems

So far our techniques have applied equally well to typed and untyped pro-
gramming languages. This flexibility does not apply to the development to
be performed in this chapter: here we demand that our programming lan-
guage is typed because we will use the syntax for types in order to express the
program analysis properties of interest (as was already illustrated in Section
1.6).

We shall first present an Annotated Type System for Control Flow Analy-
sis in Section 5.1, demonstrate itý.semantic soundness and other theoretical
properties in Section 5.2, and then in Section 5.3 show how to obtain an
algorithm for computing the annotated types (and prove that it is sound and
complete). In Sections 5.4 and 5.5 we give examples of other analyses spec-
ified by Type and Effect Systems. In Section 5.4 we study Type and Effect
Systems with rules for subtyping, polymorphism and polymorphic recursion
and illustrate their use in an analysis for tracking Side Effects, an Exception
Analysis and an analysis for Region Inference. Finally, in Section 5.5 we show
that the annotations can be given more structure and we illustrate this for a
Communication Analysis.

5.1 Control Flow Analysis

Syntax of the FUN language. To illustrate the approach we shall
make use of the functional language FUN also considered in Chapter 3; that
the approach also applies to the imperative language of Chapter 2 was briefly
sketched in Section 1.6. However, in this chapter we shall use a slightly
different labelling scheme from the one in Chapter 3; the syntactic category
of interest is

e E Exp expressions

277

278 TYPE AND EFFECT SYSTEMS

and it is defined by:

e ::= CIxIfn, x=>eoIffun, fx=>eoIele 2

I if eo then el else e 2 I let x = el in e 2 I el op e2

The program points, ir E Pnt, are used to name the function abstractions in
the program; this could also be done using the notion of labelled terms from
Chapter 3 but for the present purposes we do not need the full generality
of this machinery - the reason is that now we will use the types to record
information that was previously associated with labels. Hence our syntax
just makes use of expressions and dispenses with terms.

As in the previous chapters we shall assume that a countable set of variables
is given and that constants (including the truth values), binary operators
(including the natural arithmetic, boolean and relational operators) and pro-
gram points are left unspecified:

c E Const constants
op E Op binary operators

f,x E Var variables
7r E Pnt program points

Example 5.1 The functional program (fn x => x) (fn y => y) con-
sidered in Chapters 1 and 3 is now written as

(fnx x => x) (fny y => y)

just as we did in Example 1.5. M

Example 5.2 The expression loop of Example 3.2 is now written:

let g = (funF f X => f (fny y => y))
in g (fnz z => z)

Recall that this is a looping program: g is first applied to the identity function
fnz z => z but it ignores its argument and calls itself recursively with the
function fny y => y.

5.1.1 The Underlying Type System

The analyses will be specified as extensions of the ordinary type system in
order to record the program properties of interest. For this reason the or-
dinary type system is sometimes called the underlying type system and we
shall start by specifying it.

5.1 Control Flow Analysis 279

[con] r F-UL C: 7c

[var] r l-UL X : r if r(x)=r

[r[x 7-.]1 F]UL e0 :To
r F-UL frn, x => e0 : = -+ To

[un] r[f4 -+ 7-0][[X F-+ . l-UL e0: ro
r FUL fUll7r f x => e0 :T --4 TO

F F-UL el : r2 -+ 7o r I-UL e2 : r 2
[app] FI-UL el e2 : TO

FI-ULe 0 :bool rF -UL el :r rFI-ULe 2 r
[-IUUL if e 0 then el else e2 : T

[let] r-F-UL el : T1I r[xi+l] F-UL e2 : T2
et H-UL let x = el in e2 : T2

r -UL el :Tlp r I-UL e2 : 7-p

[op] r -UL el op e2 : Top

Table 5.1: The Underlying Type System.

Types. Let us first introduce the notions of types and type environments:

T E Type types

F E TEnv type environments

We shall assume that the types are given by

T ::= int I bool I T1 -' r2

where int and bool are the only two kinds of base types and as usual we
use arrows for function types. Each constant c E Const has a type that we
shall denote 7- so e.g. true has type rtru. = bool and 7 has type T7 = int.
Each binary operator op will expect two arguments of type Top1 and 2

respectively, and give a result of type Top - an example is the relational
operation < that expects two arguments of type int and gives a result of
type bool. For the sake of simplicity we shall assume that all the constants
have base types and that all binary operators expect arguments of base types
and return values of base types.

The type environments are given by:

r ::= []j r[x -T]

280 TYPE AND EFFECT SYSTEMS

Formally, 1 is a list but nevertheless we shall feel free to regard it as a finite
mapping: we write dom(F) for {x I r contains [x -+ -.]}; we write F(x) =,r
if x E dom(F) and the rightmost occurrence of [x • -..] in 17 is [x ý-+ 7],
and we write rFI X for the type environment obtained from r by removing
all occurrences of [x ý, - ...] with x V X. For the sake of readability we shall
write [x '-+ Tr] for [][Ix i-+ r].

Typing judgements. The general form of a typing is given by

r I--UL e :7-

that says that the expression e has type T assuming that any free variable
has type given by r. The axioms and rules for the judgements are listed in
Table 5.1 and are explained below.

The axioms [con] and [var] are straightforward: the first uses the predefined
type for the constant and the second consults the type environment. In the
rules [fn] and [fun] we guess a type for the bound variables and determine
the types of the bodies under the additional assumptions; the rule [fun] has
the implicit requirement that the guess of the type for f matches that of the
resulting function. As a consequence of these two rules the type system is
nondeterministic in the sense that 1 hiUL e : -1 and r 'iUL e : T2 does not
necessarily imply that ri = 7-2.

The rule [app] requires that the operator and the operand of the application
can be typed and implicitly it requires that the type of the operator is a
function type where the type before the arrow equals that of the operand
- in this way we express that the types of the formal and actual parameter
must be equal.

The rules [iA, [let] and [op] are straightforward. In particular, the let-
construct let x = el in e2 admits exactly the same typings as the application
(fnn, x => e2) el and regardless of the choice of 7r. In Sections 5.4 and 5.5
we shall consider a polymorphic let-construct where let x = el in e2 may
admit more typings than (fn,• x => e2) el.

Example 5.3 Let us show that the expression loop

let g = (funF f X => f (fny y => y))
in g (fnz z => z)

of Example 5.2 has type r -4 T- for each type -r. We shall first consider the
expression funF f x => f (f ny y => y) where we write rfix for the type
environment [f ý-+ (r -+ r) -+ (T -+ 7)][x i-+ 7r -- r T]. Then we get

rf)X H-UL f : (r -+ T) " (-r -+ 7)

fix I-UL fny y => y : r -4 T

5.1 Control Flow Analysis 281

using the axiom [var] and the rule [fn]. The rule [app] then gives

rfx F-UL f (fny y => y) : r -4 r

and we have a judgement matching the premise of the rule [fun]. Hence we
get

[] FUL fuIMF f X => f (f ny y => y) : (r -+ Tr) -+ (7" -+ -T)

Taking rg to be the type environment [g F-+ (7- -+ r) -+ (7 -+ r)] we get

rg I-UL g (fnz z => z) :,r -+,r

using the axiom [var] and the rules [fn] and [app]. The rule [let] can now be
used to show that the expression loop has type r -- ". r

5.1.2 The Analysis

Annotated types. That a function has type "1 -+ -"2 means that given
an argument of type r1 it will return a value of type -r2 in case it terminates.
To get a Control Flow Analysis we shall annotate the type with information,

SE Ann, about which function it might be. The annotations are given by

O E Ann annotations

where:
W ::= Jr} I 01 U W210

So W will be a set of function names- describing the set of function definitions
that can result in a function of a given type; as will be discussed below, we
shall feel free to write { rn,... ,vr,•} for {1r,} U ... U {irn}. We now take

F E Type annotated types

f E TEEnv annotated type environments

and define:

f::= int I boof1li -* F 2

We shall write LFJ for the underlying type corresponding to the annotated
type F; it is defined as follows:

LintJ = int

Lboolj = bool

LF1 -4 :2J = L[iJ -4 L[2

As an example we have Lint -1% intJ = (int -+ int). Furthermore, we

extend the notation to operate on type environments so [LJ (x) = Lr(x)J for
all x.

282 TYPE AND EFFECT SYSTEMS

[con] F- CFA c: To

[var] I-cFA x : F if f(X) =

f[x i-+• F•-cFA eo :o
f r-cFA fn~r x => eo : {-!" TO

f[f • Fx - " o][x F.] F-cFA eo:Fo
[funu]ff~>o:

(,rlUw

[/n] r i'-CA fun.,r f x .=> eo: F, TO9

p -cFA el F:2 - o '-CFA e2 : F2
[app] F-CFA el e2 : FO

Sr-CFA eo :bool r -CFA el : F r cFA e2 :

[ic 1-FA if eo then el else e 2 :

[let] r PcFA el : F r[x -+ Fi -cpA e2 :F2
1t]•CFA let x = el in e2 : F2

[PI r CFA el :r 7- FCF e2 :7,,

f] F"CFA el"-pp e2 : T.,

Table 5.2: Control Flow Analysis.

Judgements. The judgements of the Control Flow Analysis have the
form

f -CFA e : F

and are defined by the axioms and rules of Table 5.2. The clauses Mn] and [fun]
annotate the arrow of the resulting function type with the information that
the abstraction named 7r should be included in the set of possible functions;
the use of {1r} U w indicates that we may want to include other names as well
and we shall say that the Type and Effect System allows subeffecting (see
the Concluding Remarks). In Example 5.5 below we shall give an example
where subeffecting is indeed needed to analyse the expression. The remaining
clauses of Table 5.2 are straightforward modifications of the similar clauses
of Table 5.1.

Example 5.4 Let us return to the expression

(fnx x => x) (fny y => y)

5.1 Control Flow Analysis 283

of Example 5.1. Writing F, for int --M int we have the following inference
tree:

[X ý-']FYI I-CFA X : FY [y I-int] F-cFA y: int

[]ýcFAf nx x => x: Fy -L 'y [] KCFA ny y => y:F

[] f-CFA (fnx x => x) (fny y => y) : Fy

Note that the whole inference tree is needed to get full information about the
control flow properties of the expression. If we label all the subexpressions

((fnx x => x') 2 (fny y => y3)4)5

as in Chapter 3 then we can list the types of the subexpressions as follows

1 1i 2 1 3 1415
y(I) F 1% I int F

and we are close to the information supplied by C in Chapter 3. The infor-
mation corresponding to ý can be obtained by "merging" information from
the various type environments of the inference tree (see Exercise 5.4). 0

Example 5.5 Consider once again the expression loop

let g = (funF i-x => f (fny y => y))
in g (fnz z => z)

and let us write ffx for [f - (F -iI F) - (F F ?)][x + F .]
Using the clause [fN] we have

rfx f-CFA fny y => y : r {- +

where we exploit that subeffecting allows us to enlarge the annotation from
the minimal {Y} to {Y, Z}. Using this we can construct an inference tree for:

[]f-CFA fUnF f X => f (f ny y => y) (-1(!Z! F) -{F- (F -0. F)

Next let Pg be [g '-4 (F Y-1 -) -4 (F - i)]. We now exploit that the
annotation {Z} can be enlarged to {Z, Y} in the clause [n] so that:

- {z,y}rg I-CFA fnz z => z :• 7-)

Since {Z, Y} = {Y, Z} we can use the clause [app] and get

r. F-CFA g (f nz z => z) -

284 TYPE AND EFFECT SYSTEMS

[unit] = U 0 [idem] V=VUW

[corn] 1 Uso2 =(P2UVI [ass] V1 U (V2 U W3) = (V1 UP2) U W3

[trans] V = W

[rep] W01 =V2 W2 = W3 [cong] W1=V0l W2 = 502

V01 =V3 W1 U V2 = iU V'2

Table 5.3: Equality of Annotations.

and eventually [F]-CFA loop : -0 4- ?. This can be interpreted as saying
that the expression loop does not terminate: the type is F -4 F but the
annotation 0 indicates that there will be no function abstractions with the
given type.

Actually we can show
[] -cFA f F f X => f (f ny y => y): (+ F) -- (F -4 F)

for every annotation wo and hence we have [] -CFA loop : F -ý- F for every
annotation W; clearly the judgement with Wo = 0 is the most informative. m

Equivalence of annotationis. There are a few subtleties involved
in using this simple-minded system for Control Flow Analysis. One is the
implicit decision to regard a type like F Jý-'- F as being equal to F-i4 F.
Concerning this subtlety, we already explained that we feel free to write
f1i,..., 7rn} for {7r,} U... U {ir,}. To be utterly formal we should really say
that we write 17r,,... ,ir,} for ((0 U {7r,}) U...) U {ir,}.

Next we allow to replace rl 1 r2 by ri --9+ r2 whenever Wo, and so2 are
"equal as sets". To be utterly formal this can be axiomatised by the axioms
and rules of Table 5.3: the axioms [unit], [idem], [corn] and [ass] express that
set union has a unit and is idempotent, commutative and associative, and the
axioms and rules [trans], [reA and [cong] ensure that equality is an equivalence
relation as well as a congruence.

Finally, we allow to replace F, by F2 if they have the same underlying types
and all annotations on corresponding function arrows are "equal as sets". To
be utterly formal we could axiomatise this by:

F F F1 = V1 F2 V2 V05

(F1 -4 F)= (F -f F)
It is customary to be informal about these fine technical points. But to
avoid confusion one should at the very least point out that annotations are

5.2 Theoretical Properties 285

considered equal modulo the existence of a unit, commutativity, associativity,
and idempotence; the abbreviation UCAI is often used for this.

Conservative extension. Another subtlety is the ability to give the
abstraction fny y => y the type F-1!14 F. Suppose for a moment that the
two rules for function abstraction did not have a {1r} U V annotation on the
function arrows but only a {(r}. Then f ay y => y would have type F --" F

but not? F{YZ F; consequently the program from Example 5.5 would have
no type in the Annotated Type System for Control Flow Analysis! This is a
very undesirable property: we ought to be able to analyse all programs.

To ensure that our system does not have the above deficiency we shall for-
mally prove that the Control Flow Analysis of Table 5.2 is a conservative
extension of the underlying type system of Table 5.1. This is expressed by:

Fact 5.6
(i) If F I-cFA e: F then [I' F-UL e: L[J.
(ii) If r 1-UL e : r then there exists f and F such that

f 7FCFAe:?, Lfj =rand L[J =T.

Proof The proof of (i) is straightforward. For the proof of (ii) one annotates all
arrows with the set of all program points in e. 0

This result paves the way for exttWnding [LJ to operate on entire typings:
applied to the typing f '-CFA e : F it produces a typing of the form [Fj 1-UL
e : [?J. As, an example, the typing of Example 5.5 is transformed into the
typing of Example 5.3 (assuming that [MJ = r).

In Section 5.4 we shall study explicit inference rules for subeffecting: this is
a related technique for ensuring that the analysis is a conservative extension
of the underlying type system.

5.2 Theoretical Properties

Having specified the analysis we shall now ensure that it is semantically
correct. Furthermore, the fact that the analysis is a conservative extension
of the underlying type system motivates the following result: whenever we
have a typing in the underlying type ýystem then the set of typings of the
Control Flow Analysis constitutes a Moore family. So as in Section 3.2 (and
Exercise 2.7) every acceptable expression can be analysed and it has a best
analysis.

As in Sections 2.2 and 3.2, the material of this section may be skimmed
through on a first reading; however, we re-iterate that it is frequently when

286 TYPE AND EFFECT SYSTEMS

[con] c -- + c

[fFn] - (fn, x => eo) -+ (fn,• x => eo)

[fun] F(fun.ffx => eo) -- +f n, x=> (eo (fIý-funffx;=> eo])

[p]F el -+(f n, x=>eo) F-e2 -*V 2 F- eo[x ý4V 21-+VO
a- el e2 --+ VO

I- eo-- true - el---+ v
[if1] F" if eo then el else e2 -- + VI

- eo--+ false F-e2 -4v 2[if2] F- if eo then el else e2 -4 V2

[let] F- e l v- I- e2[X -+ V] -- + v2
e F-let x =el ine 2 -v 2

l I- el -- v, 1 - e2 -4 v2 if v op v2 =v
[op] -el op e2 ----v

Table 5.4: Natural Semantics for FUN.

conducting the correctness proof that the final and subtle errors in the anal-
ysis are found and corrected!

5.2.1 Natural Semantics

To prove the semantic correctness of the analysis we need to define the se-
mantics. Many kinds of semantics would be appropriate but among the
operational semantics we shall now prefer a Natural Semantics (i.e. big-step
operational semantics) without environments because this makes semantic
correctness somewhat easier to establish. This is related to the discussion in
the Concluding Remarks of Chapter 3 about the difference between using a
big-step operational semantics without environments and a small-step oper-
ational semantics with environments; thus our correctness statement will be
somewhat weak in case of looping programs.

Transitions. The Natural Semantics will have transitions of the form

e e---+ v

meaning that the expression e evaluates to the value v. We shall assume that
e E Exp is a closed expression, i.e. FV(e) = 0, meaning that e does not have

5.2 Theoretical Properties 287

any free variables. The values

v E Val values

will be a subset of the expressions given by the syntax

v ::= c I fn, x => eo provided that FV(fn, x => eo) = 0

where we demand that values are closed expressions. Compared to the Struc-
tural Operational Semantics of Section 3.2, it is not necessary to introduce
environments since the bound variables will be syntactically replaced by their
value as soon as they become free. Hence there is no need for a close-
construct nor for a bind-construct.

As usual we shall write el [x t-+ e2] for substituting e2 for all free occurrences of
x in el. It will be the case that e2 is closed whenever we use this notation and
therefore there is no risk of variable capture and hence no need to rename
bound variables. Throughout we shall assume that f un, f x => eo uses
distinct variables for f and x. The semantics is given by Table 5.4 and is
explained below.

The axioms [con] and [An] express that the constant and the function ab-
straction, respectively, evaluates to themselves. For recursive function ab-
stractions we shall unfold the recursion one level as expressed by the axiom
[fun]; note that the function abstraction being created inherits the program
point of the recursive function abstraction. The rule [app] for application
expresses that first we evaluate tlie&operator, then the operand, and next we
substitute the actual parameter for the formal parameter in the body of the
abstraction and evaluate the body. We have only one rule for application
because the axiom [fun] ensures that all function abstractions will be of the
form fn,• x => eo. The rules for the conditional, the let-construct and the
binary operators should be straightforward.

Example 5.7 Consider the expression (fnx x => x) (fny y => y) of Ex-
ample 5.1. Using the axiom [Vn] we have

F- fnX x => x fnX x => x
I- fny y => y -+ fny y => y

l- x[x '-4 fny y => y] -+ ffy y => y

and we can apply the rule [app] to get:

F- (fnx x => x) (fny y => y) -- + fny y => y

In Example 3.7 we showed how the Structural Operational Semantics deals
with this expression.

288 TYPE AND EFFECT SYSTEMS

Example 5.8 Next consider the expression loop

let g = (funF f X => f (fny y => y))
in g (fnz z => z)

and let us see how this looping program is modelled in the Natural Semantics.
First we observe that the axiom [fun] gives

I- funF f X => f (fny y => y) -+

fnF x => ((funF f X => f (fny y => y)) (fny y => y))

so we have replaced the recursive call of f with the recursive function defini-
tion itself. Turning to the body of the let-construct we have to replace the
occurrence of g with the abstraction:

fnF x => ((funF f x => f (fny y => y)) (fny y => y))

The operator will now evaluate to this value and the operand fnz z => z
will evaluate to itself. So the next step is to determine a value v such that
we have an inference tree for

F- (funF f X => f (fny y => y)) (fny y => y)-v (5.1)

and after that we are in a position to use the rule for application. The eval-
uation of the operator in (5.1) prqceeds as before and so does the evaluation
of the operand and once more weare left with the obligation to construct an
inference tree for the judgement (5.1). Thus we have encountered a circular-
ity and we see that the looping of the program is modelled in the semantics
by the absence of an inference tree. In Example 3.8 we showed how the
Structural Operational Semantics deals with the expression loop. M

It is immediate to verify that if e is a closed expression and P- e -- + v then
all F- e' ---+ v' occurring in the corresponding inference tree (in particular
k- e -+ v itself) will have both e' and v' to be closed.

5.2.2 Semantic Correctness

To be able to express the semantic correctness of the analysis we need to
assume that the types of the binary operators op and their semantics are
suitably related. Recall that for the underlying type system we assume that
op takes two arguments with the base types To.1 and T and gives a result
of type Top and since base types do not have any annotations we shall now
assume that:

if [F-CFA VI :r, and [] F-CFA V2 : To2 then []f-CFA v :
where v = v, op v2 .

5.2 Theoretical Properties 239

This ensures that when given arguments of appropriate types the operator
will return a value of the expected type.

The semantic correctness of the analysis now expresses that the annotated
type foreseen by the analysis will also be the annotated type of the value
obtained by evaluating the expression:

Theorem 5.9
If [I F-CFA e F, and I- e -- + v then [J I-CFA v : F.

It follows that if []- e : F, -Y- F2 and I- e -+ ffn, x => eo then 7r E Wo;
hence the analysis correctly tracks the closures that can result from a given
expression. Also note that if [] - e : F1-4 F2 then e cannot terminate.

In preparation for the proof of the theorem we need a few technical results
of the sort that are standard for type systems. The first result expresses
that the type environment may be extended with information that does not
influence the analysis result:

Fact 5.10 If P, 1-CFA e : F and Fi(x) = 12 (x) for all x E FV(e) then
"r2 F-CFA e : F. N

Proof The proof is by induction omnthe inference tree for P1 f-CFA e : using that
it is the rightmost occurrence of a vý1able in a type environment that determines
its type. E

The next result shows that we can safely substitute an expression of the
correct annotated type for a variable:

Lemma 5.11 Assume [] 1-cFA eo : F0 and f[x -+ Fo] 1-CFA e : F. Then
rF-CFA e[x 4 e0] : E

Proof The proof is by structural induction on e. Most cases are straightforward

so we shall only present the cases of variables and function abstractions.

The case y. We assume that

V[-+ ?0] Iý-CFA Y:

so from the axiom [var] of Table 5.2 we have (P[x -+ ýo])(y) = 7. If x = y then
y[x '-* eo] = eo and • = Fo, and from [] F-CFA eo ?o and Fact 5.10 we get the
required I I-CFA eo : ?. If x 0 y then y[x F4 eo] - y and it is easy to see that
V 'CFA y :F-

The case fn, y => e. We assume that

r[x -+ ?o] •C•FA f n. y => e:

290 TYPE AND EFFECT SYSTEMS

so, according to rule [fn] of Table 5.2, it must be the case that : = , u
and: V[X ý- :o][Y I , -CFA e : 7'

If x = y then it follows from Fact 5.10 that fly '-+ Fy] F-cFA e : F and since
(fn, y => e)[x '-+ eo] = fn, y => e the result follows. So assume that x - y;

then (fn, y => e)[x '-+ eo] = fn, y => (e[x '-- eo]). It follows from Fact 5.10 that
r[y ý'+; l[x '-4 To] I-CFA e:? and then we get r[y '-* ,] F-CFA e[x '-4 eo]: r from
the induction hypothesis. Now the result follows using the rule [fnj.

We now turn to the proof of Theorem 5.9:

Proof The proof proceeds by induction on the inference tree for F- e - v.

The cases [con] and [fn] are immediate.

The case [fun]. We assume that

F- fauný f x => eo -+ fn,, x => eo[f ý4 fu ný f x => eo]

where f and x are distinct variables. Also we have

[]F-CFAfun,, fX=> eo:rc -u FO

and according to Table 5.2 this is because [f ' :F. f :Fo)[x '-4 FJ] F-cA eo : TO.

Since [f -+ ;= I l ýPo][x '-+ F] equals [z -4+ F][f '-4 I'lu,= Fo] (because
we assumed that f and x are distinct) it follows from Lemma 5.11 that

[x, - •] F-CFA ec[if ý- fuxir f x => eo]: :o

and hence [] -cFA fný x => eo[f '-4 fun, f x => eo] : f= • Fo which is the
desired result.

The case [app]. We assume that

F- el e2 -+ VO

because I- ei ---+ fn, x => eo, F- e2 -+ V2 and F- eo[x 4 v2] -+ vo. Also we have

[] F-CFA el e2 : :O

and according to Table 5.2 this is because [] F-CFA el : F2 -4 :o and [] F-CFA e2 : F2.
The induction hypothesis applied to the inference tree for el gives:

[] F-CFA fn, x => eo : -r2 -4 TPo

According to Table 5.2 this can only be the case if 7r E ýp and [x '-+ F2] F-CFA eo : Fo.
The induction hypothesis applied to the inference tree for e2 gives

[] -CFA V2 ::F

and by Lemma 5.11 we now get [] F-cFA eo[x ý-+ V2] : :o. The induction hypothesis
applied to the inference tree for eo[x 1-4 V2] now gives

[I •-CFA VO : FO

5.2 Theoretical Properties 291

and this is the desired result.

The case [ifi]. We assume that

I if eo then el else e2 -- + V1

because I- eo -- + true and I- el -+ Vi. Also we have

[] -CFA if eo then el else e2 :

and from Table 5.2 we see that this is because [F -CFA eo bool, [F-CFA el : and
[]-CFA e2:r. The induction hypothesis gives

[] ý-CFA V1 :

and this is the desired result.

The case [if2] is analogous.

The case [let]. We assume that

F let x el in e2 -+ V2

because I- el -+ v and F- e2[X '-+ vI] -+ V2. Also we have

[] IF-cFA let x = el in e2 ::P2

and this is because [] F-cFA el :P, and [x ý-* Fi] F-CFA e2 :F2. The induction
hypothesis now gives:

[] I-CFA V1 :1

From Lemma 5.11 we then get [1]-cr e2[X '-+ v1] : P2 and the induction hypothesis
gives -

[] -CFA V2 :;2

as required.

The case [op]. We assume that

F el op e2 --- + V

because F- el - vl, F- e2 -- + V2 and v, OP V2 = v. Also we assume

[] "CFA el Op e2 : T
.p

and this can only be because [] F-cFA el : rp and [] -CFA e2 : 4r,. The induction
hypothesis gives [I F-CFA V, : rop and [] F-CFA V2 : r,,2 and the desired result that
[] F-cFA v : -rep then follows from the stated assumptions about the relationship
between the semantics and the types of the binary operators.

5.2.3 Existence of Solutions

In Chapter 3 we showed that the set of solutions to the Control Flow Analysis
constituted a Moore family: the greatest lower bound of a set of solutions is
also a solution. (Also see Exercise 2.7.) From that result it then follows that
all programs can be analysed and that there is a best analysis.

292 TYPE AND EFFECT SYSTEMS

Complete lattice of annotations. A similar development is pos-
sible here except that special care has to be taken concerning the nature of
annotations. We would like to be able to regard the set Ann of annotations
as a complete lattice, and this necessitates a partial ordering

•0 9; (2 or (P1 9 C 2

that intuitively means that the set ýpl of program points is included in the
set W2 of program points. One way to formalise this is to say

3V : W1 U ý0' = ̀W2

where we rely on the axiomatisation of "equal as sets" presented previously.
Another way is by means of an explicit system of rules and axioms for in-
ferring judgements of the form W, C W2; we shall dispense with these details
(but see Exercise 5.3).

One way to ensure that (Ann, F) is a complete lattice is to demand that
all annotations are subsets of a given finite set; for this one might replace
Pnt by the finite set Pnt, of program points occurring in the expression of
interest. Another possibility will be to change the syntax of annotations to
allow expressing an arbitrary subset of Pnt. Either approach works, since
all that suffices for the subsequent development is to assume that:

(Ann, F) is a complete lattice isomorphic to (P(Pnt), C).

The partial ordering on Ann will:sometimes be written as E and sometimes
as C.

Complete lattice of annotated types. We can now extend the
partial ordering on annotations to operate on annotated types that have the
same underlying type. For this let r E Type be a type and write

Type[T]

for the set of annotated types F with underlying type r, i.e. such that [FJ = r.

Next define F, E F2 for F1,F2 E Type[r] to mean that whenever F has the
annotation 50i in a given position then sol _ W2. Formally this is achieved
by:

r 1 Er• 50C5 ' T2 ET2F1-E F 92 VE 2 ; F

As an example, (int -SL4 int) -ý- int E (int -' int) -Y-1 int will
be the case if and only if , C_ W3 and W02 C ý04. (Note that this ordering
is not contravariant unlike what will be the case for the subtyping to be
introduced in Section 5.4.) Clearly the least element in Type[T] will have 0
on all function arrows occurring in r and the greatest element will have Pnt
on all function arrows.

5.2 Theoretical Properties 293

It is straightforward to prove that each (Type[T], C) is a complete lattice.
In a similar way the partial ordering can be extended to operate also on type
environments having the same underlying structure. Finally, suppose that
r I-UL e : r and write

JUDGcFA[1 i-UL e :,r]

for the set of typings f K-CFA e : F such that LJ maps f F-cFA e : to
r I-UL e : r (and hence Lfj = r and L[J = r). This facilitates extending the
partial ordering g to operate on the set JUDGcFA[r 1-UL e : Tj of typings.

Moore family result. We are now ready to state the result about
Moore families:

Proposition 5.12
JUDGcFA[r 1-UL e : T] is a Moore family whenever r H-UL e: r.

Proof We assume that P I-UL e : r and prove that JUDGcFA[r I-UL e : r] is a
Moore family. For this we proceed by induction on the shape of the inference tree
for r I-UL e : r. We shall only give the proof for the cases [var], [Ln] and [app]; the
other cases follow the same overall pattern. In all cases let

Y = {(, cFA e: ' I E I}

be a subset of JUDGcFA[P I-UL e : 7-].*-Using that (Type[-r'], g) is a complete lattice
for all choices of r' E Type we get that flY exists and that it is defined in a
pointwise manner. (Note that if I = 0 then flY is obtained from r I-UL e : r by
placing fno = Pnt as annotation on all function arrows.) It remains to show that
flY E JUDGcFA[P 1-UL e: T].

The case [var]. The result follows from (n-ifi)(x) = n-(i(x)).
The case [fn]. We have P I-UL fnr x => eo : r, -- ro because P[x F-+ rx] '"UL eo : to.

For i EI we have '-cFA fn, x => eo : o? because of

V[x i-4: ý] H-cF eo -o

and clearly f'[x '-+ F] I-crA eo : ? is an element of JUDGcFA[r[x ý-+ r)] I-UL e0 : a].
By the induction hypothesis we get (fli~ t)[x '-+ -ifýi] -CFA eO: f-lO and hence

nii FcFA fn -x > eo: nil' n2 F

where V =ni W2 .

The case [app]. We now have P i-UL el e2 : TO because P '-UL el : -2 -- To and

P '-UL e2 : T2. For all i E I we have P H-CFA el e2 : • because

P c eCFA, l :P2%- :00 and P' CFAc e2 : "r2

294 TYPE AND EFFECT SYSTEMS

and clearly •I F._CFA el : • -4 o is an element of JUDGcFA[r I-UL el : T2 -o TO] and

SF-CFA e2 : 2 is an element of JUDGcFA[r H-UL e2 T2]. By the induction hypothesis
we getflivi I- e,: fl?2 -4 fl andfi F e2 :nfl. where = N9 and hence

nirl 1- el e2 :fl5r
which is the desired result.

Example 5.13 Consider the expression e:

f (fnx x => x+1) + f (fny y => y+2) + (fnz z => z+3) (4)

In the underlying type system we have:

[f i-+ (int -+ int) -+ int] F e: int

In the Control Flow Analysis we have

[f ý-+(int -±4 nt) A int]I- e: int

whenever {X, Y} C V1. The least solution therefore has •o = {X, Y} and

V2 = 0. This clearly tells us that f is only applied to (fnx x => x+1)
and (f ny y => y+2) and not to (fnz z => z+3). A larger solution like
•p = {X, Y, Z} and 02 = {V} would not convey this information. Hence it
seems sensible to ask for the least solution with respect to C and the existence
of this solution is guaranteed by li.oposition 5.12. 0

5.3 Inference Algorithms

The main difference between an analysis expressed in the form of an inference
system (as in Table 5.2) and in the form of an algorithm is that the user of
the inference system is expected to have sufficient foresight to be able to
guess the right types and annotations whereas the implementation of the
algorithm will make use of a mechanism for making tentative guesses that
are later refined. Let us first consider the simple case corresponding to the
underlying type system of Table 5.1.

5.3.1 An Algorithm for the Underlying Type System

Augmented types. The algorithm corresponding to the type system
of Table 5.1 will work on augmented types that allow the use of type variables
to reflect that the details of a type are not fully determined yet:

7" E AType augmented types

a E TVar type variables

5.3 Inference Algorithms 295

We shall take:

Tr intlboolI-ri- r 2 Ia

a ::= 'a I 'b I 'c I'"
Substitutions. A substitution is a finite and partial mapping from type

variables to augmented types, we write

0: TVar -inn AType

and note that the domain dom(O) = {a I 0 is defined on a} is finite. We
shall allow to view a substitution as a total function from type variables to
augmented types, setting 0 a = a whenever a ý dom(O). We shall say that
a substitution 9 is defined on a if and only if a E dom(O).

The substitution 9 is called a ground substitution if and only if it maps all type
variables in its domain to ordinary types, i.e. if Va E dom(O) : 0 a E Type.
The substitution 0 is said to cover r, respectively r, if and only if it is defined
on all the type variables in r, respectively -r. Substitutions can be applied to
augmented types in a pointwise manner:

0 int = int

9 bool = bool

0(,- -+-+r2)-= (0 r1) -+ (0 -r2)

0a'- r if0 a=r

We shall write 01002 for the composition of 01 and 02, i.e. (01 002)7- = 01 (02 r)
for all augmented types r.

The idea. The type reconstruction algorithm, called WUL, is given two
arguments: an augmented type environment r (mapping program variables
to augmented types) and an expression e. If it succeeds in finding a typing
for the expression then it will return its augmented type r- and a substitution
0 telling how the type environment has to be refined in order to obtain a
typing. As an example we will have

WUL ([X - 'a], 1 + (x 2)) = (int, ['a H- int -+ int])

because during the inspection of the expression 1 + (x 2) it becomes clear
that x must be a function from integers to integers if the expression is to be
correctly typed. So the idea is that if

WuL(F,e) = (r,9) then oG(o r) -UL e : OG

for every ground substitution 0a that covers 9 r and r, i.e. whenever we
replace all the type variables with ordinary types in a consistent way. When

296 TYPE AND EFFECT SYSTEMS

this property holds we shall say that the algorithm is syntactically sound.
In order for the algorithm to be syntactically complete it is also required
that all typings obtainable in the inference system can be reconstructed from
the results of the algorithm. We shall discuss these properties at length in
Subsection 5.3.3.

The algorithm. The algorithm WUL is specified in Table 5.5 and is ex-
plained below. The algorithms asks for fresh type variables at several places.
By this is meant type variables that do not occur in the argument to WUL
and that have not been generated as fresh variables elsewhere; this could be
formalised by supplying WUL with yet another parameter for tracking the
type variables that remain fresh but it is customary not to do so. There is a
small amount of nondeterminism in WUL in that there may be many choices
for the fresh variables; this could be made precise by assuming they are all
numbered and by always supplying the candidate with the smallest number
but again it is customary not to do so.

In the clause for variables we simply note that the type of c is rc and there is
no need to adjust our assumptions r so we return the identity substitution
id: we demand that id a = a for all a and could take id to be the empty
mapping. The clause for variables is similar except that now we consult the
type environment P to determine the augmented type of x.

For function abstraction we assume that the formal parameter has type a.
for a. being a fresh type variable - so far we have no constraints on the type
of the formal parameter. Then we call WUL recursively on the function body
to determine its type under the assumption that x has type a.,. The resulting
type ro and substitution 00 are then used to construct the overall type; in
particular, 90 is used to replace the type variable a. with a more refined
type since the analysis of the function body may have provided additional
information about the type of the formal parameter.

The clause for recursive function definition is somewhat more complicated.
It starts out in a way similar to the previous clause and requires fresh type
variables a. and ao so that we can supply augmented types ax -+ ao and ax
for the occurrences of f and x, respectively, in the analysis of the function
body. However, this will result in two possible types for the function body:
one is the type variable ao (modified by the substitution 00 obtained by
analysing the function body) and the other is the type ro obtained from the
analysis of the function body. These two types have to be equal according to

Sthe rule [fn] of Table 5.1 and to ensure this we shall use a unification procedure
UUL; its definition will be discussed in detail below but the idea is that given
two augmented types -1 and r2 , UUL(Trl,,r 2) will return a substitution 9 that
makes them equal i.e. such that 0 Ti = 9 7-2. In the clause for recursive
function definition we get that 017(To) = 01(Oo a0) so the overall type will
be 01(0o a. ,) -4+ 0 To. Also we record that the assumptions of P have to be
modified by 00 as well as 01.

5.3 Inference Algorithms 297

Wu,(r, C) = (7c, id)

WULCr,x) = (r(x), id)

WUL,(F7 fn, x => eo) = let a. be fresh
(To, 0o) = WuL(r[X a.],,eo)

in ((0o a.) -+ ro, Go)

WUL(r,fUn. f x => eo) =
let a2 , aO be fresh

(ro, 0o) = WuL(r[f -+ a. -+ ao][x - ax],eo)
01 = UUL(ro,900 ao)

in (019(0o a.) -+ 01 To, 01 O00)

WUL(F,e, e2) = let (rl,0 1) = WUL(r, el)
(T2,0 2) = WUL (0 1 r, e2)
a be fresh
03 = UUL(02 T1,T2 -+ a)

in (03 a, 03002001)

WUL(r, if eo then el else e2) = let (To, 0o) = WUL(r, eo)
(T1,01) = WUL(Oo r,,el)
(T2,02) = WUL(1(0 A r), e2)

03 = UUi (02 (01 7-0), bool)
- 04 = UUL(0 3 T2,03(0 2 T1))

in (04(03 T2), 04003002001)

WuL(F, let x = el in e 2) = let (r1,01) = WuL(r, el)
(r 2 ,0 2) = WUL((o1 r)[i+ r[, e2)

in (r2, 02001)

wuL(r, el op e2) = let (r l ,0 1) = WuL(r, el)
(r2,02) = WuL(o1 r, e2)
03 = UuL(02 1T,rP)
04 = uL(03 T., o2,T)

in (top, 04 0 03 0 02 0 91)

Table 5.5: Algorithm WUL for the underlying type system.

Also the clause for function application relies on the unification procedure.
In this clause we call WuL recursively on the operator and the operand and
we use unification to ensure that the type of the operator ri (modified by
02) is a function type with an argument type that equals the type T2 of the
operand: 02 T1 has to have the form T2 -+ a. Again we have to record that
the assumptions of r have to be modified by all three substitutions that have

298 TYPE AND EFFECT SYSTEMS

been constructed.

By now the clause for conditional is straightforward and similarly the clauses
for the let-construct and the binary operator. (Note that the let-construct
is not polymorphic so no special action is needed to determine the type of
the bound variable; we shall return to the problem of polymorphism later.)

Example 5.14 Consider the expression (fnx x => x) (fny y => y) of
Example 5.1. The call

WUL([], (fn x x => x) (f n Yy => y))

gives rise to the call
WUL([],fnX X => X)

which will create the fresh type variable 'a and return the pair ('a -+ 'a, id).
We now have the call

WUL([],fny y => y)

that creates the fresh type variable 'b and returns (bb -i 'b, id). Thus we get
the following call of UUL

UJL(a -+ 'a, ('b -4 'b) 'c)

where 'c is a fresh type variable. As we shall see in Example 5.15 below this
gives rise to the substitution ['a -+ 'b -+ 'b]['c -+ 'b -+ 'b] and the initial call
of W)UL will return 'b -+ 'b and ['a t-+ 'b -+ 'b]['c a-+ 'b -N 'b].

Analogy. The placement of substitutions in Table 5.5 may seem ad hoc
at first sight. As an aid to the intuition we shall therefore offer the following
analogy. Consider a society where a number of laws have been passed. One
such law might stipulate that when the owner of a personal computer sells
it, the owner is obliged to comply with the law and in particular provide
the buyer with the original disks for all software that remains on the com-
puter. And let us focus our attention on a particular owner preparing to sell
a computer and who is determining an acceptable selling price. Then some
day parliament passes a law stating that whenever original software disks are
passed on from one private person to another, the previous owner has to pay
a fee of ten percent of the original buying price to a government agency com-
bating software piracy. From this day on the owner of the computer needs to
reconsider all the considerations made in order to determine the acceptable
selling price. In short: whenever a new law is passed all existing considera-
tions need to be reconsidered in order to remain valid. - Coming back to
Table 5.5, the typings determined by WUL correspond to the considerations
of the owner, and the substitutions produced by UUL to the new laws being
passed by parliament: whenever a new substitution ("law") is constructed
all existing typings ("considerations") must be suitably modified so as to re-
main valid; this is exactly what is achieved by the carefully chosen use of
substitutions in Table 5.5. 0

f,

5.3 Inference Algorithms 299

UUL(int, int) = id

UUL(bool,bool) - id

UUL(71 7-+2 ,71' -4 T2) = let 01 = UUL(T1, T•)

02 =UU L(01 T2, 01 T2)
in 02001

[a F4 r] if a does not occur in r
UUL(T, a) = or if a equals -

fail otherwise

[a i- r] if a does not occur in r
UUL(a, T) = or if a equals T

fail otherwise

UUL(l,,r2) = fail in all other cases

Table 5.6: Unification of underlying types.

Unification. The algorithm UUL for unifying two augmented types is
shown in Table 5.6. It takes two augmented types rl and r2 as arguments
and if it succeeds it returns a substitution 0 such that 0 -1 = 0 r2.

In the clause for unifying the tw6 -function types rl -+ r2 and 7i -+ r2 the
desired result is obtained in two stages: 01 ensures that 01 Ti = 01 rf and
hence (02 0 01) T1 = (02 0 01) Tr and 02 ensures that 02(01 72) = 02(01 -T); it
follows that 02 0 01 succeeds in unifying the two function types. Note that
the algorithm only fails at top-level if:

"* two types with different top-level constructors (by which we mean int,
bool, or -+) are to be unified, or

"* a type variable is to be unified with a function type containing that
type variable.

Example 5.15 In Example 5.14 we had the following call of the unifica-
tion procedure:

UUL('a -4 'a, ('b - 'b) -+ 'c)

It will first give rise to the call UUL(a, 'b -- 'b) which returns the substitution
['a F-+ 'b - 'b]. Then we will have the call UUL('b -+ 'b, 'c) and the substitution
['c F-+ 'b - 'b] is returned. Thus the overall result will be the substitution
['a • 'b -- 'b]['c ý-f 'b - 'b] as already used in Example 5.14. u

300 TYPE AND EFFECT SYSTEMS

5.3.2 An Algorithm for Control Flow Analysis

In applying the above ideas to the inference system for Control Flow Analysis
presented in Table 5.2 we are going to face a difficulty. In the underlying type
system two types are equal if and only if their syntactic representations are
the same; we say that types constitute a free algebra. For annotated types,
two annotated types may be equal even when their syntactic representations
are different: int (' u{J 21, int equals int {(2}uJ},I int because
annotations and types are considered equal modulo UCAI as discussed in
Subsection 5.1.2 - we say that annotated types constitute a non-free algebra.

The difficulty we encounter when transferring the development of the previous
subsection to the Control Flow Analysis is that the algorithm WuL relies
on the procedure UUL for unifying two types, and that this algorithm only
applies to types in a free algebra. One way out of this difficulty would be to
use instead an algorithm for unifying modulo UCAI; such algorithms exist
but their properties are not so nice as those of UuL. Another way out of the
difficulty, and the approach we shall take, is to arrange it such that a variant
of UUL can still be used by introducing additional mechanisms for dealing
with the annotations: one is the notion of simple types and annotations and
the other is the use of constraints.

Simple types and annotations. The first step will be to restrict
the form of the annotated types so that only annotation variables are allowed
on the function arrows; later we sliall combine this with a set of constraints
restricting the values of the annotation variables.

A simple type is an augmented annotated type where the only annotations
allowed on function arrows are annotation variables and where type variables
axe allowed in types, and a simple annotation is an annotation where also
annotation variables are allowed:

F SType simple types

a E TVar type variables

/ E AVar annotation variables

W E SAnn simple annotations

Formally, the syntactic categories are given by:

F ::=intIboolfl F 2Ia

a ::- 'al'bI'cI ...
) : - '1 1'2 1'3 1 ...

A simple type environment f then is a mapping from variables to simple

5.3 Inference Algorithms 301

UCFA(int, int) = id

UcFA(bool,bool) = id

UCFA(r1 -- 2, = let 00 = [6' 1•4]
01 = UCFA (00F1 00 F)

02 = UCFA(01 (0o ;F), 01 (0o F2))
in 0200100o

[ai - F] if a does not occur in F
UCFA (F, a) = or if a equals F

fail otherwise

[a i-+] if a does not occur in F
UCFA(a, F) = or if a equals F

I fail otherwise

UCFA (1, 2) = fail in all other cases

Table 5.7: Unification of simple types.

types.

Unification of simple types. Simple types constitute a free algebra
and so we can apply the same technique as in Subsection 5.3.1 to define a
function UCFA of the following form:

UCFA(1 , 0 0

Here F, and F2 are simple types and 0 will be a simple substitution: A simple
substitution is a substitution that maps type variables to simple types, and
that maps annotation variables to annotation variables only. Thus a simple
substitution applied to a simple type still gives a simple type. As for UUL

the intention is that 0 unifies F1 and F2, i.e. 0 rl = 0 T2. In case this is not
possible the outcome of UCFA (1, F 2) will be a failure. The unification function
UCFA is defined in Table 5.7 and is explained below.

As before id is the identity substitution and ' o 0" is the composition of two
substitutions. In the clause for unifying the two function types F1 -4 F2

and F{ -1- F2 the desired result is obtained by first ensuring that the
two annotation variables are equal and then proceeding as in the unification
algorithm for the underlying types. Note that UCFA(F1, 72) will fail if and only
if UUt(LFIJ, L[2J) fails.

302 TYPE AND EFFECT SYSTEMS

Example 5.16 Consider the following call of the unification procedure:

, l ,, '2 ,'3

UCFA(a ""+ 'a, ('b--+ 'b)---+ 'c)

We construct the substitution ['3 i-+ '1] and then we perform the call
'2

UCFA('a, 'b ---+ 'b)

which returns the substitution ['a • 'b -•4 'b]. Then we make the call

'2

UCFA('b 4 'b,'c)

and the substitution ['c 1-4 'b -4 'b] is returned. Thus the overall result will
be ['3 i-+ '1]['a ý- 'b -ý4 'b]['c +. 'b -4 %b]. 0

The following fact, whose proof we leave to Exercise 5.7, expresses that the
algorithm is correct. The first part of the result says that the algorithm is
syntactically sound: if it succeeds then it produces the desired result. The
second part says that the algorithm is syntactically complete: if there is some
way of unifying the two simple types then the algorithm will succeed in doing
SO.

Fact 5.17 Let F, and F2 be twa simple types.

"* If UCFA (F, 2) = 0 then 9 is a simple substitution such that O9F = 9 2.

"• If there exists a substitution 9" such that O"F, = O"F2 then there exists
substitutions 9 and 9' such that UCFA(FI, ,2) = 9 and 9" = 9' o 0. *

Constraints. Annotated types can contain arbitrary annotations and
simple types can only contain annotation variables. To make up for this
deficiency we shall introduce constraints on the annotation variables. A con-
straint is an inclusion of the form

where is an annotation variable and Wp is a simple annotation. A constraint
set C is a finite set of such constraints.

We shall write 9 C for the set of inclusions obtained by applying the substi-
tution 9 to all the individual constraints of C: if / D 'p is in C then 9 /3:? 0 '

is in 0 C. If C is a constraint set and 0 is a simple substitution then also 0 C
is a constraint set.

A type substitution is a substitution that is defined on type variables only
and that maps them to types in Type (i.e. to annotated types without type

5.3 Inference Algorithms 303

and annotation variables); we shall say that it covers f, respectively F, if it
is defined on all type variables in f, respectively ?. Similarly, an annotation
substitution is a substitution that is defined on annotation variables only
and that maps them to annotations in Ann (i.e. to annotations without
annotation variables); it covers f, respectively ? or C, if it is defined on all
annotation variables in f, respectively ? or C. An annotation substitution
OA solves a constraint set C, written

OA 1= C

if and only if it covers C and for each 8 _ • in C it is the case that BA / is
a superset of, or is equal to, BA W.

A ground substitution is an annotation substitution on annotation variables
and a type substitution on type variables. A substitution B is a ground
validation of (f, ?, C) if and only if it is a ground substitution that covers
r, ? and C and such that B 1= C (or more precisely, OA • C where BA is the
restriction of B to the annotation variables).

The algorithm. We are now ready to define an analogue, of the type
reconstruction algorithm WUL. It has the form

WcFA(', e) = (, ,C)

where we demand that f is a simple type environment (i.e. that it maps
variables to simple types), and it il be the case that F is a simple type, B is
a simple substitution, and C is a constraint set of a very special form: it only
contains constraints of the form P D {2r}. Since WCFA will make use of UCFA
there also is the possibility that WCFA fails. The algorithm WCFA is defined
by the clauses of Table 5.8 and is explained below.

In the clauses for constants and variables we proceed as before and do not
impose any constraints. In the case of function abstraction we shall addi-
tionally use a fresh annotation variable 8lo; it will be the top-level annotation
of the overall type and we shall add a constraint /0 _D {1r} requiring that
it includes the label 7r of the function definition - this corresponds to the
annotation {1r} U W used in the rule [fn] of Table 5.2.

The clause for recursive function definition is modified in a similar way. Here
the annotation variable 3 will be used to annotate the function type of f and
the call of WCFA on the body of the function may cause it to be modified to
B0 3o. Next the call of the unification procedure may cause it to be further
modified to B1 (B0 80o). Since both B0 and B1 are simple substitutions we
know that B1 (B0 30) is an annotation variable so the resulting type will still
be simple. The recursive call of WCFA gives rise to a constraint set Co that
has to be modified using the substitution B1 and as in the clause for ordinary
function abstraction we have to add a new constraint expressing that the

304 TYPE AND EFFECT SYSTEMS

WCFA(FC) = (re, id, 0)

WCFA (x, x) = (f(x), id, 0)

WCFA(F, fn, x => eo) = let a. be fresh
(Fo, Oo, Co) = WCFA(f[x F-+ ax], eo)
3o be fresh

in ((Oo a,) -40 F0, 0o, Co U {13o ;? {1r}})

WCFA(f, f run f x => eo) =
let a, ao,,30 be fresh

(Fo,0o,Co) = WCFA(f[f 4- a, --L ao][x • a,,, eo)
01 = UcFA(Fo, Oo ao)

in (01(9o a.) 01(Oo0 'o)) 01 F0, 01000,
(01 Co) U {01(0o flo) 17 {r}})

WcFA(r, el e2) = let (F1 ,0 1,C 1) = WcFA(,el)

(F2,0 2 , C2) = WCFA(01 f, e2)

ca,3 be fresh
03 = UCFA(02 r1, F2 -4 a)

in (03a, L 03092091, 03(2 C1)OU0 3 C 2)

WCFA(F, if eo then el else e2) =

let (Fo,Oo, Co) = Wc-A(IF, eo)
(A1,0 1 , C) = WCFA(O0 f,el)
(F2, 0 2 , C 2) = WCFA(0 1 (0o f), e2)
03 = UCFA(02 (01 Fo),bool)
04 =UCFA(03 F,03 (02 r7))

in (04 (03F2), 04o03o02o01o00,
04 (03 (02 (01 CO)))U0 4 (03 (02 C 1))U04 (03 C2))

WCFA(f, let x = el in e2) =

let (F1,91,C1) =WcFA(f,el)

(F2,0 2 , C 2) = WCFA((O1 f)[x ý-+ F1 , e 2)
in (M, 02o01, (02 C1)UC 2)

WcFA(f, el op e2) = let (F1 ,0 1,C 1) = WCFA(f, el)
(;, 02 , C2) = WCFA(01 f, e 2)

03 =UCFA(02 F 7
04 =UCFA(03 ^2,

in (Top, 94003002o01,

04 (03 (92 C1))U 04 (03 C2))

Table 5.8: Algorithm WCFA for Control Flow Analysis.

5.3 Inference Algorithms 305

annotation variable 01 (00 /8o) has to contain the label 7r of the function
definition.

The clauses for the remaining constructs are fairly straightforward modifica-
tions of the similar clauses for WUL. Note that the substitutions are applied
to the constraint sets as well as the types and type environments.

Example 5.18 Returning to the expression (fnx x => x) (f ny y => y) of

Example 5.1 we shall now consider the call:

WcFA([], (fnx x => x) (fny y => y))

It gives rise to the call WCFA ([], fnx x => x) which creates a fresh type variable
'a and a fresh annotation variable '1 and returns ('a -ý4 'a, id, {'1 D {X}}).
Then we have the call WCFA ([], fny y => y) that creates a fresh type variable
'b and a fresh annotation variable '2 and returns ('b -ý4 'b, id, {'2 D {Y}}).
Thus we get the following call of UCFA

I1 , 2 , 3

UCFA ('a -+ 'a, ('b -+ b)- 'c)

where 'c is a fresh type variable and '3 is a fresh annotation variable. This
gives rise to ['3 '-+ '1]['a ý-+ 'b -ý2 'b]['c 1-4 'b -ý4 'b] as shown in Example 5.16
and the initial call of WCFA will return the type 'b -4 'b, the substitution
['3 '-+ '1]['a -+' b --4 'b]['c H-' 'b -ý4 'b] and the set {'1 D {X},'2 D {Y}} of
constraints. This corresponds to the typing obtained in Example 5.4. .

Example 5.19 Consider the program loop

let g = (funF f X => f (fny y => y))
in g (fnz z => z)

of Example 5.2 and the call WCFA([], loop). This will first give rise to a call

WcFA([], f uF f x => f (fny y => y))

that returns the type ('a --4 'a) -ý4 'b and the set {'1 D {F},'2 D {Y}} of
constraints. Then we have a call of WCFA on the body of the let-construct:

'2 a '

WcFA([g'- ('a--+ a) -- 'b],g (fnz z => z))

The call of WCFA on fnz z => z will give the type 'c --4 'c and the constraint
set {'3 D {Z}}. The unification procedure will then be called with the types
('a -2 'a) -ý4 'b and ('c --4 'c) -- !- 'd and the resulting substition is
['2 t+ '3, 'a i-+ 'c, 'b f-+ 'd]. Thus the application will have type 'd and the
constraint set will be {'3 D {Z}}. The initial call of WCFA on !oop returns
the type 'd and the constraint set {'1 D {F},'3 D {Y},'3 D {Z}}. This
corresponds to the typing obtained in Example 5.5.

306 TYPE AND EFFECT SYSTEMS

As illustrated in the above examples, when the overall call of WCFA (f, e) gives
(F, 9, C) we are only interested in the effect of 0 on the type and annotation
variables occurring in f.

5.3.3 Syntactic Soundness and Completeness

We are now ready to prove the correctness of the algorithm; this will take
the form of a syntactic soundness result and a syntactic completeness result.
Syntactic soundness is a rather straightforward result to prove. This nor-
mally also holds for Type and Effect Systems that are more complex than
the Control Flow Analysis considered here, although the actual details of
the Type and Effect Systems may of course require special treatment going
beyond the techniques covered here.

By contrast, syntactic completeness is a somewhat harder result to prove.
For a complex Type and Effect System it frequently involves establishing
a result about proof normalisation: that the non syntax directed rules of
the inference system need only be used at certain places (see Exercise 5.12).
However, in the case of Control Flow Analysis the proof is going to be un-
characteristically simple because both the algorithm WcFA and the inference
system for Control Flow Analysis are defined in syntax directed ways. Thus
the present development does not indicate the breath of techniques needed
for Type and Effect Systems in general and the the Concluding Remarks will
contain references to the more gefleral situation.

Syntactic soundness. The soundness result expresses that any infor-
mation obtained from the algorithm is indeed correct with respect the the
inference system:

Theorem 5.20
If WcFA(IF,e) = (F,0,C) and OG is a ground validation of o r, F

and C then OG(9 F) 1
-CFA e : OG F.

This theorem may be reformulated as follows: if WCFA (F, e) = (?,0, C) and

OT is a type substitution that covers 9 f and F, and if OA is an annota-
tion substition that covers 9 f, F and C and that satisfies OA j= C, then
OA(OT(o F)) F-CFA e : OA(OT F). To see this first note that OA o OT = OT o OA
is a ground substitution; next note that given a ground substitution 9

G we
may obtain an annotation substitution OA by restricting OG to annotation
variables and similarly we may obtain a type substitution OT by restricting
9 c to type variables and clearly 9G = OA 0 OT = OT 0 OA.

Proof The proof proceeds by structural induction on e (because WCFA is defined
by structural induction on e).

5.3 Inference Algorithms 307

The case c. We have WCFA(F, c) = (re, id, 0). Next let GG be a ground validation of
f; clearly it alko covers rr (because rc is a base type) and it also satisfies 0Ga 0.
From the axiom [con] of Table 5.2 it is immediate that

eG(r) F-CFA c : r,

and since OG r, = r, this is the desired result.

The case x. We have WCFA(fJ, x) = (r(x), id, 0). Next let OG be a ground validation
of F; clearly it also covers -r(x) and it satisfies GO k 0. From the axiom [var] of
Table 5.2 it is immediate that

OG f F-CFA X : OG(f(X))

and this is the desired result.

The case fn, x => e0. We shall use the notation established in the clause for
WCFA (r, fn,, x => eo). So let OG be a ground validation of Go V, Oo a. -P-4 o, and

Co U {f3 _D {;r}}. Then GG is a ground validation of 0o(F[x ý- a.), o, and Co.
Hence by the induction hypothesis we get:

OG(Go r)[x ý4 GG(0o a2)] F-CFA eo : Go FO

Since OG • Co U {13o 2D {fr}} we have Go 3 _D {2ir} so we can apply the rule [fn] of
Table 5.2 and get

0G(0o r)
1-CFA fný x => eo : 0G(o0 a.) •* 0G TO

which is the desired result.

The case fun, fzx => eo. We shall use the notation already established in the
clause for WCFA(r, fun, f x => eo). So let GC be a ground validation of o1(oo P),
01G(o ca2) 01(Oo 00)p 01 Fo, and (01 Co) U {0i(Oo f3o) D {ir}}. Then GoG0 01 is a
ground validation of 0o F, 0o a. -a-P% Fo and Co. Since 01 Fo = 01 (Go ao) by Fact

5.17 we also have that 0G o 0 1 is a ground validation of Go f, Go a. -!Q-P- 0o a•o
and Co. Hence we can apply the induction hypothesis and get:

oG(G 1 (Go (r[f 4 a= -£* ao][x '-+ a.]))) F-CFA eo : OG(01 :o)

Since 0G Fo = 01(0o ao) and OG • (01 Co)U{0 1 (Go 30) Q {ir}} we get Go(0 1(0Go 0)) _
{lr} so we can apply the rule [fun] of Table 5.2 and get

Go(01(0o V)) H-CFA f un, f x => eo : Go(01 (0o a.)) eO(01(00 Po))D OG(0 1 F)

and this is the desired result.

The case el e2. We shall use the notation already established in the clause for
WCFA(f,el e2). So let 0G be a ground validation of 0 3(0 2(01 V)) and 0 3 a and
03 (02 C1) U 03 C2. Let 0' be a ground extension of OG upon 0 3(0 2 ?1) and 03 T2.

Then 0• o 0 3 0 02 is a ground validation of 01 F, ?1 and C1. Hence we can apply
the induction hypothesis to el and get:

00'(0 3(02(01 V))) F-CFA el :G~(03(02 Fl))

308 TYPE AND EFFECT SYSTEMS

Similarly 0a o 03 is a ground validation of 62 (01 V), P2 and C 2. Hence we can apply
the induction hypothesis to e2 and get:

6 (03(02(1 1'))) I-CFA e2 : 6ý(03 P2)

Since 03(02 ?1) = (03 :2) -5-4 (03 a) follows from Fact 5.17 we can use the rule
[app] of Table 5.2 and get

O6G(03(62(01 I')) CFA el e2 : 6(63 a)

which is equivalent to 6G(63(62(61 F))) -cFA el e2 : 0G(63 a) and this is the desired
result.

The cases if eo then el else e2, let x = el in e2 and Cl op e2 are analogous. n

Syntactic completeness. It is not enough to show that WCFA is syn-
tactically sound: an algorithm that always fails will indeed be a syntactically
sound implementation of our analysis. We shall therefore be interested in a
result saying that any judgement of the Annotated Type System can in fact
be obtained by the algorithm:

Theorem 5.21
Assume that f is a simple type environment and 6' F F-CFA e : F

holds for some ground substitution 6' that covers F. Then there
exists F, 6, C and 0 such that

" WcFA(r,e) = (F,0, C),

"* OG is a ground validation of 0 P, F and C,

" OG o 0 6 0' except on fresh type and annotation variables (as
created by WCFA(P, e)), and

"* OT ;=F.

Proof The proof is by induction on the shape of the inference tree; since the
Annotated Type System of Table 5.2 is syntax directed this means that the proof
follows the syntactic structure of e. Without loss of generality we may assume that
6' is not defined on type and annotation variables that are freshly generated in the
call WCFA(P, e).

The case c. We have 6' f P'CFA c: ' and F = r,. Clearly WCFA(V, c) = (-r, id, 0) so
it suffices to set 6G = 6' and clearly OG ? = r.

The case x. We have 6' V 1-CFA x:" because 0' - 6'(V(x)). Clearly WCFA(I,X) -

(l(x), id, 0) so it suffices to set 6c = 6'.

The case fn, x => eo. We have

0' V I-CA fn , x => e0 : '= TO

5.3 Inference Algorithms 309

where W' is an annotation (i.e. it does not contain any annotation variables) and
from Table 5.2 we get that also:

(0' P)[x-+ '] . -cFA eo: 'o

Let now a. be a fresh type variable and note that a. f dom(0'). Define 0" by

Ol(?r if C = a.

" 0 = C otherwise

where C can either be a type variable or an annotation variable. Then we also have:

" (P[X1-+ a4]) ý-CFA eO : 'O

By the induction hypothesis there exists Fo, 00, Co and 0G such that:

WCFA(r[x -+ a], eo) = (?o,GOn Co),
8G is a ground validation of (Go F)[x ý- Oo(a=)],)o, and Co,
8G o 8o = 8" except on fresh type and annotation variables

created by WcFA([x F-+ a.], eo)
05 To=o

Next let f3o be a fresh annotation variable and define:

O 1 {r}Uvp if(=00o
O= otherwise

Then we get:

OG is a ground validation of Oo V, (Oo a.) -P-4 To and Co U {13 1{r}},
OG o 0o = 0' except on fresh type and annotation variables

created by WcFA(V, fný x => eo),

GG(GOc a. PQ+ :P) ?' {Ir}Up' ~F

This is the desired result.

The case fun, f x => eo. We have

0' V FcFA funfx => eo :r. - . T0

where Wo' does not contain annotation variables and according to Table 5.2 this is
because: (0, r. o][ý- 'T] ý-cFA eo: TO
Let as, ao and /3o be fresh type and annotation variables and note that they are
not in dom(8'). Define 6" by:

?. if C = a.

C {r}U o' if C =)go
?01 if C = ao

0 otherwise

310 TYPE AND EFFECT SYSTEMS

Then we also have:

0"(P[f a- -0-+ ao][x ý-- a.]) FcFA eo: ro

By the induction hypothesis there exists io, 0o, CO and 8G such that:

WcFA(I[f -+ a. -&+ ao][x ý-+ a.], eo) = (:o, 0o, Co)
0' is a ground validation of 9o(f[f '-+ a. -24 ao][x ý-+ a]), Fo, and Co
OG o 0o = 9" except on fresh type and annotation variables

created by WCFA('' eo)
OG:O= ';P

Since 'G (0o aO) = 9" aO = :0 = 9'G :O it follows from Fact 5.17 that there exists 01
and OG such that UcFA(Oo ao,Fo) = 01 and 0' = O0 o 01. Hence

OG is a ground validation of 91(8o r),91 (0o ax) 01(00 00). 01 :P,
and (01 Co) U {10(9oifo) _D {ir}}

O 0 01 0 0o = 9' except on fresh type and annotation variables
created by WCFA(''', f un f x => eo)

O(01(00o a.) 0('o Po, 01(o ao)) ?0') ?o

and this is the desired result.

The case el e2. We have
9' P -CFA el e2 : 'o

and according to Table 5.2 this is because:

9' P FcFA el ?2f -2-* ?0*1

0' F-cFA e2 2

By the induction hypothesis applied to el there exists :F1, 01, C1 and 9G such that:

WcFA(r, el) = (?j, o, cl)
01 is a ground validation of 91 F, :i, and C1
Go = 9' except on fresh type and annotation variables

created by WcFA(9' V, ei)

Then we have

W•(,1 F) I-cFA 2 :r2

so by the induction hypothesis applied to e2 there exists :F2, 92, C 2 and 02 such
that:

WCFA(01 V, e 2) = (F 2 , 02 , C 2)

G is a ground validation of 02(01 F), ? 2 and C 2
G 0 92 = 01 except on fresh type and annotation variables

created by WcFA(''" e2)

o2

5.3 Inference Algorithms 311

It then follows that:

G3 is a ground validation of 02(01 P),0 2 :1,02 G1 ,: 2 , and C 2
03 o02 001 = 0' except on fresh type and annotation variables

created by WCFA(,el) and WCFA(. ,e2)

Next let a and / be fresh and define:

f ifC~
C~= W, if=/

02 otherwise

Since 6G(62 ?1) = Q3(02 :1) = 1 _ -= 2 -a = 2 _,I+ a) it follows
from Fact 5.17 that there exists 63 and O@ such that UCFA(02 F1,?2 -4 a) = 63 and

G = 00 o 03. It follows that

OG is a ground validation of 03(62(01 P)), 63 a, and 03(02 C1) U 63 C2
OG 0 63 0 62 0 01 = 6' except on fresh type and annotation variables

created by WCFA(' el e2)

OG(03 a) =6 0 a=o

and this is the desired result.

The cases if eo then el else e2, let x = el in e2 and el op e2 are analogous. w

5.3.4 Existence of Solutions

Since WCFA generates a set of constraints the statement of syntactic soundness
(Theorem 5.20) is a little weaker than usual: if the constraints cannot be
solved then we cannot use the soundness result to guarantee that the result
produced by WCFA can be inferred in the inference system.

This suggests showing that the constraints always have solutions; in line with
previous developments in this book we shall prove a stronger result. For this
let AV(C) be the set of annotation variables in C.

Lemma 5.22 If WcFA(f, e) = (F, 0, C) and X is a finite set of annotation
variables such that X D AV(C), then

{1A I OA [- C A dom(6A) = X A OA is an annotation substitution}

is a Moore family.

Proof Let C be a finite set of constraints of the form 03 D o where W E SAnn
and such that X D AV(C) where X is a finite set of annotation variables; it will
not be of importance that C is generated by WCFA. Let Y be a possibly empty

312 TYPE AND EFFECT SYSTEMS

subset of the set displayed in the lemma. Each element of Y will be an annotation
substitution with domain X and that satisfies C. By setting

Op3 = nOAE((OA fl) for/3 E X

we define an annotation substitution 8 with dom(G) = X. For each/3 D • in C and
OA in Y we have

OA /fl 2 A 0
(since V is monotone in any free annotation variables) and hence:

O p = FLAEYOA 0 2 - AEY O V ;- O (

This establishes the result.

Consider now the call WCFA(f, e) = (?,0, C) and the problem of finding a
ground substitution GG that covers 0 F, F and C. After the statement of
Theorem 5.20 we made it clear that 0G always can be written as OA 0 OT for
an annotation substitution OA covering 0 r, ? and C and a type substitution
OT covering 0 f and F. The choice of the type substitution OT must be
performed by the user of WCFA; one possibility is to let OT a = int for all
type variables a in 0 f and F. The existence of an annotation substitution

OA now follows from Lemma 5.22.

Corollary 5.23 If WCFA(F, e) = (?, 0, C) then there exists a ground val-
idation 0G of 0 F, F and C.

Proof Let OT be given by OT a int for all type variables a in 0 V and?; clearly
OT covers 0 f and F. Next let X be the set of annotation variables in 0 f, ? and C;
then Lemma 5.22 guarantees the existence of an annotation substitution OA that
covers 0 f, F and C and such that OA F- C. Taking O0 = OA o 0T we obtain a
ground validation of 0 f, ? and C. 0

The result obtained by choosing a type substitution is only unique in case
there are no type variables present in 0 f and F. If there is at least one
type variable present then the result of using 0 T displayed above will differ
from the result of using OT' given by OT a = bool for all type variables a
in 0 F and F. In general a type substitution 0" may have 0" a E Type[Tr]

for an arbitrary underlying type -r. However, in case Type[T-] has more
than one element one is likely to prefer the least element since it has empty
annotations on all function arrows (but see Exercise 5.8).

In a similar way one is likely to prefer the least annotation substitution
guaranteed by Lemma 5.22. Keeping in mind that all constraints in C have
the form/3 D {1r} for E AVar and 7r E Pnt, we simply set:

OA •-
1 r 10 -?{17r} is in C} if/3 E AV(C)

undefined otherwise

5.4 Effects 313

It is immediate that dom(OA) = AV(C) and that 8 A = C. If also dom(O) =

AV(C) and 0 k C then it is immediate that Vi3 : 0 0 2 OA 03 which we may
write as 0 _ OA. This shows that OA as constructed above is indeed the least
element of the Moore family displayed in Lemma 5.22.

5.4 Effects

The Type and Effect System for Control Flow Analysis is fairly simple: it is
a syntax directed system using a form of subeffecting and the annotations are
just sets. Much more powerful Type and Effect Systems can be constructed
by allowing subtyping, let-polymorphism or polymorphic recursion; the re-
sulting analyses will be more powerful and, not surprisingly, the techniques
required for the implementation will be more demanding.

Subtyping and the various notions of polymorphism can be combined but for
the sake of simplicity we shall present them one at a time. We shall first
present a Side Effect Analysis for an extension of the FUN language with
assignments; it will use subeffecting and subtyping. Then we shall present
an Exception Analysis for an extension of FUN with exceptions; it will use
subeffecting, subtyping as well as polymorphism. Finally, we shall present
a Region Analysis for the FUN language; it will be based on polymorphic
recursion.

5.4.1 Side Effect Analysis

Syntax. Let us consider an extension of the language FUN (Section 5.1)
with imperative constructs for creating reference variables and for accessing
and updating their values:

e ::= ... I new, r :=el in e2 I !rIr :=e o el ; e2

The idea is that newi r: = el in e 2 creates a new reference variable called r
and initialises it to the value of el; the scope of the reference variable is e2 but
we shall want the creation of the reference variable to be visible also outside
its scope so as to be able to determine whether or not functions may need
to allocate additional memory. The value of the reference variable r can be
obtained by writing ! r and it may be set to a new value by the assignment
r := e0 . The sequencing construct el ; e 2 first evaluates el (for its side
effects) and then e2 .

Example 5.24 The following program computes the Fibonacci number
of a positive number x and leaves the result in the reference variable r:

314 TYPE AND EFFECT SYSTEMS

newR r: =0
in let fib = funF f z => if z<3 then r:=!r+1

else f(z-1); f(z-2)
in fib x; !r

The program creates a new reference variable r and initialises it to 0, then it
defines the function fib, applies it to the value of x and returns the value of r.
The statement r:= ! r+1 in the body of the recursive function will increment
the value of r each time it is executed and each call of fib x will increase
the value of r with the Fibonacci number of x. 0

The aim of the Side Effect Analysis is to record:

For each subexpression which locations have been created, ac-
cessed and assigned.

So for the function fib in Example 5.24 the analysis will record that it
accesses and assigns the reference variable created at program point R.

Semantics. Before presenting the analysis let us briefly sketch the se-
mantics of the language. To distinguish between the various incarnations
of the new-construct we shall introduce locations (or references) and, as for
the imperative languages of Chapter 2, the configurations will then contain
a store component mapping locations to their values:

SE Store = Loc -+fin Val

The values of Val include the constants c, the (closed) function abstractions
of the form fn, x => e and the locations ý E Loc. The semantic clauses of
Table 5.4 are now modified to trace the store as for example in the following
clause for the let-construct:

- (e1 ,,;1) ---+ (v1 , ;2) I- (e2[i-[VX],- 2) --. (v2 ,; 3)

H- (let x = el in e 2 ,(1) -- + (v 2 ,0 3)

For the new constructs we then have the following axioms and rules (explained
below):

H(ej,,;i) -+ (vl,c;2) F-(e 2 [r i-+ ý],, -+ [6 1)4-v (V2, -3)

P (new, r := e1 in e2 , 1;) -+ (V2,1 3)
where 6 does not occur in the domain of (2

H(e,c1) -+ (v,l q)

P (6:=e, - (ele 2,+v - '; 2 v)

H(el,,;,)- (vi, -;) H(e2, Q) -+ (V2, ';)

H(el; e2,s1) -4 (V2,;3)

5.4 Effects 315

In the rule for new we evaluate el, create a new location 6 which is initialised
to the value of el, and then we syntactically replace all occurrences of r
with that location so that all subsequent references to r will be to ý. We
exploit this when defining the semantics for the constructs for accessing and
updating the reference. Note that the value returned by the assignment will
be the value being assigned.

Annotated types. In the Side Effect Analysis a location will be rep-
resented by the program point where it could be created. We shall therefore
define the annotations (of effects) V E AnnsE by:

I!r} I {r: = I {newlr} I W1 UV 2 10

The annotation ! 7r means that the value of a location created at 7r is accessed,
7r = means that a location created at 7r is assigned, and newir that a new
location has been created at 7r. As for the Control Flow Analysis we shall
consider annotations equal modulo UCAI.

The annotated types F E TypesE are now given by:

F:=intlI bool I Fi -+ ;P2 1 ref,r F

Here ref, F is the type of a location created at the program point 7r that
will contain values of the annotated type F. As before the type environment
r will map variables to annotatef-t.ypes.

Example 5.25 Consider the Fibonacci program

newR r: =0
in let fib = funF f Z => if z<3 then r:=!r+1

else f(z-1); f(z-2)
in fib x; !r

of Example 5.24. The variable r has the annotated type ref R int and the
variable fib has type int {! R,R:=}; int since it maps integers to integers
and whenever executed it may, as a side effect, access and update a reference
created at the program point R. 0

Typing judgements. The typing judgements for the Side Effect Anal-
ysis will be of the form:

r -sE e : & ýp

The idea is that under the assumption F, the expression e will evaluate into a
value with the annotated type F and that during computation the side effects
expressed by ýo might take place. The analysis is specified by the axioms and
rules of Table 5.9.

316 TYPE AND EFFECT SYSTEMS

[con] TF-SE C 7c r& 0

[var] f r-SE X:. & 0 if f(x) = F

f [X ý-] SFI-SE eo : Fo & 90

[fn] r F-SE fn, x => eo : F. -0 FO & 0

[fn [f -+ F. -"- Fo][X ý- F.] I-sE eo : Fo & Vo0

p -SE el : 2 -i* Fo & 1 W f-SE e2 : F2 & W2

[app] PI-SE el e2 : ;o & Wl1 U W2 U 9O

I-SE e0 :boo1 & WO f F-SE el : F & ,1 f i-SE e 2 :& W 2
[iI 1 7 i-SE if eo then el else e2 :& O U W1 U W 2

[lt I-SE el : F1 & W,1 r[X i--+ F1] I-SE e2 F 2 & W92

[let] PI-SE let x = el in e 2 ::F2 & WI U V 2

r i-SE el :Tlp, & W'I :-SE e 2 : 7op & W02
op] F-SE el op e 2 :rop & W1 U Wp2

[dere] FrI-SE !x: F & {!7r} iff(x) =ref F

lass] 7z -SEe:r& V if r(x) ref j

r i-SE X := e :& u{7r:=}

i -SE el : F1 & w, f[x ý-4 reflyr] i-SE e2 : F2 & W 2
[new] i-SEnewr x: el in e2: F2 & (V1 U Vp 2 U {newTr})

i F-SE el : F&1 ri-SE e2 : F2 & W2[seq] PI-SE el ; e2 : F2 & W1 U V2

[sub] I-SE e : F & if F < ' and W gC '
Tbe.:SeEf-SE e :ft A Wli

Table 5.9: Side Effect Analysis.

5.4 Effects 317

In the clauses [con] and [var] we record that there are no side effects so we use
0 for the overall effect. The premise of the clause [fn] gives the effect of the
body of the function and we use that to annotate the arrow of the function
type whereas we use 0 as the overall effect of the function definition itself:
no side effects can be observed by simply defining the function. A similar
explanation holds for the recursive function definition, the only difference
being that the assumption about f in the premise has to use the same effect
as the one determined from the function body. In the rule [app] we see how
the information comes together: the overall effect is what we can observe
from evaluat'ng the argument el, what we can observe from evaluating the
argument e2, and what we get from evaluating the body of the function called.
The rules [iA, [let] and [op] should be straightforward.

Turning to the axioms and rules involving reference variables we make sure
that we only assign values of the appropriate type to the variable. Also,
in each of the cases we make sure to record that a location at the relevant
program point has been created, referenced or assigned. The rule [seq] is
straightforward and the final rule [sub] will be explained below.

Example 5.26 The following program

newA X:--1

in (newsy:=!x in (x:=!y+1; !y+3))
+ (newc x:=!x in (x:=!x+l; !x+l))

evaluates to 8 because both summands evaluate to 4. The first summand has
type and effect

int & {newB, !A,A:, !B}

and the second summand has type and effect

int & {newC, !A, C:=, !C}

because the reference variable that is updated is the local one. Hence

int & {newA,A:, ! A, newB, ! B, newC,C:, ! C}

is the type and effect of the overall program. It follows from the effect that
the variable being created at B (y in the program) is never reassigned after
its creation. This might suggest transforming the news-construct into a let-
construct (i.e. let y=!x in (x:=y+l; y+3)). 0

Subeffecting and subtyping. The purpose of the rule [sub] in Table
5.9 is to ensure that we obtain a conservative extension of the underlying type
system. The rule is really a combination of a separate rule for subeffecting

F PSE e : F & ý'

318 TYPE AND EFFECT SYSTEMS

and a separate rule for subtyping:

PI-SE e: F & ifF < F

I'-SE e : F' & (O

Here • C •9 means that V is "a subset" of cp' (modulo UCAI) as discussed in
Subsection 5.2.3 (and Exercise 5.3). The ordering F < F' on annotated types
is derived from the ordering on annotations as follows:

Fl':5 1 -;2 : F' FOS T<TF F T<TF
-- <1 -F -- ref F < ref F'

Note that the order of the comparison is reversed for arguments to functions;
we say that F -5 :2 is contravariant in F, but covariant in V and F2. (To
familiarise oneself with this idea just pretend that the types are really logical
propositions and that -2- as well as < mean logical implication; then it
should be clear that the rule is the right one.) Also ref F is both covariant
ini ? (when the reference variable is used for accessing its value as in !r) and
contravariant in F (when the reference variable is used for assignments as in
r := ...). This turns out to be essential for semantic correctness to hold.

This form of subtyping we shall call shape conformant subtyping because
;_I 52 implies that the two annotated types have the same underlying types,
i.e. LFIJ = L[2J and hence that Fland F2 have the same "shape". (There are
more permissive notions of subtyping than this, and we shall return to it in
the Concluding Remarks.)

Example 5.27 Consider the following program

newA x: =I

in Cfn f => f (fn y => !x) + f (fn z => (x:=z; z)))
(fn g => g 1)

where we have omitted the labels on the function definitions. The program
evaluates to 2 because each summand evaluates to 1.

The type and effect of the two arguments to f are

{!A},int- int & 0

(A:}int - int & 0

and when f has the type

(int {!AA:=}= int) {!AA:=}) int

"i4i

5.4 Effects 319

the application of f to the arguments will be well-typed: we have

(jil A}ý {!AA:}=
(int int) < (int int)

(int -A+ int) !5 (int {!A'A:=}, int)

and may use the rule for subtyping to change the types of the arguments to
the type expected by f.

If instead we had only used the rule for subeffecting we would be obliged to
let the two arguments to f have type and effect:

int A) int & 0

int -A: =A int & 0

This is indeed possible by using the rule for subeffecting just before the rule
for function abstraction. 0

The combined rule [sub] for subeffecting and subtyping gives rise to a conser-
vative extension of the underlying type system. This would also have been
the case if we had adopted either the rule for subeffecting or the rule for
subtyping. However, had we incorporated no additional rule then this would
not be the case.

Remark. One can make a distinction between "Annotated Type Systems"
and "Effect Systems" but it is a subtle one and it is hardly fruitful to distin-
guish them in a formal way; yet intuitively there is a difference. The analysis
presented in this subsection is truly an Effect System because the annotations
relate neither to the input nor the output of functions; rather they relate to
the internal steps of the computation. By contrast the analysis of Subsection
5.1 is an Annotated Type System because the annotations relate to inten-
sional aspects of the semantic values: what function abstraction might be the
result of evaluating the expression.

5.4.2 Exception Analysis

Syntax. As our next analysis we consider an Exception Analysis; the aim
of this analysis is to determine:

For each expression, what exceptions might result from evaluating
the expression.

These exceptions may be raised by primitive operators (like division by zero)
or they may be explicitly raised in the program. Furthermore, there may be

320 TYPE AND EFFECT SYSTEMS

the possibility of trapping an exception by means of executing an expression
designed to overcome the source of the abnormal situation. To illustrate this
scenario we extend the syntax of expressions in FUN (Section 5.1) as follows:

e::=...I raises I handle s as el ine 2

The exception is raised by the raise-construct. If e2 raises some exception
s, then handle S2 as el in e2 will trap the exception in case s, = S2 and
this means that el will be executed; if S, 0 S2 we will continue propagating
the exception sl. We take a simple-minded approach to exceptions and use
strings to denote their identity.

Example 5.28 Consider the following program computing the combina-

torial() of the values x and y of the variables x and y:

let comb = fun f x => fn y =>
if x<O then raise x-out-of-range
else if y<O or y>x then raise y-out-of-range

else if y=O or y=x then 1
else f (x-1) y + f (x-1) (y-l)

in handle x-out-of-range as 0 in comb x y

The program raises the exception x-out-of -range if x is negative and in
the body of the let-construct this exception is trapped and the value 0 is
returned. The program raises the exception y-out-of -range if the value of
y is negative or larger than the value of x and this exception is not trapped
in the program. M

Semantics. Before presenting the analysis let us briefly sketch the se-
mantics of the language. An expression can now give rise to an exception so
we shall extend the set Val of values to include entities of the form raise
s. The semantic clauses of Table 5.4 then have to be extended to take care
of the new kind of values. For function application we shall for example add
three rules

F el -- raise s

F- el e 2 -+ raise s

P el -+ (fn, x => eo) I- e 2 -+ raise s

I- el e 2 -4 raise s

I-el (f (fnx =>eo) P e2 -+ v 2 P eo[x -+ v2]1 -raise s
[- el e2 -4 raise s

reflecting that an exception can be raised in any of the subcomputations in
the premise of rule [app]. Similar rules are addcd for the other constructs.

5.4 Effects 321

We can then specify the meaning of the new constructs by the following
axioms and rules:

Fraise s -+ raise s

F e2 -4•V2 if v 2 $ raise s
F handle s as el in e2 -+ v 2

-e 2 -- + raise s F el - v

F handle s as el in e2 - V v1

Note that the expression e2 in handle s as el in e2 may also raise an ex-
ception other than s in which case it will be propagated out of the handle-
construct. Similarly, the expression el may raise an exception which will then
be propagated out of the handle-construct.

Annotated types. The purpose of Exception Analysis is to determine
which exceptions might be raised and not trapped in the program. We shall
therefore take the annotations to be sets of exceptions. To get a more flexible
type system and a more powerful analysis we shall use a polymorphic type
system. This means that we shall allow the annotated types to contain
type variables and also we shall allow the annotations to contain annotation
variables. So the annotations (or effects) O E AnnES will be given by

WP ::= IS} 'I W U WP2 0

and the annotated types F E Typets will be given by:

?::= int I bool I - FI a

As usual effects will be considered equal modulo UCAI. To express the poly-
morphism concisely we introduce type schemes. They have the form

a ::= V((1,...- , W-).

where (1, (, is a (possible empty) list of type variables and annotation
variables; if the list is empty we simply write F for VO.F.

Example 5.29 Consider the function fnF f => fnx x => f x. We can give
it the type schema

V 'a, 'b, '1. ('a -- b) 4 ('a I'l 1b)

which has instances like

(int {x-out-of-range}. int)0 (int {x-out-of-range}. int)

and (int -4 bool) 4 (int 4 bool).

322 TYPE AND EFFECT SYSTEMS

[con] r F-ES C: T, &

[var] rF-ESx :a& 0 if f(x)=

[f][' F.Ix ES eo : Fo & ý&0

ni-ES fn, x => eo :rz -* Fo & 0

ffn [f + F. ;FOo][X :F- ý- •ES eo : Fo & ýo0

p -ES el :F2 -S •o & :P 1 & W -Es e2 : F2 & V 2
[app] F -Es el e2 : ;FO& &l1 U W2 U WO

Pi-Es eo :boo1 & ,o f i-Es el : F & W r F-ES e2 :F & 92
[f J-ES if eo then el else e2 : F & o U W1 U V92

SF-ES el :& 1 & W [x -+&l]P-Ese2 : F2 & W2
[let] F -ES let x = el in e2 : ;2 & W,1 U W2

I-Es el : To&1 & W, r-ES e2 : T2p2 & W2[or I-ES el op e2-t Top & W1 U W2

[raise] r 1-ES raise s: F & {s}

[handle] I-ES el : & 1 I-ES e2 : e & W2

r I-ES handle s as el in e2 : F & WI U (W22 \{S})

[sub] I-ES e :& if F < F' and WC g9'
[r -ES e :' & WP'

[gen] fI-Es e :••&fgn F -ES e :V((j,..--, C.,).:F & w9

if 1,, -,, do not occur free in f and W

[i s I'-ES e :V((I,...-, Cn).F & V9

[ins] -ES e : (0) &

if 0 has dom(9) g

Table 5.10: Exception Analysis.

5.4 Effects 323

Typing judgements. The typing judgements for the Exception Anal-
ysis will be of the form r F-ES e : & po

where the type environment f now maps variables to type schemes. As ex-
pected 6 denotes the type schema of e, and W is the set of exceptions that may
be raised during evaluation of e. The analysis is specified by the axioms and
rules of Table 5.10. Most of the axioms and rules are straightforward modifi-
cations of those we have seen before; in the rule [let] the use of a type schema
for the let-bound variable is going to give us the required polymorphism.

The axiom [raise] ensures that a raised exception can have any type and
the effect records that the exception s might be raised. The rule [handle]
then determines the effects of its two subexpressions and records that any
exception raised by el and any exception except s raised by e2 is a possible
exception for the construct. Formally, W\ {s} is defined as follows: {s} \ {s} =
0, {s} \{s} = {s'} ifs S s, (U')\ {s} = (W\ {s})U(pW\ {s}), 0\{s} = 0
and 13 \ {s} = 63. (We shall consider alternative definitions shortly.)

The rule [sub] is the rule for subeffecting and subtyping and the ordering
F < i' on types is given by

T1- 2 < c F1 F'

as was also the case in Subsections-5.4.1.

The rules [gen] and [ins] are responsible for the polymorphism. The generali-
sation rule [gen] is used to construct type schemes: we can quantify over any
type or annotation variable that does not occur free in the assumptions or in
the effect of the construct; this rule is usually used before applications of the
rule [let]. The instantiation rule [ins] can then be used to turn type schemes
into annotated types: we just apply a substitution in order to replace the
bound type and annotation variables with other types and annotations (pos-
sibly containing type variables and annotation variables); this rule is usually
used after applications of the axiom [var].

Example 5.30 The program

let f = fn g => fn x => g x
in f (fn y => if y < 0 then raise neg else y) (3-2)

+ f (fn z => if z > 0 then raise pos else O-z) (2-3)

evaluates to 2 because each of the summands evaluates to 1.

We may analyse f so as to obtain the type schema

V'a, 'b, '0.(a - 'b) - a (a- 'b)

324 TYPE AND EFFECT SYSTEMS

and we may analyse the two functional arguments to f so as to obtain:

int ng int & 0
int JE1 int & 0

We can now take two instances of the type schema for f: to match the first
argument of f we use the substitution ['a ý'- int; 'b ý-+ int;'0 '-+ {neg}] and to
match the second argument we use ['a ý,- int; 'b ý-+ int;'O ý-+ {pos}]. Hence
the type and effect of each summand is

int & {neg}

int & {pos}

and therefore
jnt & {Ineg,pos}

is the overall type and effect of the entire program.

If we did not avail ourselves of polymorphism we would have to rely on
subeffecting and subtyping and let f have the type

{ileg'POs} 0 {neg,pos}
(int -{) int) _+ (int p) int)

which is more imprecise than the type scheme displayed above, although we
would still be able to obtain int & {neg, pos} as the overall type and effect
of the entire program.

Remark. The judgements of the Exception Analyses were of the form
V -ES e : & & W but nonetheless most axioms and rules of Table 5.10 have
had conclusions of the form f I-Es e : F & sc. By changing rules [iA, [let],
[raise], [handle] and possibly [sub] one can obtain a more liberal system for
Exception Analysis. We leave the details for Exercise 5.14.

In the rule [handle] we make use of the notation W \ {s} and we next defined
/,3\{s} =/3 even though / might later be instantiated to {s}. Since/3\{s} C /3
should hold for all instantiations of/3, this is semantically sound (correspond-
ing to what happens in the rule [sub]). To define a less approximate system
it would be natural to let

ý : I \ }

and then to extend the axiomatisation of UCAI to deal with set difference. M

5.4.3 Region Inference

Let us once again consider the language FUN as introduced in Section 5.1.
The purpose of Region Inference is to facilitate implementing FUN in a stack-
based as opposed to a heap-based regime as is usually the case; since the

5.4 Effects 325

(rl,ol)

(r2,o2) [-]

(r1,1) (r2,1) (r3,1)

r1 r2 r3

Figure 5.1: The memory model for the stack-based implementation of FUN.

stack-based regime is quite efficient in reusing dead memory locations without
relying on explicit garbage collection this might lead to an efficient implemen-
tation. But functions are statically scoped and can produce other functions
as results, so it is by no means clear that a stack-based regime should be
possible; the purpose of region inference is to analyse how far locally allo-
cated data can be passed around so that the allocation of memory can be
performed in an appropriate manner. This leads to a memory model for the
stack-based regime where the memory is a stack of dynamic regions (rl, r2,
r3, -..) and each dynamic region- is an indexed list (or array) of values as
illustrated in Figure 5.1.

Syntax. To make this feasible we shall introduce a notion of extended
expressions that contain explicit information about regions. To this end we
introduce region names, region variables, and static regions

rn E RName region names

p E RVar region variables

r E RegRI regions

as follows:

rn ::= rlIr2Ir3I..-

o ::- "11"2 1"31 ...

r :: I rn

The syntax of extended expressions

ee E EExp

is given by:

ee ::= c at r Ix Ifn, x => eeo at r Ifun, f [, x => eeo at r eel ee 2

326 TYPE AND EFFECT SYSTEMS

if eeo then eel else ee 2 I let x = eel in ee 2 I eel op ee2 at r

I ee[rl at r I letregion g in ee

Here we write a for a possibly empty sequence ,1 , Ok of region variables
and similarly F for a possible empty sequence rl, ." , rk of regions. The
main point of the extended expressions is that if a subexpression explicitly
produces a new value then it has an explicit placement component, "at r",
that indicates the region in which the value is (to be) placed. The letregion-
construct explicitly allows to deallocate the regions, 6, that are no longer
needed and the placement construct, ee[rl at r, allows us to explicitly place
a "copy" of ee (typically a recursive function) in the region r. The construct
for recursive function definitions explicitly takes a sequence of region variables
as parameters; intuitively, this ensures that the various incarnations of the
recursive function can have its local data in different regions.

Example 5.31 The relationship between expressions and extended ex-
pressions will be clarified when presenting the typing judgements below. For
now we merely state that the expression e

(let x = 7 in fny y => y+x)9

will give rise to the extended expression ee:

letregion 01, 03, V4_

in (let x = (7 at ol)
in (fny y => (y+x) at 02) at 03) (9 at 04)

Here the value 7 is placed in the region ol, the value of x+y in region 02,

the function named Y in the region 03 and the argument 9 in region 04.

The final value (which is 7 + 9 = 16) is therefore to be found in region g2.

All other regions (01, 03, and 04) no longer serve any purpose and can be
deallocated; this is made explicit by the letregion-construct. In the version
of the program that is actually run we should replace the metavariables 01,

03 and 04 by region variables "1, "2, and "3 and furthermore the free region
variable 02 should be replaced by a region name such as rl. 0

Semantics. The Natural Semantics of expressions is given by Table 5.4
and we now devise a Natural Semantics for the extended expressions so as to
make the r6le of regions clear. The transitions takes the form

p [- (ee,) -- (v,'')

where p is an environment, ee is an extended expression, € and ,' are stores
(as in Figure 5.1) and v is an expressible value. Formally we shall use the

5.4 Effects 327

domains:

p E Env = Var.-+EVal

v E EVal = RName x Offset

0 E Offset = N

; E Store = RName -+rn (Offset -+fin SVal)

w E SVal

Here Var,. is the finite set of variables in the extended expression ee. of
interest, a store is a stack of regions (where the stack is modelled as a finitary
mapping from region names), a region is a list of storable values (where the
list is modelled as a finitary mapping from indices called offsets), and a
storable value is given by

w ::= c I (x, ee, p) I x, ee, p)

consisting of ordinary constants, closures, and so-called region polymorphic
closures. In addition to the formal parameter, the body of the function,
and the environment at the definition point, a region polymorphic closure
also contains a list of formal region parameters that have to be instantiated
whenever the function is called - in this way it is explicityly ensured that
the local data can be properly placed in the store for each function call.
To simplify the notation we shall allow to view a store as an element of
RName x Offset -*n,, SVal and so write q(r, o) for q(r)(o) etc. All ordinary
values are "boxed" which means that they are always placed in the store and
hence an expressible value is always a pair consisting of a region name and
an offset.

The semantics is defined in Table 5.11 and is explained below. We intend
that an extended expression does not contain free region variables when eval-
uated and hence many r's have become rn's. The axiom [con] for constants
explicitly allocates a new offset in the relevant region and places the constant
in that cell. The axiom [var] for variables does not involve the allocation of
a new offset and merely performs a lookup in the environment.

The axiom [fn] for function abstraction allocates a new offset where it stores
an ordinary closure consisting of the formal parameter, the body of the func-
tion, and the current environment. The axiom [fun] for recursive functions
constructs a region polymorphic closure that records the list of formal region
variables to be instantiated by means of the placement construct explained
below; also note that recursion is handled by updating the current environ-
ment with a reference to the function itself.

The rules [app], [if1], [if2] and [let] should be straightforward and the rule [op]
for binary operations allocates a new offset for the result.

The rule [place] takes care of the situation where an extended expression
(such as a variable or a recursive function definition) evaluates to a region

328 TYPE AND EFFECT SYSTEMS

[con] p F- (c at rn, q) -+ ((rn, o), ,[(rn, o) '-+ c])

if o 0 dom(',(rn))

[vad pH F (x,,;) --+ (p(x), q)

[n] p F ((fn, x => eeo) at rn,,;)((rn, o),; ¢[(rn, o) •+(x, eeo, p)])

if o ý dom(c;(rn))

[fun] pc F ((f un, f [p x => eeo) at in,((rn, o), ¢[(rn, o) t- (W, x, eeo, jo~f (--n, o)])])

if o V dom(ci(rn))

p F- (eel,,) -4 ((rniOl),-2) p F- (ee 2 ,1 2) --- + (V2, -3)

po[x -+ V2] F- (eeo, ;3) --- + (vo, q)
o [- (eel ee2, ý;) ---+ (VO, 14)

if -3 (rnl, ol) = (x, eeo, po)

l p F (eeo, •1) --+ ((rn, o), -2) p I- (eel, ;2) -+ (vi, ;3)
]p F- (if eeo then eel else ee 2 ,'i) --+ (v1, 3)

if ;2 (rn, o) = true

p- (eeo,ql) --4 ((rnio),•2) pF (ee 2 , Q) -- + (V2 ,; 3)

ip F- (if eeo then eel else ee2 ,el) -- + (v2 ,;s)

if q2 (rn,o) = false

[let] jP F (eel,,;) -+ (vl'2) p[x F-+ vl] F- (ee2, 2) -- + (V2 ,;3)p F- (let x = eel in ee2,1) --- + (v 2 ,4;)

[op] jopF (eel,-;) --- + ((rni,o1),- 2) pF (ee2 ,'2) -+ ((rnn2 ,O2),, 3)
p p- ((eel op ee2) at rn, 4l) -- + ((rn, o),;s[(rn, o) i-+ v])

if ;3 (rni,pi) op ;3 (rn 2 ,0 2) = v and o 0 dom(3(s(rn))

[place] p F- (ee, -;,) --4 (((rn', o'),,;2)
jI-(ee [rW] at rn, -;)

--4 ((rn, o), ;2 [(rn, o) '-+ (x, eeo[•-+ r'n], po)])
if o V dom(, 2 (rn)) and ;2 (rn',o') = (,x, eeo,po)

[egion] p F (ee[g i- 7;n],c 1 [r7; '-+ -+ (v,2)
p F- (letregion 9 in ee, Q -+ (v, q2\\r-n)

if {r7n} n dom(c) = 0

Table 5.11: Natural Semantics for extended expressions.

5.4 Effects ?29

polymorphic closure. The placement construct ee[rl at r then allocates a
new cell in the region r and stores a copy of the region polymorphic closure
in the cell except that it ensures that the list of formal region parameters is
replaced by a list of the actual region names; this is an important feature for
allowing each recursive call of a function to allocate its auxiliary data locally
on the stack rather than being lumped together (in the heap) with data from
other recursive calls.

Finally, the rule [region] for the letregion-construct allocates new unused
region names to be used instead of the region variables, evaluates the enclosed
extended expression, and finally deallocates the newly allocated region names;
formally, dom(,\\r7) = dom(q) \ {r7n} and V(rn, o) E dom('\\r7'n) : ý(rn, o) =
(\\;)(n o).

Annotated types. When analysing the extended expressions we shall
want to keep track of those regions that may be affected during evaluation:
in what regions do we place (or put) data and from what regions do we
access (or get) date. This is somewhat analogous to the Side Effect Analysis
of Subsection 5.4.1 and will be taken care of using the effects to be defined
below. Another purpose of the analysis is to keep track of the regions in
which the values reside. To this end we shall say that an extended type is a
pair

consisting of an annotated type and the region where the value resides. For-
mally, annotations (or effects), annotated types and type schemes

•o E AnnRI effects

9 E TypeRI annotated types

6 E SchemeRi type schemes

are given by:

Vo ::= {putr}I{getr}jIVlUU2 10/3

F ::- nt I boolI (91rl) -L4 (F 2 @r 2) Ia

S : V(Oal,-'',On),(l, ''',-,P),[I•l,''...,Ok].9F

Here we distinguish between two kinds of type schemes: compound type
schemes (with [pl) to be used for recursive functions and ordinary type
schemes (without [,6]). We shall write F for VO,).F whereas we only al-
low to write V[].F for VO, (), [].F; in this way the two kinds of type schemes
can always be distinguished. The use of an annotation variable, 3•, in the
annotation placed on the function arrow, 3.V, is related to the use of sim-
ple types in Section 5.3 and is mainly of interest for the inference algorithm;

330 TYPE AND EFFECT SYSTEMS

for the present purposes /3. can be read as /0 U V although the inference
algorithm will view it as the constraint/3 6D /3 U V.

Example 5.32 Returning to the extended expression ee

letregion pi, 03, 04
in (let x = (7 at 0i)

in (fny y => (y+x) at 02) at 03) (9 at 04)

of Example 5.31, the subexpression 7 at p, will have the annotated type
int@01 , the function abstraction (f ny y => (y+x) at 02) at Q3 will havc the
annotated type

where o = {get 04, get 91, put 02 }, and the overall expression will have the
extended type int@02. 0

Typing judgements. It would be quite feasible to define typing judge-
ments for verifying that extended expressions are correctly typed. However,
the main use of region inference is to facilitate the implementation of FUN
and for this reason we shall touch upon Section 1.8 and let the typing judge-
ments also describe how to translate expressions into extended expressions.
This suggests using typing judgements of the form

rI-RI e'-.--+ ee : F©r&

where f is a type environment mapping variables into extended type schemes
that are pairs consisting of a type scheme and a region.

The analysis is defined in Tables 5.12 and 5.13 and is explained below. The
axiom [con] for constants inserts an explicit placement component and records
the placement in the effect. The axiom [var] for variables is straightforward
as it involves no explicit placements.

The rule [fn] for ordinary function abstraction transforms the body of the
function and then inserts an explicit placement component for the function
itself. The rule [fun] for recursive functions involves a restricted form of poly-
morphic recursion (excluding type variables as this would be undecidable):
polymorphic recursion means that when analysing the body of the function
we are allowed to use the recursive function polymorphically. This generality
gives much more precise type information and is essential for the success of
region inference. For conciseness the rule has been presented in a non syntax
directed manner where the rule for ordinary functions is needed to analyse
the premise; clearly the rule could have been expanded so as to be syntax di-
rected. The rules for application, conditional, local definitions and operators
are straightforward.

5.4 Effects 331

[con] r7- RI c + c at r: (rc@r) & {put r}

[var] F1Rx X-+ x: G&0 if l(x)=

[-+ F ,@rý] F-RI eo "-* eeo : (Fo@ro) & S0o

] F-RI fn., x => eo -,+ (fn.r x => eeo) at r :

((F,2 @r2, - Fo@ro)@r) & {put r}

r[f 4 (Va, [,1.;)@r] FRI fn, x --> eo
[fun]4 ,f(fn. x => eeo) at r: (F@r) & 99

F-Rl f un, f x => eo --+ (fun,• f [o x => eeo) at r:
((v [,o1.)@r) & 'P

if ý and 9 do not occur free in f and WP

f t-RI el +.z eel : ((F2@r 2 -_1L9.-4 Fo@ro)@rl) & 991I- fRI e2 -- + ee2 : (;2@r 2) & 992[app] ~ F-Rj el e2 eel ee2 : (Fo@ro) &'l U 992 U 0P0 Ufo U {get rl}

f F-RI eo ^-* eeo : (bool@ro) & 'Po

Mf-RI el -eel : (F@r) & W1 F ý-Ri e 2 + ee 2 : (F@r) & W2

i FRI if eo then el else e2 " if eeo then eel else ee 2 :
(F@r) & WO U 'P1 U V2 U {get ro}

-FRI el ^-+ eel (61 @rl) & V,

[let] r[x -+ tl@rl] FRI e 2 - ee 2 : (F 2 @r 2) & WP2

F -RI let x = el in e 2 -- + let x = eel in ee 2 : (F2@r2) & 'P1 U VP2

f F-RI el eel (7,P@rl) W ,P1

lop] fI'-RI e2 "- ee 2 (Top@r2) & 'P2

p FRI el op e2 -+* (eel op ee 2) at r :
(r"op@r & 'P1 U W2 U {get r1 ,get r2 , put r}

Table 5.12: Region Inference Analysis and Translation (part 1).

Then we have a rule [sub] for subeffecting and subtyping; clearly one could de-
cide to dispense with subtyping in which case subeffecting could be integrated
with function abstraction as illustrated in Section 5.1.

There are two rules [genl] and [gen 2] for generalising over type variables. One

332 TYPE AND EFFECT SYSTEMS

[sub] rI-RI e ^-+ ee : (F@r) & if F < F' and WC
[gen] Ff-RI e --+ ee: (F'@r) & V

r ' -RI e -+- ee: ((@r) &

[genl] ~f '-RI e -,- ee : ((V,.F) @r) & o
if 6 do not occur free in f and o

r -RI e -'+ ee: ((V,3,[-)@r & [o

[enf] fRI e-- ee: ((, [.)@r) &
if h do not occur free in f and

r -R e -- ee : ((V-,,3'.e)@r (
[ins1] r F -R, e --+ ee : ((0 F)@r) &q

if 0 has dora(O) _ la', ý}

[ins2] f F-R, e -- * ee[0o-1 at r' : ((0 F)@r') & V U {get r, put r'}

if 0 has dom(O) C_ , ol

[region] f I--R, e--. ee: (F@r) & ýp
f F-RI e -,+ letregigil a in ee : (F@r) & ýp'
if so' = Observe(f , F, r) (o) and 9 occurs in V but not in Vo'

Table 5.13: Region Inference Analysis and Translation (part 2).

applies to ordinary types and the other to compound type schemes. In both
cases we could have adapted the rule so as also to generalise over (additional)
region and effect variables; however, even when doing so, the type inference
is quite separate from the region and effect inference.

There are two inference rules [ins1] and [ins2] for instantiating a type scheme.
One is for ordinary types schemes and is invisible as far as the syntax of the
extended expression is concerned. The other is for compound type schemes
and is visible in the extended expression in that an explicit placement con-
struct is introduced; additionally the effect records that the value has been
accessed and placed again. Both ruleb would typically be used immediately
after the axiom for variables.

The rule [region] for the letregion-construct uses an auxiliary function,
Observe, to reduce the effect to what is visible from the outside; region vari-
ables that are no longer visible can then be encapsulated within the program.

5.5 Behaviours 333

The auxiliary function may be defined as follows:

Observe(,Fr')({put r}) = {put r} if r occurs in F,?, orr'

S,0 otherwise

({getr} if r occurs in F,?, orr'
Observe(P, ?, r')({get r}) = otherwise

Observe(fL, F, r') (•o U V2) = Observe(F, F, r') (Vi) U Observe(fI, F, r') (V2)

Observe(r F, r')(0) = 0

Observe(F, ,r') (3) = 0 if/3 occurs in F,?, or r'{ otherwise

Example 5.33 In Example 5.31 we considered the expression e

(let x = 7 in fny y => y+x)9

and the extended expression ee:

letregion 0L, 03, 04
in (let x = (7 at 01)

in (fny Y => (y+x) at 02) at L3) (9 at 04)

One can now show that [I R e ee: (int@02) & {put 02}.

5.5 Behaviours

So far the effects have had a rather simple structure in that they merely
denote sets of atomic actions like accessing a value or raising an exception.
The effects have not attempted to capture the temporal order of these atomic
actions. Often such information would be useful for example to check that
a variable is not accessed until after it has been assigned a value. In this
section we shall show how to devise a Type and Effect System where effects
(called behaviours) are able to record such temporal ordering in the context
of a Communication Analysis for a fragment of Concurrent ML.

5.5.1 Communication Analysis

Syntax. Let us consider an extension of the language FUN with con-
structs for generating new processes, for communicating between processes
over typed channels, and for creating new channels. The syntactic category
e E Exp of expressions is now given by:

e :: channelf I spawn eo I send el on e 2 I receive eo I el;e 2 I ch

334 TYPE AND EFFECT SYSTEMS

Figure 5.2: The pipeline produced by pipe [fl, f 2] inp out.

Here channel, creates a new channel identifier (denoted ch above), spawn e0
generates a new parallel process that executes eo, and send v on ch sends the
value v to another process ready to receive a value by means of receive ch;
sequential composition is as before. Channel identifiers

ch E Chan channel identifiers

are created dynamically and are given by:

ch ::= chanl I chan2 I

Also we shall assume that the constants, c E Const, not only include integers
and booleans but also a special value called unit and denoted by (); this is
the value to be returned by the spawn and send constructs.

Example 5.34 In this example we shall imagine that the expressions are
extended with operations on lists: isnii e tests whether or not the list e
is empty, hd e selects the first element and ti e selects the remainder of
the list. We now define a function pipe that takes a list of functions, an
input channel and an output channel as arguments; it constructs a pipeline
of processes that apply the functions to the data arriving at the input channel
and returns the results on the output channel (see Figure 5.2). It makes use
of the function node that takes a function, an input channel and an output
channel as arguments and it is defined as follows:

let node = fnF f => fnj inp => fno out =>
spawn ((funH h d => let v = receive inp

in send (f v) on out;
h d) ())

in funp pipe fs => fni inp => fno out =>
if isnil fs then node (fnx x =>x) inp out

else let ch = channelc

in (node (hd fs) inp ch; pipe (tl fs) ch out)

To deal with the empty list the function produces a process that just applies
the identity function (denoted id in Figure 5.2).

5.5 Behaviours 335

(f n, x => e) v -+ e[x '-+ v

let x = v in e -+ e[x -+ v]

v1 opv 2 -+v if vl opv 2 =v

fun, f x => e -+ (fn, x => e)[f '-+ (fun, f x => e)]

if true then el else e2 -+ el

if false then el else e2 -+ e2

v;e -- e

Table 5.14: The sequential semantics.

Semantics. We shall begin by defining the operational semantics of the
sequential fragment of the language and then show how to incorporate it into
the concurrent fragment. This will make use of a notion of evaluation context
in order to obtain a succinct specification of the semantics. The sequential
fragment is evaluated in an eager left to right manner and does not need any
notion of a store, a state or an environment. A fully evaluated expression
gives rise to a value which is a constant, a channel identifier or a function
abstraction. This may be modell_-d by

v E Val values

defined by:
v ::= c ch I fn, x => eo

There is no need to package the function abstraction with an environment
because the semantics will treat a function application (fn, x => eo) v by
substituting v for x in eo yielding eo [x ý-+ v].

Part of the sequential semantics is specified in Table 5.14. In the manner of
a Structural Operational Semantics it axiomatises the relation

el -4 e2

for when the expression el in one step evaluates to e2 . However, it does not
describe how el may evaluate to e2 as a result of a subcomponent ell of el
evaluating to e12 unlike what has been the case for the Structural Operational
Semantics used so far. As an example Table 5.14 cannot be used to show
that (1 + 2) + 4 -, 3 + 4 although it can be used to show that 1 + 2 -+ 3.

To recover from this shortcoming we shall make use of evaluation contexts;
these are expressions containing one hole which is written []. Formally,

336 TYPE AND EFFECT SYSTEMS

evaluation contexts E are given by:

E ::= []IEejvEIletx=Eine
I if E then ei else e2 I E op e I v op E
I send E on e I send v on E I receive E I E; e

Here the syntax ensures that E is an expression containing exactly one hole
while e is an ordinary expression without any holes. The definition of E may
be read as follows: you are allowed to evaluate an expression on its own,
you may evaluate the function part of an application, you may evaluate the
argument part of an application only after the function part has been fully
evaluated etc. We shall write E[e] for the expression obtained by replacing
the holc of E with e so for example if E is [] + 4 then E[e] is e + 4. We
dispense with the detailed definition of E[e] because it is straightforward:
since the hole in E never occurs in the scope of a bound variable there is no
risk of variable capture.

The basic idea then is to stipulate that el evaluates to e2 in one step (el #. e2)
if there exists E, elo and e20 such that el = E[eio], el 0 -+ elo and e2 = E[e2 0].
As an example, (1+2)+4 =- 3+4 by taking E to be []+4, elo to be 1+2 and
e2 0 to be 3. Note that having E op e as an evaluation context corresponds
to having an inference rule

elo -4 e20

elo op e 2 -4 e2 0 op e 2

as in Table 3.3. As already said, &rr advantage of using evaluation contexts is
that the description of the semantics often becomes more succinct; we shall
benefit from this below.

The concurrent semantics operates on a finite pool, PP, of processes and a
finite set, CP, of channels. The set of channels keeps track of those chan-
nels that have been generated so far; this allows us to evaluate channel,
by generating a new channel that has never been used before. The pool of
processes both keeps track of the processes spawned so far and of the expres-
sion residing on each process; this allows us to allocate new processes when
an expression is spawned and to let distinct processes communicate with one
another. Formally

p E Proc processes

is defined by
p ::= procl I proc2 ...

and we take
CP E Pfin(Chan)

PP E Proc -+fin Exp

where it will be the case that each PP(p) is a closed expression. We shall
write PP[p: e] for PP' given by dom(PP') = dom(PP) U {p}, PP'(p) = e
and PP'(q) = PP(q) for q 0 p.

5.5 Behaviours 337

[seq] CP, PP[p : E[el]] #- CP, PP[p : E[e 2]]
if el -+ e2

[chan] CP, PP[p: E[channel]] =l CP U {ch}, PP[p: E[ch]]
if ch 0 CP

[spawn] CP, PP[p: E[spawn eo]] =] CP, PP[p: E[O]][po: eo]
if Po 0 dom(PP) U {p}

[comm] CP, PP[p1: El[send v on ch]][p2 : E2 [receive ch]]
=ý CP, PP [pz : El[()]] [p2 : E2 [v]]

if p1 0 P2

Table 5.15: The concurrent semantics.

The concurrent semantics is specified in Table 5.15. It is a Structural Oper-
ational Semantics that axiomatises the relation CPj, PP, #. CP2 , PP 2 for
when one configuration CPj, PP1 in one step evolves into another configu-
ration CP2 , PP 2 . Thanks to the use of evaluation contexts all clauses can
be written succinctly. The clause [seq] incorporates the sequential semantics
into the concurrent semantics (and corresponds to the discussion of el =: e2
above). The clause [chan] takes care of the allocation of channels: channel,
is replaced by a fresh channel identifier ch. The clause [spawn] generates a
new process, initialises it to the expression to be executed, and replaces the
spawn-construct by the unit value. Finally, the clause [comm] allows syn-
chronous communication between distinct processes: the receive-construct
is replaced by the value being sent and the send-construct is replaced by the
unit value.

Annotated types. The purpose of the Communication Analysis is for
each expression to determine its communication behaviour: what channels
will be allocated, what type of entities will be sent and received over channels,
and what is the behaviour of the processes being generated: furthermore,
we are interested in recording the temporal order (or "causality") among
these actions: what takes place before what. There are several ways to
formalise this and we shall choose one where the inference system is not overly
complicated (but where the inference algorithm presents some challenges).

To formalise our idea we introduce the following syntactic categories:

F E TypecA types

SE AnncA annotations (or behaviours)

r E RegcA regions

SE SchemecA type schemes

338 TYPE AND EFFECT SYSTEMS

Types are much as before but extended with a unit type (for the unit value)
and a type for channels:

F::=a I bool l int I unit IF, --4 F2 I F chan r

Type variables, a E TVar, are as before.

Behaviours differ from the annotations and effects used so far in that we shall
not merely use union for combining them:

I chan r I spawn V I r!:I r?F

Behaviour variables, i3 E AVar, are as before and the behaviour A is used for
atomic actions that do not involve communication; in a sense it corresponds
to the empty set in previous annotations although it will be more intuitive to
think of it as the empty string in regular expressions or as the silent action
in process calculi. The behaviour V1; V2 says that •o takes place before W2

whereas V1 + V2 indicates a choice between V, and V 2 (as will be the case
for the conditional); this is reminiscent of constructs in regular expressions
as well as in process algebras. The construct rec/3. indicates a recursive
behaviour that acts as given by p except that any occurrence of / stands for
rec/,6. itself.

The behaviour F chan r indicates that a new channel has been allocated over
which entities of type F can be c.o-Mmunicated; the region r indicates the set
of program points (see below) where the creation could have taken place.
The behaviour spawn V indicates that a new process has been generated and
that it operates as described by V. Next r!? indicates that a value is sent
over a channel of type ? chan r and r?F indicates that a value is received
over a channel of that type; this is reminiscent of constructs in most process
algebras (in particular CSP).

Regions have a bit more structure than in Subsection 5.4.3 because now we
shall also be able to take the union of regions:

r ::= {1r} I q I l U r 2 0

Region variables, o E RVar, are as before. In Subsection 5.4.3 the static
regions were used to ensure that at run-time data would be allocated in the
same dynamic regions; here regions are used to identify the set {1r1 , ... , 7r,,}

of program points where a channel might have been created. (So program
points now play the r6le of region names.) However, these regions will not
appear explicitly in the syntax of expressions, types or behaviours.

Type schemes have the form

a ::= V(G¢ ,...,

5.5 Behaviours 339

where , . is a (possibly empty) list of type variables, behaviour vari-
ables and region variables; if the list is empty we simply write F for VO.F.

Example 5.35 Returning to the program of Example 5.34, the node func-
tion is intended to have the type schema

V'a, 'b,'1, "1, ,2.('a- 2 'b) -A* ('a chan "1) -4 ('b chan "2) -Y4 unit

where V = spawn(rec '2. ("1?'a; '1; '2!'b; '2))

corresponding to the function argument having type 'a -ý4 'b, the input
channel having type 'a chan "1 and the output channel having type 'b chan "2.
When supplied with these arguments the node function will spawn a process
that recursively will read on the input channel, execute the function supplied
as its parameter, and write on the output channel - this is exactly what is
expressed by ýp.

The pipe function is intended to have the type schema

V'a,'1,"1, '2.(('a :4 'a) list -4 ('a chan ("l U {C}))
"-A+ ('a chan `2) -4 unit

where V' = rec '2. (spawn(rec t3. (("I U {C})?'a; A; "2!'a; t))
+ 'a chan C; spawn(rec '4. (("1 U {C})?'a; 'I; C!'a; '4)); '2)

where the first summand in the body of V' corresponds to the then-branch
where node is called with the identfty function (which has behaviour A) and
the second to the else-branch of the conditional. Here we see that a channel
is created, a process is spawned and then the overall behaviour recurses. We
shall return to these types schemes after presenting the typing rules. M

Typing judgements. The typing judgements for the Communication

Analysis will be of the form

I-CA e: • & C,

where the type environment r maps variables to type schemes (or types), 6
is the type scheme (or type) for the expression e, and cp is the behaviour that
may arise during evaluation of e. The analysis is specified by the axiom and
rules of Tables 5.16 and 5.17 and have many points in common with those
we have seen before; the differences are explained below.

The axioms [con] and [var] for constants and variables differ from the similar
axioms in Table 5.10 in that A is used instead of 0. A similar remark holds
for the two rules [fN] and [fun] for functions. In the rule [app] for function
application we now use sequencing to express that we first evaluate the func-
tion part, then the argument and finally the body of the function. In the rule
[iA for conditional we additionally use choice to express that only one of the

340 TYPE AND EFFECT SYSTEMS

[con] r f-CA c: T-r & A

[var] f I-CA X: & A if F(x)=

r[x + F,,] F-CA eo F: &o Wo
[f] F CA fn, x => e0 : Fx Fo & A

[fi F, -y+ :0][x f?] FCA eo ::F0 & WO
fUf] PI-CA funi f x => eo : -F + __% Fo & A

[p] F-CA el:TF2 ^ F & (p, frr-CA e2:F2 & W2
app] -CA el e2 : FO & W1; W2 ; VO

I-CcAeo:bool& o FF-cAel: F -&cAe2: &W2
[i CA if eo then el else e 2 : Fr & O; (W1 + W 2)

e -CA el : 61 & Wl r[x a 1]F [-CA e 2 :F2 & W2[let] r-Alet x = el in e2 : F2 & W1; W2

C r-A el :or1',p & ýoi I-CAe 2 :T2p &V 2
[] -CA el ope 2:o & Wol;W 2 ;A

Table 5.16: Communication Analysis (part 1).

then- and else-branches are taken. Then the rules [let] and [op] should be
straightforward.

The axiom [chan] for channel creation makes sure to record the program
point in the type as well as the behaviour, the rule [spawn] encapsulates the
behaviour of the spawned process in the behaviour of the construct itself and
the rules [sen] and [receive] for sending and receiving values over channels
indicate the order in which the arguments are evaluated and then produce the
behaviour for the axiom taken. The rules [seq] and [ch] are straightforward
and the rules [gen] and [ins] are much as in Table 5.10.

The rule [sub] for subeffecting and subtyping looks like the one in Table 5.10
but involves a few subtleties. The ordering F _ ?< on types is given by

• "-• F2• -chanr < ' chanr'

and is similar to the definition in Subsection 5.4.1: F, -Y F2 is contravariant
in F1 but covariant in W and F2, and F chan r is both covariant in F (for
when a value is sent) and contravariant in F (for when a value is received)

5.5 Behaviours 341

[chan] ['-CA channel., F chan {1r} & F chan {lr}

[] [-CA eo :o & VOo
[spawn ' K-CA spawn eo unit & spawn SOo

PF4 r -CA el : F&S~ Wr -CA e2 : Fchan r 2 & W2
[send] F-CA send el on e2 : unit & VI; cp2 ; r2!r

[receive] r --CA eo : F chan r0 & •o

[F-CA receive eo : F & po; ro?F

[I-CA el : F1 & WI F -CA e2 :;F2 & W2
[seq] F-CA el;e2 :2 & Vl;WO2

[ch] Ft-CA ch: chan r & A if F chanr = F(ch)

[sub-cAe:T&So if F < r andn •'
r F CA e :' & WO'

[gen] Pf-C A e :F &l W

r ýcA e V((1, --, (n).:F& W
if i,"', do nQt occur free in f and (o

SI-CA e V((I," , (n.).; & W0

[ins] Fce(C,,C)&S
r F-CA e : (0 F) & Vo

if 0 has dom(0) g I(,, ¢,}

Table 5.17: Communication Analysis (part 2).

and it is covariant in r. The ordering r C r' means that r is "a subset of"
of r' (modulo UCAI) just as what was the case for the effects in Section
5.4. Finally, the ordering VO E So' on behaviours in more complex than before
because of the rich structure possessed by behaviours. The definition is given
in Table 5.13 and will be explained below. Since the syntactic categories of
types and behaviours are mutually recursive also the definitions of F < F'
and O E_ SO' need to be interpreted recursively.

The axiomatisation of So _ SO' in Table 5.18 ensures that we obtain a preorder
that is a congruence with respect to the operations for combining behaviours.
Furthermore, sequencing is an associative operation with A as identity and
we have a distributive law with respect to choice. It follows that choice is
associative and commutative. Next the axioms for recursion allows us to

342 TYPE AND EFFECT SYSTEMS

SO1 E 2 W•2W2
E 3SE • 01 V 3

(P1 E W2 W3 E; 4 ýP1 V2 VP3 EWo4

V1 9EW2 (P1 V2

spawn V, g spawn W2 recI3.9pl E recA•.(2

V1', (W2; W3) E; (V1; W2); V3 M•; V2); W3 E- V1; (W2; W3)

(V1 + W2); W3 E (VI;V3) + (W2;P3) (WI;W3) + (W2;ý3) E (W1 + V2);W3

V g; A;Wo A; W E_ WP ý C W; A W;A E:

V1 E W1 -- W2 V2 E- V1 + V2 W + W E

rec,3.V E V[04 reco.W] W[4 3 reco.W] E reco.,W

F<;F F'<F rC~r'

F chan r E F' chan r'

r 1 Cr 2 F1 :<5F2 rlCr2 F2 •; 1

r 1 !?1 E r 2 !2 " rl?F1 Er 2?72

Table 5.18: Ordering on behaviours.

unfold the rec-construct. The final three rules clarify how behaviours depend
upon types and regions: F chan r is both contravariant and covariant in F and
is covariant in r (just as was the case for the type F chan r); r!F is covariant
in both r and F (because a value is sent) whereas r?? is covariant in r and
contravariant in F (because a value is received). There is no explicit law for
renaming bound behaviour variables as we shall regard rec3.W as being equal
to recf'.W' whenever they are a-equivalent.

The Communication Analysis in Tables 5.16 and 5.17 differs from the Region
Inference Analysis of Tables 5.12 and 5.13 in that there is no analogue of the
rule [region] where an Observe function is used to reduce the annotation to
what is visible from the outside. The reason is that the Communication Anal-
ysis is intended to record all the side effects (in the. form of communications)
that take place during computation.

Example 5.36 Returning to the program of Example 5.35 we can now

Concluding Remarks 343

verify that the node function can be given the type:

('a -!4 'b) -4 ('a chan "1) -4 ('b chan '£2) --4 unit

where V = spawn(rec £2. ("f?'a; 'I; '2!'b; '2))

We use the rules [fun] and [sub] of Tables 5.16 and 5.17 together with the
axiom [O[F -+ recj3.V'] _E rec#./ of Table 5.18. Then the rule [gen] allows us
to obtain the type schema given in Example 5.35.

Turning to the pipe function we first note that it can be given a type of the
form

(('a 'a) list) chan ("+ (a chan --"4 unit

where the regions for the input and local channels are "merged" because they
can both be used as input channels in a call to pipe whereas the region for
the output channel is always kept separate. The behaviour V' is of the form

rec *2. (spawn(rec '3. (("I U {C})?'a; A; '2!'a; ý3))
+ 'a chan C; spawn(rec '4. (("1 U {C})?'a; '1; C!'a; 4)); £2)

because in the then-branch the input channel for node has type 'a chan ("1 U
{C}) and the output channel has type 'a chan '2, whereas in the else-branch
the input channel for node has type 'a chan ("1 U {C}) and the output channel
has type 'a chan {C} (as well as 'a- ehan ("1 U {C})). The rule [gen] allows us
to obtain the type schema displayed in Example 5.35.

Concluding Remarks

Control Flow Analysis. The literature [37, 38, 54, 11] contains many
formulations of non-standard type systems aiming at performing Control
Flow Analysis. The formulation presented in Section 5.1 uses a particularly
simple set of techniques where types are annotated but there is no additional
effect component nor is there any coverage of polymorphism or subtyping.
Although there is no explicit clause for subeffecting in the manner of Section
5.4, we regard the formulation as a subeffecting analysis because the rules for
function abstraction allow to increase the annotation on the function arrow
in much the same way as is the case in subeffecting (and in much more re-
stricted ways than holds for subtyping; see also Exercise 5.12). References
for type systems with subtyping include [43, 42, 81] as well as the more ad-
vanced [63, 125, 126] that also deal with polymorphism. To allow a general
treatment of subtyping, these papers generally demand constraints to be an
explicit part of the inference system unlike what was done in Section 5.1. In-
deed, the formulation of Section 5.1 allows only shape conformant subtyping,

344 TYPE AND EFFECT SYSTEMS

where the underlying type system does not make use of any form of subtyp-
ing, and is thus somewhat simpler than atomic subtyping, where an ordering
is imposed upon base types, and general subtyping, where an ordering may
be imposed between arbitrary types.

The semantic correctness of the Control Flow Analysis established in Section
5.2 is expressed as a subject reduction result but formulated for a Natdral
Semantics (rather than a Structural Operational Semantics); this approach
to semantic correctness has a rather long history [86, 88, 144]. The Moore
family result about the set of typings is inspired by the ideas of [86] and is
included so as to stress the fundamental r6le played by partial orders in all
of the approaches to program analysis considered in this book; it also relates
to the study of principal types in type systems.

The development of a syntactically sound and complete algorithm for the
Control Flow Analysis in Section 5.3 is based on the ideas in [69, 143, 132,
133, 134]; Mini Project 5.1 is based on [134]. The basic idea is to ensure
that the algorithm operates on a free algebra by restricting annotations to be
annotation variables only (the concept of simple types) and by recording a set
of constraints for the meaning of the annotation variables; in our case this is
particularly straightforward because the Control Flow Analysis does not deal
with polymorphism. Our development differs somewhat from that of [42, 81]
that deal with the more advanced notions of atomic subtyping and general
subtyping. A different approach, not studied here, would be to dispense with
simple types and constraints and instead use techniques for unifying types in
a non-free algebra [124]. --

Restricted effects. The Type and Effect Systems presented in Section
5.4 all share the important property (also holding for the type system in
Section 5.1) that no type information is recorded in the effects and that the
shape of the type information cannot be influenced by the effects. All systems
included a proper effect component and thereby illustrated the diversity of
effects; some pioneering papers in Type and Effect Systems are [67, 77, 68, 69].
At the same time we illustrated a number of design considerations to be taken
into account when devising a Type and Effect System: whether or not to
incorporate subeffecting, subtyping, polymorphism, polymorphic recursion,
whether or not types are allowed to be influenced by effects (which is not the
case in Sections 5.4 and 5.1), and whether or not constraints are an explicit
part of the inference system (as is implicitly the case in Subsection 5.4.3).
However, it would be incorrect to surmise that the selection of components are
inherently linked to the example analysis where they were illustrated. Rather,
the techniques needed for semantic correctness and for syntactic soundness
and completeness depend heavily on the particular selection of components;
some are straightforward to deal with whereas others are beyond state-of-
the-art.

The Side Effect Analysis presented in Subsection 5.4.1 illustrated the use

Concluding Remarks 349,

of subeffecting and subtyping, but did not incorporate polymorphism, there
were no constraints in the inference system, and the effects did not influence
the types. This system is sufficiently simple that semantic soundness may
be established using the techniques of Section 5.2. If the rule for subtyping
was omitted then also the techniques developed in Section 5.3 would suffice
for obtaining a sound and complete inference algorithm. The presence of
the rule for subtyping naturally leads to a two stage implementation process:
first the underlying types are inferred and next the constraints on effects
(or annotations) are determined [134, 136]. This works because we restrict
ourselves to shape conformant subtyping where effects do not influence the
type information. However, adding polymorphism to this development would
dramatically increase the complexity of the development (see below).

The Exception Analysis presented in Subsection 5.4.2 illustrated the use of
subeffecting, subtyping and polymorphism, but there were no constraints in
the inference system, and the effects did not influence the types. Semantic
soundness is a bit more complex than in Section 5.2 because of the polymor-
phism but the techniques of [135, 132, 133, 8] suffice. For the development
of a syntactically sound and complete inference algorithm one may take the
two stage approach described above [134, 136]; as before, it works because
we restrict ourselves to shape conformant subtyping where effects do not
influence the type information. Alternatively, one may use more powerful
techniques [143, 132, 133, 97] that even allow to include type information
inside effects; this amounts to an extension of the approach of Section 5.3
and will be explained below. -

The Region Inference analysis presented in Subsection 5.4.3 illustrated the
use of polymorphic recursion as far as the effects are concerned, there were
implicitly constraints in the inference system (via the dot notation on func-
tion arrows), but still the effects cannot influence the types. The presentation
is mainly based on [137] but adapted to the FUN language and the style of
presentation used elsewhere in this chapter. To obtain effects that are as
small as possible the inference system uses "effect masking" (developed in
[77, 132, 133]) for removing internal components of the effect: effect compo-
nents that only deal with regions that are not externally visible. Semantic
correctness of the inference system can be shown using the approach of [138].
For the development of a syntactically sound inference algorithm one may
once more take the two stage approach described above; the first stage (or-
dinary type inference) is standard and the second stage is considered in [136]
where algorithm S generates effect and region variables and algorithm 7z
deals with the complications due to polymorphic recursion (for effects and
regions only). The inference algorithm is proved syntactically sound but is
known not to be syntactically complete; indeed, obtaining an algorithm that
is syntactically sound as well as complete, seems beyond state-of-the-art.

346 TYPE AND EFFECT SYSTEMS

General effects. One way to make effects more expressive is to allow
type information inside the effects so that the shape of the type information
can be influenced by the effects. This idea occurred already in [143, 132, 133]
for an extended Side Effect Analysis making use of polymorphism and subef-
fecting (but not subtyping); this work attempted to "generalise" previous
work based on the idea of expansive expressions and imperative versus ap-
plicative type variables [135, 131]. As already indicated, semantic soundness
amounts to an extension of the techniques of Section 5.2 as presented in
[135, 132, 133, 8].

The two stage approach no longer works for obtaining an inference algorithm
because the effects are used to control the shape of the underlying types
in the form of which type variables are included in a polymorphic type.
This suggests extending the techniques of Section 5.3 in that special care
needs to be taken when deciding the variables over which to generalise when
constructing a polymorphic type. The main idea is that the algorithm needs
to consult the constraints in order to determine a larger set of forbidden
variables than those directly occurring in the type environment or the effect;
this can be formulated as a downwards closure with respect to the constraint
set [143, 97] or by taking a principal solution of the constraints into account
[132, 133].

Adding subtyping to this development dramatically increases the complexity
of the development. The integration of atomic subtyping (a generalisation
of shape conformant subtyping), ýpolymorphism and subeffecting is done in
[97, 103, 8] that establishes semrfitic soundness and develops an inference
algorithm that is proved syntactically sound; extensions of this development
incorporate a syntactic completeness result (see the discussion of [6] below).
This work went a long way towards integrating the techniques for polymor-
phism and subeffecting (but no subtyping) from Effect Systems [143, 132, 133]
with the techniques for polymorphism and subtyping (but no effects) from
Type Systems [63, 125, 126].

Another way to make effects more expressive is to let them contain infor-
mation about the temporal order and causality of actions, rather than just
being an unordered set of possibilities. In Section 5.5 we considered the task
of extracting behaviours (reminiscent of terms in a process algebra) from pro-
gram in Concurrent ML by means of a Type and Effect System; here effects
(the behaviours) have structure, they may influence the type information,
there are no explicit constraints in the inference system (although this is the
case in more advanced developments [6]), and there are inference rules for
subeffecting and (atomic) subtyping. These ideas first occurred in [91, 92]
(not involving polymorphism) and in [100, 101, 7] (involving polymorphism);
our presentation in Section 5.5 is mainly based on [100, 101] with ingredients
from [91, 92]. We refer to [6] for a comprehensive account of a more ambitious
development where the inference system is massaged so as to facilitate devel-

Mini Projects 347

oping a syntactically sound and complete inference algorithm; this includes
having explicit constraints in the inference system as is usually the case in
type systems that make use of subtyping. An application to the validation
of embedded systems is presented in [98].

Other developments. All of the formulations presented in this chap-
ter have had a number of common features: to the extent that polymorphism
has been incorporated it has been based on the Hindley/Milner polymor-
phism also found in Standard ML, there has been no subtyping involved in
the underlying type system, and there has been no treatment of conjunction
or disjunction types as in [12, 13, 61, 62]. Also all of the formulations have
expressed safety properties: if a certain point is reached then certain infor-
mation will hold; liveness properties in the form of adding annotations that
indicate whether or not functions can be assumed to be total was considered
in [93].

Finally, linking up with the development of Chapter 4 on Abstract Interpre-
tation, it is possible to allow annotations to be elements of a complete lattice
(that is possibly of finite height as in Monotone Frameworks), and it may
be profitable to describe Type and Effect Systems using the framework of
Abstract Interpretation [82, 26].

Mini Projects

Mini Project 5.1 A Call-Tracking Analysis

Consider a Type and Effect System for Call-Tracking Analysis: it has judge-
ments of the form

f ý_CT e: F & ýo
where V denotes the set of functions that may be called during the evaluation
of e (and similarly for the annotations on function arrows).

1. Formulate an inference system with subeffecting; next add subtyping
and finally add polymorphism.

Next consider the inference system with subeffecting only:

2. Modify the Natural Semantics of Table 5.4 such that semantic correct-
ness can be stated for the analysis and prove that the result holds.

3. Devise an algorithm for Call-Tracking Analysis and prove that it is
syntactically sound (and complete).

For the more ambitious: can you also deal with subtyping and/or polymor-
phism? a

348 TYPE AND EFFECT SYSTEMS

Mini Project 5.2 Data Structures

As in Mini Project 3.2 we shall now extend the language with more general
data structures and consider how to modify the Control Flow Analysis (Table
5.2) so as to track the creation points.

Pairs. To accommodate pairs we extend the syntax as follows:

F ::F- - F2

e :: Pair,(el,e2) I (case eo of Pair(xl,z 2) => el)

Here Pair is a binary constructor and the corresponding case-expression does
not need an or-component as in Mini Project 3.2. As an example, consider
the following program for "sorting" a pair of integers:

let srt = fnx x => case x of Pair(y,z) =>
if y<z then x else PairB(z,y)

in srt (PairA (n,m))

Here the pair returned with be constructed at A if the value of n is smaller
than the value of m and at B otherwise. The overall type is int x {A,B} int.

1. Modify the Control Flow Analysis of Table 5.2 to track the creation
points of pairs.

2. Extend the Natural Semantics of Table 5.4 and augment the proof of
semantic correctness (Theorem 5.9).

3. Extend the algorithms WCFA and UCFA and augment the proof of syn-
tactic soundness and completeness (Theorems 5.20 and 5.21).

Lists. To accommodate lists we extend the syntax as follows:

S:: ... [• list'P

e :: Cons (el,e 2) I Nil,, I (case eo of Cons(xix 2) => el or e 2)

Now perform a similar development as the one you performed for pairs.

For the more ambitious: can you give a more general treatment of algebraic
types in the manner of Mini Project 3.2? u

Exercises 349

Mini Project 5.3 A Prototype Implementation

In this mini project we shall implement the Control Flow Analysis considered
in Sections 5.1 and 5.3. As implementation language we shall choose a func-
tional language as Standard ML or Haskell. We can then define a suitable
data type for FUN expressions as follows:

type var = string

type point = int

datatype const = Num of int I True I False

datatype exp = Const of const I Var of var I Fn of point * var * exp
I Fun of point * var * var * exp I App of exp * exp
I If of exp * exp * exp I Let of var * exp * exp
I Op of string * exp* exp

Now proceed as follows:

1. Define data types for simple types and simple substitutions and imple-
ment the function UCFA of Table 5.7.

2. Define data types for simple type environments and constraint sets and
implement the function WCFA of Table 5.8.

3. Define data types for types=.and type environments and implement a
function that pretty prints the result in the manner of Subsection 5.3.4:
type variables must get instantiated to int and annotation variables to
the least solution to the constraints.

Test your implementation on selected examples.

Exercises

Exercise 5.1 Consider the following expression:

let f fnx x => x 1;
g fny y => y+2;
h fnz z => z+3

in (f g) + (f h)

Use Table 5.1 (the underlying type system) to obtain a type for this expres-
sion; what types do you use for f, g and h? Next use Table 5.2 (Control Flow
Analysis) to obtain the annotated type of this expression; what annotated
types do you use for f, g and h? u

350 TYPE AND EFFECT SYSTEMS

Exercise 5.2 Consider the following variation of FUN where function def-
initions explicitly involve type information as in fn, x : -r => eo and fun, f :
(-r, -•ro) x => e0 . Modify Table 5.1 accordingly and prove that the resulting
type system is deterministic: r FUL e : T1 and r F-UL e : r2 imply Tri = r2. m

Exercise 5.3 Consider the inclusion W1 C V2 between effects that was
discussed in Subsections 5.4.1 and 5.2.3. Give an axiomatisation of V,1 V2
such that W, g W2 holds if and only if the set of elements mentioned in V, is
a subset of the set of elements mentioned in V2. a

Exercise* 5.4 In Example 5.4 we showed how to record the annotated
type information in a form close to that considered in Chapter 3. To make
this precise suppose that expressions of FUN are simultaneously labelled as
in Chapters 3 and 5:

e ::= t

t ::= cIxIfn, x=>eoIfun, fx=>eoIele 2

I if eo then el else e2 I let x = el in e2 I el op e2

Next modify Table 5.2 so as to define a judgement

/,C; r F-CFA e : r (5.2)

where the idea is that . =

"* 0(f) = F1 ensures that all judgements/3, C; P' F-CFA tt:?9 in (5.2) have
F' = ;t, and

"* /f(x) = F. ensures that all judgements i, C; F' I-CFA xt : 9' in (5.2) have
F' = F..

Check that (5.2) holds for the expression in Example 5.4 when we take 0(1)
Fy, C(2) = xy J4 Fy, 0(3) = int, C(4) =:, C(5) = gy, /f(x) = Fyand
/3(y) = int. U

Exercise 5.5 Consider adding the following inference rule to Table 5.2
(Control Flow Analysis)

F-cFA el F:r2 --5 0 r F-cFA e2 :T2

I -CFA el e2 : -.LVo

where .-_ is the least element of Type[ro] and ro = LoJ. Explain what this

rule does and determine whether or not Theorem 5.9 (semantic correctness)
continues to hold. ,

Exercises 351

Exercise 5.6 In Section 5.2 we equipped FUN with a call-by-value se-
mantics. An alternative would be to use a call-by-name semantics. It can be
obtained as a simple modification of the semantics of Table 5.4 by changing
rule [app] such that the argument is not evaluated before the substitution
takes place and similarly changing rule [let]. Make these changes to Table 5.4
and show that the correctness result (Theorem 5.9) still holds for the analysis
of Table 5.2.

What does that tell us about the precision of the analysis?

Exercise 5.7 Prove Fact 5.17 (the syntactic soundness and completeness
of Robinson unification). N

Exercise 5.8 Consider the partial ordering? < ?i' on the annotated types

of Section 5.1 that is defined by:

< F~~if 5 1 ;F2 < :5 ;2' '
Ti -4 2 <T -F-+ F2

We shall say that this ordering treats ?F -Y4 F2 covariantly in ýo and F2 but
contravariantly in FI; this is in line with the subtype ordering considered in
Section 5.4 but differs form the partial ordering F C ?: considered in Section
5.2.

Show that (Type[T], <) is a complete lattice for all choices of the underlying
type r E Type. Next investigate whether or not an analogue of Proposition
5.12 holds for this ordering.

Finally reconsider the decision to let 0"(a) in Subsection 5.3.4 be the least

element of (Ty._pe[7-], g); would it be preferable to let 0"(a) be the least
element of (Type[r], <) or (Tip~e[r], >)? 0

Exercise* 5.9 Suppose that

WUL([], funF f x => eo) -= (0) -- 0,9)

where a. and ao are distinct type variables. Let e be an arbitrary correctly
typed closed expression, i.e. []I -UL e : r for some r and show that the call

(funF f x => eo) e

cannot terminate. (Hint: use Fact 5.6, Theorems 5.9, 5.20 and 5.21 and that
WUL is syntactically sound.) E

Exercise 5.10 Formulate what it means for the Side Effect Analysis of
Table 5.9 to be semantically correct; this involves modifying the Natural
Semantics of Table 5.4 to deal with the store and to record the side effects.
(Proving the result would require quite some work.) N

352 TYPE AND EFFECT SYSTEMS

Exercise 5.11 Suppose that the language of Subsection 5.4.1 has a call-
by-name semantics rather than a call-by-value semantics. Modify the Side
Effect Analysis of Table 5.9 accordingly.

Exercise 5.12 We shall now illustrate the concept of proof normalisation
for the Side Effect Analysis of Subsection 5.4.1; for this we shall assume tnat
Table 5.9 does not include the combined rule for subeffecting and subtyping
but only the rule for subeffecting.

For this system one can dispense with an explicit rule for subeffecting by
integrating its effects into all other rules; this can be done by adding a "U"'
to all effects occurring in the conclusions of all axioms and rules. Do this and
argue that exactly the same judgements are provable in the two systems.

A further variation is only to incorporate "UW"' where it is really needed: in
all axioms and in the rules for function abstraction. Do this and argue that
once more exactly the same judgements are provable in the two systems.

What you have performed amounts to proof normalisation: whenever one
has an inference system with a number of syntax directed rules and axioms
and at least one rule that is not syntax directed, it is frequently possible to
restrict the use of the non syntax directed rules. In this way the structure
of the inference trees comes closer to the structure of the syntax trees and
this is often helpful for proving semantic correctness and is a useful starting
point for developing inference algorithms. N

Exercise 5.13 Consider the rule [handle] in the Exception Analysis of
Table 5.10. Would the analysis still be semantically correct if we replaced it
by the following two rules:

ri-Es el : F& p Pf -Es e2r& W2

F1 -ES handle s as el ine 2 :& r 2
if s ý V2 and AV(p 2) = 0

SI-ES el: F& V, rI-Es e2 : & 2

FI-ES handle s as el ine 2 : & 1U(0 2 \{S})
if s E W2 or AV(V 2) $0

Here s E W2 means {s} C V2 and AV(W2) is the set of annotation variables
in W2- 0

Exercise 5.14 Consider the Exception Analysis of Table 5.10 and change
the rule [let] to

Esel : a &-E i f[e x-+ =1 iEs e 2 : &2• W2

f2 PES let x el in e2 : 6 2 &V1U2

Exercises 353

and perform similar changes in [iA, [raise], [handle] and [sub]; do not forget to
define the meaning of? F< '. Clearly the new system is at least as powerful
as Table 5.10 but is it more powerful? (Hint: Consider the places where [gen]
and [ins] can be used in Table 5.10.) u

354 TYPE AND EFFECT SYSTEMS

Chapter 6

Algorithms

(This material remains to be integrated.)

355

356 ALGORITH MS

i,~=n IIIII

Appendix A

Partially Ordered Sets

Partially ordered sets and complete lattices play a crucial role in program
analysis and in this appendix we shall summarise some of their properties.
We review the basic approaches for how to construct complete lattices from
other complete lattices and state the central properties of partial!y ordered
sets satisfying the Ascending Chain and Descending Chain Conditions. We
then review the classical results about least and greatest fixed points.

A.1 Basic Definitions

Partially ordered set. A partial ordering is a relation E: L x L -+

{true, false} that is reflexive (i.e. Vt l C l), transitive (i.e. V11 ,12,13 : 11

12 A 12 E 13 =• l E 13), and anti-symmetric (i.e. VlI,1 2 :li 12 A 12 E; 11
11 = 12). A partially ordered set (L, C) is a set L equipped with a partial
ordering g (sometimes written EL). We shall write 12] 11 for 11 E 12 and
l1 E 12 for 11 t 12 A 11 $12.

A subset Y of L has 1 E L as an upper bound if Vl' E Y : I' E I and as
a lower bound if Vl' E Y : 1' -J 1. A least upper bound I of Y is an upper
bound of Y that satisfies 1 E 10 whenever lo is another upper bound of Y;
similarly, a greatest lower bound I of Y is a lower bound of Y that satisfies
lo C I whenever lo is another lower bound of Y. Note that subsets Y of a
partially ordered set L need not have least upper bounds nor greatest lower
bounds but when they exist they are unique (since E is anti-symmetric) and
they are denoted U Y and F]Y, respectively. Sometimes U is called the join
operator and F] the meet operator and we shall write li U 12 for U{li, 12} and
similarly li n 12 for f-{li,12}.

Complete lattice. A complete lattice L = (L, C) = (L, c, L],F-, I, T)
is a partially ordered set (L, E_) such that all subsets have least upper bounds

357

358 PARTIALLY ORDERED SETS

{1,2,3} 0

{1, 2} f{1, 3} 12,3} 11} 12} 13}

1 2} {3} 1,2} 1,3} {2,3}

""* 0 {1, 2,3}

(a) (b)

Figure A.1: Two complete lattices.

as well as greatest lower bounds. Furthermore, 1 = U 0 = [1 L is the least
element and T = n 0 = U L is the greatest element.

Example A.1 If L = (P(S), g) for some set S then E is C and ULY
uY, flY = fY, I = 0 and T = S. If L= (P(S),D) then C is D and
llY = nY, Fry = UY, 1 = S and T = 0.

Hence (P(S), C) as well as (P(S), D) are complete lattices. In the case where
S = {1, 2, 3} the two complete lattices are shown on Figure A.1; these draw-
ings are often called Hasse diagraifis. Here a line "going upwards" from some
11 to some 12 means that 11 E 12; we do not draw lines that follow from
reflexivity or transitivity of the partial ordering. a

Lemma A.2 For a partially ordered set L = (L, -) the claims

(i) L is a complete lattice,

(ii) every subset of L has a least upper bound, and

(iii) every subset of L has a greatest lower bound

are equivalent. 0

Proof Clearly (i) implies (ii) and (iii). To show that (ii) implies (i) let Y C L and
define

nY = J{IlELI V'EY:lI:l'} (A.1)

and let us prove that this indeed defines a greatest lower bound. All the elements
of the set on the right hand side of (A.1) axe lower bounds of Y so clearly (A.1)
defines a lower bound of Y. Since any lower bound of Y will be in the set it follows
that (A.1) defines the greatest lower bound of Y. Thus (i) holds.

A.1 Basic Definitions 359

To show that (iii) implies (i) we define UY = [l{l E L I Vl' E Y : 1' C 1}.
Arguments analogous to those above show that this defines a least upper bound
and that (i) holds. 0

Moore family. A Moore family is a subset Y of a complete lattice
L = (L, C) that is closed under greatest lower bounds: VYI c_ Y: rY' E Y.
It follows that a Moore family always contains a least element, [1 Y, and
a greatest element, no], which equals the greatest element, T, from L; in
particular, a Moore family is never empty.

Example A.3 Consider the complete lattice (P(S), 9) of Figure A.1 (a).
The subsets

{{2}, {1, 2}, {2, 3}, {1, 2, 3}} and {0, {1, 2, 3}}

are both Moore families, whereas none of

{{1}, {2}} and {0, {1}, {2}, {1, 2}}

axe.

Properties of functions. A function f : L, -+ L2 between partially
ordered sets L1 = (LI, C1) and L2 = (L2 , ;2) is surjective (or onto or epic)
if

V12 E L2 : 311 E Li : f(li) = 12

and it is injective (or 1-1 or monic) if

Vl, l' E L, : f(l) = f(l') #- 1 = I'

The function f is monotone (or isotone or order-preserving) if

Vl, l' E L, : 1 E1l ' #' f(l) 9;2 f(l')

It is an additive function (or a join morphism, sometimes called a distributive
function) if

V11 , 12 ELi : f(ll U 12) = f(li) U f(1 2)

and it is called a multiplicative function (or a meet morphism) if

V11 , 12 E L1 : f(l1l n12) = f(l1) 1l f(1 2)

The function f is a completely additive function (or a complete join mor-
phism) if for all Y C Li:

f(Li 1Y) = L2{f(l') I l' E Y} whenever U1Y exists

360 PARTIALLY ORDERED SETS

and it is completely multiplicative (or a complete meet morphism) if for all
Y C LI:

fUlY) =2{f(ll) I lI' E Y} whenever 7J1Y exists

Clearly UI Y and fl 1Y always exist when L1 is a complete lattice; when L2
is not a complete lattice the above statements also require the appropriate
least upper bounds and greatest lower bounds to exist in L2 . The function
f is affine if for all non-empty Y C L1

f(L y) = U2{f (l') I ' E Y} whenever Uj 1Y exists (andY $0)

and it is strict if f(_1) = 12; note that a function is completely additive if
and only if it is both affine and strict.

Lemma A.4 If L = (L,E, L, n,_1,T) and M = (M, c, u, f 1,_T) are
complete lattices and M is finite then the three conditions

(i) y : M -+ L is monotone,

(ii) 7 (T) = T, and

(iii) 7(ml nm2) = 7(ml) fl 7(m 2) whenever mi V= M 2 AmM2 9 M1

are jointly equivalent to y' : M -+ L being completely multiplicative. M

Proof First note that if -y is completely multiplicative then (i), (ii) and (iii) hold.
For the converse note that by monotonicity of -y we have -y(mlf m2) = -y(ml)Fl-y(m2)
also when mi _E m2 V m2 E; m1. We then prove by induction on the (finite)
cardinality of M' C M that:

-y(nM') = n[{7(m) I m E M'} (A.2)

If the cardinality of M' is 0 then (A.2) follows from (ii). If the cardinality of M' is
larger than 0 then we write M' = M" U Im"} where m" V M"; this ensures that
the cardinality of M" is strictly less than that of M'; hence:

,7(nM') = yw((nM") nm"M)

= -<(]M") n -y(m")

= (n i-y(m) I m E M"}) n-y(m")

n f{-Y(m) Im E M'}

This proves the result.

Lemma A.5 A function f : (P(D), E) -+ (P(E), C) is affine if and only
if there exists a function p : D -+ P (E) and an element o0 E P (E) such that

f(Y) = U{J(d) I d E Y} U Wo

The function f is completely additive if and only if additionally 'op - 0. m

A.2 Construction of Complete Lattices 361

Proof Suppose that f is of the form displayed and let Y be a non-empty set; Then

U!fYIYEYI = U{U{p(d) idEY}UIo iYEY}
= UIUIVdndEY}UYEY}UW

= U{W(d)IdEUY}Uo•

= f(UY)
showing that f is affine.

Next suppose that f is affine and define p(d) = f({d}) and •0 = f(0). For
Y E P(D) let Y = {{d} I d E Y} U {0} and note that Y = U Y andY # 0. Then

f(Y) = (U Y)

= U(f(Id}) I d E Y} U if(0)})

= U({W(d)) I d E Y} U IWo})

- U(d) I d E Y} u O

so f can be written in the required form. The additional statement about com-
pletely additivity is straightforward. M

An isomorphism from a partially ordered set (L 1, E1) to a partially ordered
set (L2 , 9;2) is a monotone function 0 : L1 -+ L2 such that there exists a
(necessarily unique) monotone function 0-' : L2 -+ L1 with 0 o 0' = id 2
and 0-1 o 0 = id, (where idi is the identity function over Li, i = 1, 2).

A.2 Construction of Complete Lattices

Complete lattices can be combined to construct new complete lattices. We
shall first see how to construct products and then two kinds of function spaces.

Cartesian product. Let L1 = (L 1 , El) and L2 = (L2 , 92) be partially
ordered sets. Define L = (L, F-) by

L= {(1,12) IIleL1 A12 EL 2 }

and
(111,121) _ (11 2 ,1 2 2) iff 111 E1 112 A 121 ;2 122

It is then straightforward to verify that L is a partially ordered set. If ad-
ditionally each Li = (Li, Ei, IU ji, , T-) is a complete lattice then so is
L = (L, _E, U,Hn, 1, T) and furthermore

UjY = (l111 1312 : (11,12) E Y} , Hj21 2 131 (11,12) E Y}

362 PARTIALLY ORDERED SETS

and I = (11,-12) and similarly for [-Y and T. We often write L1 x L2 for
L and call it the cartesian product of L, and L 2 .

A variant of the cartesian product called the smash product is obtained if we
require that all the pairs (ll, 12) of the lattice satisfy 11 = -I1 < 1 12-.

Total function space. Let L1 = (L 1 , _E1) be a partially ordered set
and let S be a set. Define L = (L, __) by

L = {f : S -+ L, I f is a total function}

and
fEf' iff VsES:f(s) 1 f'(s)

It is then straightforward to verify that L is a partially ordered set. If
additionally L 1 = (L 1 , _i, UI,-,1, 11, TI) is a complete lattice then so is
L = (L, E, Ui, 1, _l, T) and furthermore

HY = As.L i{f(s) If EY}

and _L = As._L and similarly for[Y and T. We often write S -+ L1 for L
and call it the total function space from S to L1 .

Monotone function space. Again let L, = (Li, Ei) and L2 =

(L2 , 92) be partially ordered sets. Now define L = (L, E) by

L = {f : L1 -4 L2 ,If is a monotone function}

and
f _ f' iff V11 E L1 : f(l1) 12 f'(l)

It is then straightforward to verify that L is a partially ordered set. If ad-
ditionally each Li = (Li, Ei, Ui,-i, 1T) is a complete lattice then so is
L = (L, E, U,n,1, T) and furthermore

UY = All.L2{1f(ll) I f E Y}

and 1 = All.1 2 and similarly for f-Y and T. We often write L1 -+ L2 for L
and call it the monotone function space from L, to L 2 .

A.3 Chains

The ordering _ on a complete lattice L = (L, _E) expresses when one prop-
erty is better (or more precise) than another property. When performing a
program analysis we will typically construct a sequence of elements in L and
it is the general properties of such sequences that we shall study now. In the
next section we will be more explicit and consider the sequences obtained
during a fixed point computation.

A.3 Chains 363

Chains. A subset Y C L of a partially ordered set L = (L, C) is a chain
if

V11, 12 E Y : (11 _ 12) V (12 _E 11)

Thus a chain is a (possibly empty) subset of L that is totally ordered. We
shall say that it is a finite chain if it is a finite subset of L.

A sequence (ln)n = (ln),EN of elements in L is an ascending chain if

n < m =' In Ei: Im

Writing (ln)n also for {ln I n E N} it is clear that an ascending chain also is
a chain. Similarly, a sequence (In)n is a descending chain if

n <m # In :

and clearly a descending chain is also a chain.

We shall say that a sequence (lI)n eventually stabilises if and only if

3no E N: Vn E N: n > no =# In = Ino

For the sequence (ln)n we write Un In for U{l4 I n E N} and similarly we
write F nl, for nf{ln I n E N}.

Ascending Chain and Descending Chain Conditions. We
shall say that a partially ordered ,get L = (L, E) has finite height if and only
if all chains are finite. It has finite height at most h if all chains contain at
most h+ 1 elements; it has finite height h if additionally there is a chain with
h + 1 elements. The partially ordered set L satisfies the Ascending Chain
Condition if and only if all ascending chains eventually stabilise. Similarly, it
satisfies the Descending Chain Condition if and only if all descending chains
eventually stabilise. These concepts are related as follows:

Lemma A.6 A partially ordered set L = (L, F) has finite height if and
only if it satisfies both the Ascending and Descending Chain Conditions. m

Proof First assume that L has finite height. If (l,), is an ascending chain then it
must be a finite chain and hence eventually stabilise; thus L satisfies the Ascending
Chain Condition. In a similar way it is shown that L satisfies the Descending Chain
Condition.

Next assume that L satisfies the Ascending Chain Condition as well as the Descend-
ing Chain Condition and consider a chain Y C L. We shall prove that Y is a finite
chain. This is obvious if Y is empty so assume that it is not. Then also (Y, _) is
a non-empty partially ordered set satisfying the Ascending and Descending Chain
Conditions.

As an auxiliary result we shall now show that

each non-empty subset Y' of Y contains a least element (A.3)

364 PARTIALLY ORDERED SETS

-2 2

L-00x 0

(a) (b)

Figure A.2: Two partially ordered sets.

To see this we shall construct a descending chain (I'). in Y' as follows: first let Io
be an arbitrary element of Y'. For the inductive step let ltI4 = l1. if i', is the least
element of Y'; otherwise we can find l+I E Y' such that I•+I Eg In A 1•+l $ i'.
Clearly (ln)n is a descending chain in Y; since Y satisfies the Descending Chain
Condition the chain will eventually stabilise, i.e. 3n' : Vn > n' : i' = 1' and the

construction is such that i•, is the least element of Y'.
0

Returning to the main proof obligation we shall now construct an ascending chain
(ln)n in Y. Using (A.3) each In is chosen as the least element of the set Y \
{10,' I-,-I } as long as the latter s.et is non-empty, and this yields i-1 _ in A
in-1 In; when Y \ {io,', In-I} is empty we set In = in-1, and since Y is non-
empty we know that n > 0. Thus we have an ascending chain in Y and using the
Ascending Chain Condition we have 3n0 : Vn > no : In = Ino. But this means that
Y \ {/o, ,I 0 } = 0 since this is the only way we can achieve that In,+1 = In,. It
follows that Y is finite. N

Example A.7 The partially ordered set of Figure A.2 (a) satisfies the
Ascending Chain Condition but does not have finite height; the partially
ordered set of Figure A.2 (b) satisfies the Descending Chain Condition but
does not have finite height. a

One can show that each of the three conditions finite height, ascending chain,
and descending chain, is preserved under the construction of cartesian prod-
uct: if L 1 and L2 satisfies one of the conditions then L 1 x L 2 will also satisfy
that condition. The construction of total function spaces S -4 L only pre-
serves the conditions of L if S is finite and the construction of monotone
function spaces L 1 -+ L2 does not in general preserve the conditions.

An alternative characterisation of complete lattices satisfying the Ascending
Chain Condition is given by the following result:

A.3 Chains 365

Lemma A.8 For a partially ordered set L = (L, E) the conditions

(i) L is a complete lattice satisfying the Ascending Chain Condition, and

(ii) L has a least element, _1, and binary least upper bounds and satisfies
the Ascending Chain Condition

are equivalent.

Proof It is immediate that (i) implies (ii) so let us prove that (ii) implies (i). Using
Lemma A.6 it suffices to prove that all subsets Y of L have a least upper bound
U Y. If Y is empty clearly U Y = I-. If Y is finite and non-empty then we can
write Y = (yi,'"- , y,} for n >_ 1 and it follows that U Y = (... (Y1 LJ Y2) UJ...) J Y,.

If Y is infinite then we construct a sequence (ln)n of elements of L: let Io be an
arbitrary element yo of Y and given I, take 1.I= I, in the case where Vy E Y : y E
1, and take In+1 = In U yn+1 in the case where some yn+1 E Y satisfies Yn+1 In .

Clearly this sequence is an ascending chain. Since L satisfies the Ascending Chain

Condition it follows that the chain eventually stabilises, i.e. there exists n such that

•n = In+1 = i"-. This means that Vy E Y : y _ In because if y g l1 then 1. 9 In U y

and we have a contradiction. So we have constructed an upper bound for Y. Since
it is actually the least upper bound of the subset {yO,'", yn} of Y it follows that

it is also the least upper bound of Y. 0

A related result is the following:

Lemma A.9 For a complete lattice L = (L, E) satisfying the Ascending
Chain Condition and a total function f : L -+ L, the conditions

(i) f us additive, i.e. V11 , 12 : f(l1 U 12) = f(11) U f(12), and

(ii) f is affine, i.e. VY C L, Y # 0 : f(U Y) = Ul{f(l) I1 E Y}

are equivalent and in both cases f is a monotone function.

Proof It is immediate that (ii) implies (i): take Y {1i, L1}. It is also immediate
that (i) implies that f is monotone since 11 E_ 12 is equivalent to 11 U 12 = 12.

Next suppose that f satisfies (i) and let us prove (ii). If Y is finite we can write
Y={y= ," ",y.} for n > 1 and

f(UY) =f(yl LJ... U yn) =f(yl) UL... U f(yn) 9_U{f(l) II E Y}

If Y is infinite then the construction of the proof of Lemma A.8 gives U Y = in
and ln = y, U ... U yo for some yi E Y and 0 < i < n. We then have

f(UY) = f(lI) = f(Yn U ... U Yo) = f(Y.) U ... U f(YO) C. [{f(1) l1 E Y}

Furthermore
f(LY) j• (Tf1) II E Y}

follows from the monotonicity of f. This completes the proof. 0

366 PARTIALLY ORDERED SETS

A.4 Fixed Points

Reductive and extensive functions. Consider a monotone func-
tion f : L -- L on a complete lattice L = (L, E, [,U, L, IT). A fixed point of
f is an element I E L such that f(l) = 1 and we write

Fix(f) = {li f(l) = l}

for the set of fixed points. The function f is reductive at I if and only if
f(1) E I and we write

Red(f) = {lI f(1) E 1}

for the set of elements upon which f is reductive; we shall say that f itself
is reductive if Red(f) = L. Similarly, the function f is extensive at 1 if and
only if f(l) J 1 and we write

Ext(f) = {l f 1(l) ;_ l}

for the set of elements upon which f is extensive; we shall say that f itself is
extensive if Ext(f) = L.

Since L is a complete lattice it is always the case that the set Fix(f) will
have a greatest lower bound in L and we denote it by lfp(f):

lfp(f) = [Fix(f)

Similarly, the set Fix(f) will have a least upper bound in L and we denote it
by gfp(f):

gfp(f= Fix(f

We then have the following result, known as Tarski's Fixed Point Theorem,
showing that lfp(f) is the least fixed point of f and that gfp(f) is the greatest
fixed point of f:

Proposition A.10
Let L = (L, Eu,LJ,, I, T) be a complete lattice. Iff : L -+ L is
a monotone function then lfp(f) and gfp(f) satisfy:

lfp(f) = flRed(f) E Fix(f)

gfp(f) = UExt(f) E Fix(f)

Proof To prove the claim for lfp(f) we define i0 o= Red(f). We shall first show
that f(lo) g lo so that lo E Red(f). Since lo E r for all I E Red(f) and f is
monotone we have

f(lo) C f(1) C: I for all I E Red(f)

A.4 Fixed Points 367

S f n(T)

Red(lf) - e a h - - bo
0 n~fn(T)

Fix(f) - - f - - t f

0 (f n j)

Ext(cf) i p i a s way.

................. J_

Figure A.3: Fixed points of f.

and hence f(o) E o. To prove ove e sqeE f(o))we that fo(fw(ve)) wE fh(eo)
showing that f(so) E Red(f) and hence o Er fe(mo) by definition of 10. Together this
shows that 1o is a fixed point of f so to E Fix(f). To see that 10 is least in Fix(f)

simply note that Fix(f) an Red(f). It follows that Ifp(f) = co.

The claim for gfp(f) is proved in a similar way.

In denotationai semantics it is customary to iterate to the least fixed point by
taking the least upper bound of the sequence (f n (I)) '. However, we have not
imposed any continuity requirements on f (e.g. that f (Un In) = [n (f (l'))
for all ascending chains (40•n) and consequently we cannot be sure to actually
reach the fixed point. In a similar way one could consider the greatest lower

bound of the sequence (fn(T)),. One can show that

j_ E: fn(j_) g; f nl(j_) g;-- y

E gfP(f) E --nfn(T) E fn(T) g T

as is illustrated in Figure A.3; indeed all inequalities (i.e. E) can be strict
(i.e. c). However, if L satisfies the Ascending Chain Condition then there
exists n such that fn(1) = fn+l(1) and hence lfp(f) = fn(1). (Indeed any
monotone function f over a partially ordered set satisfying the Ascending
Chain Condition is also continuous.) Similarly, if L satisfies the Descending
Chain Condition then there exists n such that fn(T) = fn+l (T) and hence

368 PARTIALLY ORDERED SETS

gfp(f) = fn(T).
Remark (for readers familiar with ordinal numbers). It is possible always
to obtain 4fp(f) as the limit of an ascending (transfinite) sequence but one
may have to iterate through the ordinals. To this effect define ftK E L for
an ordinal . by the equation

ftrC = f (HLftIrI)

and note that for a natural number n we have ffln = fn+l (1). Then lfp(f) =
ft' whenever r is a cardinal number strictly greater than the cardinality of
L, e.g. r may be taken to be the cardinality of P(L). A similar construction
allows to obtain gfp(f) as the limit of a descending (transfinite) chain. u

Concluding Remarks

For more information on partially ordered sets consult a text book (e.g. [33]).

Appendix B

Induction and Coinduction

We begin by reviewing a number of techniques for conducting inductive
proofs. We then motivate the concept of coinduction and finally formulate
a general proof principle for coinduction. This makes heavy use of Tarski's
Fixed Point Theorem (Proposition A.10).

B.1 Proof by Induction

Mathematical induction. Perhaps the best known induction princi-
ple is that of mathematical induction. To prove that a property, Q(n), holds
for all natural numbers, n, we establish

Q(O)
Vn: Q(n) =• Q(n + 1)

and conclude
Vn: Q(n)

Formally, the correctness of mathematical induction can be related to the fact
that each natural number is either 0 or the successor, n + 1, of some other
natural number, n. Thus the proof principle reflects the way the natural
numbers are constructed.

Structural induction. Mathematical induction allows us to perform
induction on the size of any structure for which a notion of size can be defined;
this is just a mapping from the structure into the natural numbers. As an
example consider an algebraic data type given by

dED

d ::= Base I Con,(d) I Con 2 (d,d)

369

370 INDUCTION AND COINDUCTION

where Base is a base case, Con 1 is a unary constructor and Con 2 is a binary
constructor. To prove that a certain property, Q(d), holds for all elements,
d, of D we can define a size measure:

size(Base) = 0

size(Con, (d)) = 1 + size(d)

size(Con2 (dj, d2)) = 1 + size(dj) + size(d2)

and then proceed by mathematical induction on size(d) to prove Q(d).

Alternatively we can conceal the mathematical induction within a principle
of structural induction: we must then show

Q(Base)

Vd: Q(d) #- Q(Coni(d))

Vdi,d 2 : Q(di) A Q(d 2) #- Q(Con2 (di,d 2))

from which we conclude
Vd: Q(d)

Once again the proof principles reflects the way the data are constructed.

Induction on the shape. Now suppose that Base represents 0, that
Con, (d) represents d + 1, and that Con 2 (dl, d2) represents di + d2. We can
then define a Natural Semantics

d -+ n

for evaluating d into the number, n, it represents:

[base] Base -+ 0

d-+ n
[conu] Con,(d) -- n + 1

d 1 - ni d 2 -+ n 2

[cons] Con 2(di,d 2) -+ n +±n2

This defines a notion of evaluation trees, d 5+ n: there is one base case
([base]) and two constructors ([con,] and [con 2]). Again we can perform
induction on the size of the evaluation trees but as above it is helpful to
conceal the mathematical induction within a principle of induction on the
shape of inference trees: we must show

Q(Base -+ 0)

V(d-7+ n) : Q(d -7 n) #- Q Cold)--n +

B.2 Introducing Coinduction 371

V(dl -7 ni), (d2 - n 2) :Q(di - ni) A Q(d 2 -+ n2) =•

Q di -7+ni d2 -+n2
Con 2(di,d2) -+ ni +n 2"

from which we conclude
V(d -7+n Q(d -7+ n)

As is to be expected, the proof principle once again reflects the way evaluation
trees are constructed.

Course of values induction. All of the above induction principles
have been constructive in the sense that we establish a predicate for the base
cases and then show that it is maintained by all constructors. A variant of
mathematical induction with a different flavour requires proving

Vn: (Vm < n: Q(m)) #- Q(n)

from which we conclude
Vn: Q(n)

Here the base case is dealt with in the same manner as the induction step.
This induction principle is called course of values induction.

Well-founded induction. Course of values induction is an instance
of a very powerful induction principle called well-founded induction. Given a
partially ordered set (D, -<), the partial ordering is a well-founded ordering
if there is no infinite decreasing sequence

di >- d2 >- d3 >-..

where d >- d' means d - d A d $ d' - this amounts to the Descending Chain
Condition studied in Appendix A. The principle of well-founded induction
then says: if we show

Vd: (Vd' -< d: Q(d')) =ý Q(d)

we may then conclude
Vd: Q(d)

(The proof of correctness of this principle is along the lines of the proof of
(A.3) in Lemma A.6 and can be found also in the literature referenced below.)

B.2 Introducing Coinduction

To explain the difference between induction and coinduction, and to motivate
the need for coinductive methods, let us consider a small example. Consider
the program

372 INDUCTION AND COINDUCTION

if f'(27, m) then "something good" else "something bad"

where f is a function from pairs of natural numbers (i.e. pairs of non-negative
integers) to truth values.

We want to ensure that the program never undertakes to do "something
bad". Since the value of m is not known it is not feasible to prove that
f(27, m) i false by merely evaluating f(27, m); we therefore need to perform
some kind of proof. For this it is natural to define the predicate Qf as follows

Qf(n) iff Vm : f(n,m) 5 false

where it is implicit that m, n > 0.

Perhaps the most obvious approach is to use mathematical induction to prove
Vn : Q (n). This amounts to proving

Qf(0)

Vn : Qf(n) # Qf(n + 1)

and then concluding
Vn: Q1 (n)

from which the desired Qf (27) follows.

An alternative presentation of essentially the same idea is to establish the
validity of the axiom and rule

Qf (0) Qf(n)
Q1(n + 1)

and then deduce that
Vn: Qf(n)

Here the basic steps in the mathematical induction have been couched in
terms of an inductive definition of the predicate Qf.

The approach outlined above works nicely for the function Jo defined by

fo(O,m) = true

fo(n+1,m) = fo(n, m)

but what about the functions fl, f2 and f3 defined by

f](0,m) = fj(0,m) f2 (0,m) = true

fi(n + 1,m) = fl(n,m) f2(n+l,m) = f 2(n+l,m)

f3(O,m) = f3(o,m)

fa(n+1,m) = f3 (n+1,m)

B.2 Introducing Coinduction 373

where fi(27, m) never terminates? Intuitively, they should be acceptable in
the sense that "something bad" never happens. However, we cannot prove
this by induction because we cannot establish the base case (for f, and f3)
and/or we cannot establish the inductive step (for f2 and f3).

An intuitive argument for why fi is acceptable might go as follows: assume
that all occurrences of fi on the right hand sides of the above definitions
satisfy Qi; then it follows that also the fi on the left hand side does. Hence
fi satisfies Qi, i.e. Vn : Qi(n). This sounds very dangerous: we assume the
desired result in order to prove it. However, with due care and given the
proper definition of Qi, this is a valid proof: it is a coinductive proof.

Obtaining a functional. Let us rewrite the defining clauses of fi into
clauses for Qi so as to clarify the relationship between when Qi holds on the
left hand side and on the right hand side of the definitions of fi:

Qo(0) iff true Qi(0) iff Q1(0)
Qo(n+l) iff Qo(n) Ql(n+l) iff Q1 (n)

(B.1)
Q2(0) iff true Q3 (0) iff Q3 (0)

Q2(n+l) iff Q2(n+l) Q3(n+l) iff Q3(n+l)

Here the clauses for Qo looks just like our principle for mathematical induc-
tion whereas the others involve some amount of circularity. To make this
evident let us rewrite the above as

Qi = Qi(Qi) (B.2)

where

Qo(Q')(0) = true Q()O)= Q'(O)
Qo(Q')(n + l) = Q'(n) Qi(Q')(n+1) = Q'(n)

(B.3)
Q2(Q')(0) = true Q3(Q')(O) = Q'(o)

Q2 (Q')(n + 1) = Q'(n + 1) Q3 (Q')(n + 1) = Q'(n + 1)

Clearly Qi satisfies (B.1) if and only if it satisfies (B.2) with Qi as in (B.3).

It is immediate that each Qi is a monotone function on the complete lattice

(N -+ {true, false}, E)

of predicates where Qi _E Q2 means that Vn: Q1 (n) =# Q2 (n) and where the
least element 1 is given by Vn : _t(n) = false and the greatest element T is
given by Vn : T (n) = true. Using Tarski's Fixed Point Theorem (Proposition
A.10) it follows that each Q{ has a least fixed point lfp(Q/) and a greatest
fixed fixed point gfp(Qi); these are possibly different predicates in (N -+

{true, false}, E).

374 INDUCTION AND COINDUCTION

Least fixed point. Let us begin by looking at the least fixed points.
It follows from Appendix A that

H kQ0'(") lfp(Qo)

and given that the clauses for Qo(Q) only use a finite number of Q's on the
right hand sides (in fact zero or one), Q0 satisfies a continuity property that
ensures that

U kQ(') = lfp(Qo)

This is good news because our previous proof by mathematical induction
essentially defines the predicate ULk Q (_L): Q' (/)(n) holds if and only if at
most k axioms and rules suffice for proving Qo (n). Thus it would seem that
a proof by induction "corresponds" to taking the least fixed point of Q0.

Next let us look at Q3. Here

Ifp(Q3)=I

because Q3 (-L) = / so that .L is a fixed point. This explains why we have
lfp(Q3)(27) = false and why an inductive proof will not work for establishing
Q3 (27). Somewhat similar arguments can be given for Q, and Q2.

Greatest fixed point. Let-us next look at the greatest fixed points.
Here - -

gfp(Q3) = T

because Q3 (T) = T so that T is a fixed point. This explains why we have
gfp(Q3)(27) = true and thus provides a formal underpinning for our belief
that f3 will not cause any harm in the example program. Somewhat similar
arguments can be given for Q, and Q2.

Also for Q0 it will be the case that gfp(Qo)(27) = true. This is of course
not surprising since l1p(Qo)(27) = true and lfp(Qo) E g-p(Qo). However,
it is more interesting to note that for Q0 there is no difference between the
inductive and the coinductive approach (unlike what is the case for Q1, Q2

and Q3):
lfp(Qo) = gfP(Qo)

because mathematical induction on n suffices for proving that lfp(Qo)(n) =

gfp(Qo)(n).
Remark. To the mathematically inclined reader we should point out that
the fact that lfp(Qo) = gfp(Qo) is related to Banach's Fixed Point Theorem:
a contractive operator on a metric space has a unique fixed point. Contrac-
tiveness of Qo (as opposed to Q1 , Q2 and Q3) follows because the clause for
Qo(Q)(n) only performs calls to Q on arguments smaller than n. 0

B.3 Proof by Coinduction 375

B.3 Proof by Coinduction

Consider once again the algebraic data type

dED

d::= Base I Coni(d) I Con 2 (d,d)

with one base case, one unary constructor and one binary constructor. Next
consider the definition of a predicate

Q : D - {true, false}

by means of clauses of the form

Q(Base) iff ...

Q(Coni(d)) iff ... Q(d')...

Q(Con2 (di,d 2)) iff ... Q(d')...Q(d'2)...

We can use this as the basis for defining a function Q by cases as in

Q(Q')(Base) =...

Q(Q')(Conl(d)) = ... Q'(d')...

Q(Q') (Con 2 (di, d2)) = ... Q'(dj)... Q'(d2)...

We note that

(D -+ {true, false}, E)

is a complete lattice under the ordering given by Q, _ Q2 if and only if
Vd: Ql(d) #' Q2 (d). We also

assume that Q is monotone

and this means that e.g. a clause like "Q(Coni(d)) iff -iQ(d)" will not be
acceptable. From Proposition A.10 it follows that Q has a least as well as a
greatest fixed point.

Induction (or least fixed point). Consider first the inductive def-
inition

Q = l-p(Q) (B.4)

This is more commonly written as

S...... Q(d') WD ... Q(d 2) ... (B.5)

Q(Base) Q(Conl(d)) Q(Con 2 (di, d2))

It is often the case that each rule only has a finite number of calls to Q
and then the two definitions are equivalent: the predicate in (B.5) amounts

376 INDUCTION AND COINDUCTION

to Lk Qk•(I) and by a continuity property as discussed above, this agrees
with the predicate of (B.4). A proof by induction then simply amounts to
establishing the validity of the axioms and rules in (B.5). Such a proof has a
very constructive flavour: we take nothing for granted and only believe what
can be demonstrated to hold. This proof strategy is often used to reason
about semantics because the semantics of a program should not allow any
spurious behaviour that is not forced by the semantics.

Coinduction (or greatest fixed point). Consider next the coin-
ductive definition

Q = g(Q)

A proof by coinduction then amounts to using the proof rule

Q, E; Q(Q') /i.e. Q'Eg Q(Q')
Q''gp(Q)

as follows from the formula for gfp(Q) given in Proposition A.10. So to prove
Q(d) one needs to

find some Q' such that

Q'(d)
Vd' :Q,'(d') =ý. Q(Q')(d')

Such a proof has a very optimistic flavour: we can assume everything we like
as long as it cannot be demonstrated that we have violated any facts. It is
commonly used for checking that a specification holds because the specifica-
tion should not forbid some behaviour unless explicitly called for.

It sometimes saves a bit of work to use the derived proof rule

Q' _E Q(Q u Q')
Q'E: Q

To see that this is a valid proof rule suppose that Q' E Q(Q U Q'). By
definition of Q we also have Q E Q(Q) and by monotonicity of Q this gives
Q F Q(Q U Q'). Hence

Q u Q' _ Q(Q u Q')

and Q U Q' E Q follows by definition of Q. It is then immediate that Q' g Q
as required.

Clearly this explanation can be generalised to algebraic data types with ad-
ditional base cases and constructors, and from predicates to relations.

B.3 Proof by Coinduction 377

Example B.1 Consider the relations

Ri : D11 x D12 -+ {true, false}
R2 D 21 x D 2 2 -+ {true, false}

defined by
R, = R, (Ri, R2)
R2 = R2 (Ri, R2)

This is intended to define

(Ra, R2) = gfp(1)

where R(R', Rý) = (ZI (R', RP)," 2 (Rj, R)) is assumed to be monotone.

Next write R' U R" for the relation defined by

di (R' U R") d2 iff (di R' d2) V (di R" d2)

and write R' E R" for the truth value defined by

R' E R" iff Vdl, d2 : di R' d2 #- di R" d2

We then have the following version of the coinduction principle: we establish

P• E 7Z2(R',PR)

and conclude
R'E r- and RP E R2

In analogy with before, it sometimes saves a bit of work only to show
R' E R1,(R 1 u R', R2 URP)

R2 1Z2(R1 u R', R2 UlP•)

because we also have

R, ER 1I(Ri, R2) R 7Z(RiUR',R 2 uRI)
R2E Z2 (RI, R2) C R 2 (Ri U R., R2 U RP)

and this allows us to conclude

R' C R, and R _R2

using the definition of (R1, R2) = gfp(IZ).

Concluding Remarks

For more information on induction principles consult a text book (e.g. [10]).
It is harder to find good introductory material on coinduction; one possibility
is to study the work on strong bisimulation in CCS (e.g. Chapter 4 of [80]).

378 INDUCTION AND COINDUCTION

Appendix C

Graphs and Regular
Expressions

(This material remains to be integrated.)

379

380 GRAPHS AND REGULAR EXPRESSIONS

Index of Notation

C, 302 6, 88, 189
D., 80 1, 3, 140
E, 67, 336 n[V], 239
P,, 80 7, 231
R -* R, 208 -,,, 231
R1 -* R2 , 213 7, 15
R,6, 211 op., 53, 71

R, 208 oPb, 53
S :E -XD E, 2 1 op•,,53
S : E --+ E, 17 op., 4

S: RD1 -+ RD 2 , 18 OPb, 4
S.,,36 op,, 4

S, 3 op, 140, 278
[Bjt, 34 sel, 101
[f]-, 224 w, 104
A, 189, 223 CS, 14
rjX, 280 DU, 52
rF- e : r, 22 H, 108, 111
r, 22, 279 RD F- S c> S', 26
A, 338 RD, 5
E, 17 SRD, 13
a,,, 231 S, 108, 111

a, 15, 294, 300 UD, 52
PD ý o, 302 inf, 216
Pi -* 832, 213 is, 110, 111
/3R, 211 sup, 216

,7, 231 ALoc(H), 108
/,3, 210, 300 ALoc(S), 108
Proc, 336 AV, 99, 311
A, 53, 105 CP, 99
B, 53, 105 Ext, 217, 366
.F, 66 FV, 141
M1, 53 Fix, 217, 366
7?, 155 IAV, 99
V, 156 Observe, 332
[6,eJk, 190 Red, 217, 366

381

382 INDEX OF NOTATION

blocks., 82 DE nv, 184
blocks, 34, 81 Da.ta, 184
clear, 50 Env, 142, 184, 189
def, 50 Statecp, 70
dom, 84, 151, 280, 295 TEnv, 281
du, 50 Type[r], 292
final,, 82 Type, 281
final, 34, 81 Vald, 179
flow R, 35 fa--17
flow,, 82 Val, 142, 184, 189
flow, 35, 81 f, 89
genAE, 38 5, 184
genLv, 47 t, 93, 95, 97, 98

genRD, 42 p, 11, 142, 184, 189

genVB, 45 ý, 11, 142, 184, 189

gfp, 217, 366 D', 179

id, 296 6, 1,9

init., 82 6, 321,8 32337

init, 33, 81 F_< F, 318, 323, 340
inter-flow, 82 2,292
ki11AE, 82 :, 23, 24, 281, 300, 315, 321, 329,

kilILv, 47 d, 184
kIlRM, 41
killvB, 45 . i, 90, 94, 95, 97, 98

labels,, 82 f , 91, 94, 95, 97, 98

labels, 34, 81 f 89
lfpA, 224 , 90
lIfpv, 220 , olfp, 217, 366 fe,14, 190 8, 8

lfp, 17, 66 :, 142, 179, 184, 189
ran, 84 V, 219
ud, 50 SA
use, 50 7r, 278
&•, 64, 67 *, 104
&., 183 poX, 151
t, 67 p I-, 11) -+ (S', 84
CP, 336 p I. (S,,;) - ;', 84
PP, 336 p F ie, -+ ie2 , 151
I, 326 p., 84

ýS 326 p, 84, 150, 327
L, 89 W, 72
rF e: F & ýo, 23 Ul -V a2, 60
F, 24, 281, 300, 315 u, 52, 104

Cache, 142, 184, 189 T, 279, 294
DCache, 184 OA, [- C, 303

INDEX OF NOTATION 383

0, 295 x, 3, 140, 278
p E:W', 341 y, 3
'01_ 9 W2, 292 A, 88, 93, 95, 97, 98
WP1 9o '2, 292 AExp,, 36
W, 23, 281, 300, 315, 321, 329, 337 AExp, 3
p, 325 AHeap, 108, 111
,[M], 237 ALoc, 107
qn, 239 AState, 108, 111
,, 84, 237, 314, 327 AType, 294
p, 104 AVar, 300
ý, 84, 103, 314 AnnCA, 337
(, 321 AnnEs, 321
a, 3 AnnRI, 329
b, 3 AnnSE, 315
ce, 189 Ann, 281
ch, 334 BExp, 3
c, 140, 278 Blocks,, 36
d,, 179 CEnv, 189
dop, 179 Chan, 334
el -- e2, 335 Const, 140, 278
ee, 325 Data, 179
e, 140, 277, 333 EExp, 325
fý, 220 . EVal, 327

fIS, 112, 115 -- Env, 84, 150, 327
f., 183 Exp, 140, 277, 333
ft, 66 Heap, 104
fp, 206, 213 IExp, 151
ftcP, 71 ITerm, 151
f, 140, 278 Interval, 215
ie, 151 IsShared, 111
it, 151 Lab,, 168
ln, 219 Lab,, 36
nx, 107 Lab, 3, 140
n0 , 107 Loc, 84, 103, 314
n, 3 Num, 3
o, 327 Offset, 327
P l1 > 12, 206, 213 Op, 140, 278
p I- vI --- v2 , 205, 213 Parity, 237
p, 80, 102, 336 Pnt, 278
rn, 325 RName, 325
r, 325, 337 RVar, 325
t, 140 Range, 241
v, 150, 287, 327, 335 RegcA, 337
w, 327 RegRI, 325

384 INDEX OF NOTATION

SAnn, 300 VBezit, 45
SG, 112 [6,e], 94
SType, 300 [.1, 281
SVal, 327 L6,eJk, 95
SchemecA, 337 LV=, 58
SchemeR1 , 329 LV-, 58
Sel, 101 AExp(.), 36

Sign, 231 BExp(.), 36

State, 52, 104 Analysis, 63

Stint, 3 MFP, 72

Store, 84, 314, 327 MOP, 77

TEnv, 279 MVP, 88

TVar, 294, 300 Shape, 112

Term., 168 path, 77

Term, 140 vpath, 88

Trace, 13
TypecA, 337
TypeEs, 321
TypeRl, 329
TypesE, 315
Type, 279
Val, 150, 287, 335
Var, 36, 168
Var, 3, 140, 278
Acp, 71
C., 171
9.cp, 71
UCFA, 301
UUL, 296, 299
WCFA, 303
WUL, 295
kill:,, 116
kill..ýe~j, 123

tr, 13
AEntr,-, 38
AE•=ij, 38
Analysis=, 67
Analysis-, 67
JUDGcFA[F IUL e -r], 293
LV.e-try, 47
LVý.jt, 47
RDe.try, 42
RD exit, 42
VB3,e,,t, 45

Index

k-CFA analysis, 189 Meet over all Valid Paths, 86
Abstract Interpretation, 13 Modified Post Correspondence Prob-
Annotated Type System, 17 lem, 77
Array Bound Analysis, 215, 240 Monotone Framework, 66
Ascending Chain Condition, 65, 363 Moore family, 135, 159, 169, 209,
Available Expressions Analysis, 37 293, 359
Bit Vector Framework, 135 Natural Semantics, 286
Call-tracking Analysis, 23 Reaching Definitions Analysis, 4,
Chaotic Iteration, 25 41
Closure Analysis, 193 Region Inference, 324
Code Motion, 51 Set Based Analysis, 193
Communication Analysis, 333, 337 Shape Analysis, 101, 267
Constant Folding, 26, 70, 131 Side Effect Analysis, 314
Constant Propagation Analysis, 70, Structural Operational Semantics,

131, 183, 206, 257, 259 - 52, 150
Control Flow Analysis, 10, 207, 281, Tarski's Fixed Point Theorem, 366

282 Type and Effect System, 17
Data Flow Analysis, 5 UCAI, 285, 300
Dead Code Elimination, 47, 51, 131 Use-Definition chain, 50
Definition-Use chains, 143 Very Busy Expressions Analysis,
Definition-Use chain, 50 44
Denotational Semantics, 217, 266 abstract 0-CFA, 145
Descending Chain Condition, 66, abstract cache, 142, 189

363 abstract data value, 179
Detection of Signs Analysis, 89, 180 abstract environment, 142, 189
Distributive Framework, 67 abstract heap, 108
Effect System, 17 abstract locations, 107
Exception Analysis, 319 abstract reachability component, 197
Galois connection, 15, 228 abstract state, 107
Galois insertion, 235 abstract summary location, 107
Live Variables Analysis, 47 abstract syntax, 4, 140
MFP solution, 72 abstract value, 142, 189
MOP solution, 76 abstraction function, 15, 227
MVP solution, 86, 88 acceptable 0-CFA, 144
Maximal Fixed Point, 72 additive, 359
Meet Over all Paths, 76 adjoint, 232

385

386 INDEX

adjunction, 15, 229 context information, 88, 187, 189
affine, 360 context-insensitive, 93, 148, 186
annotated type environment, 281 context-sensitive, 93, 187
annotated type, 281, 315, 321, 329 contravariant, 318
annotation substitution, 303 correctness relation, 60, 155, 208,
annotation variable, 300 234, 252
annotation, 281, 315, 321, 329 course of values induction, 371
ascending chain, 363 covariant, 318
assigned variables, 99 cover, 295, 303
assumption set, 97 data array, 175
atomic subtyping, 344 definition clear path, 50
augmented type, 294 derivation sequence, 55
backward analysis, 64, 83 descending chain, 363
basic block, 134 direct product, 246
behaviour variable, 338 direct tensor product, 247
behaviour, 338 duality, 265
call string, 93 dynamic dispatch problem, 82, 140
call-by-name, 200 edge array, 175
call-by-result, 80 effect, 23, 315, 321, 329
call-by-value, 80 elementary block, 3, 34
called procedures, 99 embellished monotone framework,
cartesian product, 362 89
chain, 363 -. environment, 84, 150, 326
channel identifier, 334 - equality of annotations, 284
channel pool, 336 equation system, 57, 63, 64, 67
channel, 334 equational approach, 5
closure, 150 evaluation context, 335
coinductive definition, 148, 162, 376 eventually stabilises, 363
collecting semantics, 13, 270 expression, 140, 277, 333
combination operator, 65 extended expression, 325
compatible shape graph, 111 extended type, 329
complete lattice, 357 extensive, 217, 366
complete path, 86 extraction function, 231, 239
completely additive, 359 extremal label, 67
completely multiplicative, 360 extremal value, 67, 183
concrete syntax, 4 faint variable, 134
concretisation function, 15, 227 final label, 34
conditional constraint, 12, 170 finite chain, 363
conservative extension, 285 finite height, 363
constraint based 0-CFA, 171 first-order analysis, 206
constraint based approach, 8, 11 fixed point, 217, 366
constraint system, 58, 67 flow graph, 35
constraint, 170, 302 flow-insensitive, 98, 148
context environment, 189 flow-sensitive, 98

INDEX 387

flow, 35, 67 least upper bound, 357
forward analysis, 64, 83, 112 live variable, 47
free algebra, 300 locations, 103
free variable, 141 location, 84, 314
fresh type variable, 296 logical relation, 208, 213
functional composition, 240 lower adjoint , 232
general subtyping, 344 lower bound, 357
generalisation, 323, 331 materialise, 120
generalised Monotone Framework, mathematical induction, 369

254 may analysis, 64, 112
generated by, 211 model intersection property, 159
graph formulation of the constraints, mono-variant, 186

174 monotone function space, 245, 362
greatest element, 358 monotone structure, 183, 268
greatest fixed point, 217, 366 monotone, 359
greatest lower bound, 357 multiplicative, 359
ground substitution, 295, 303 must analysis, 64
ground validation, 303 narrowing operator, 223
heap, 104 non-free algebra, 300
hoisting, 44 non-trivial expression, 36
independent attribute analysis, 136, offset, 327

242 open system, 148, 179
induced analysis, 16, 251 optimal analysis, 17, 253
induction on the shape, 370 - partial ordering, 357
inductive definition, 162, 372 partially ordered set, 357
initial label, 33 path, 76
injective, 359 pointer expressions, 102
instance, 67, 183, 255 poly-variant, 187
instantiation, 323, 332 polymorphic recursion, 330
instrumented semantics, 131 polymorphism, 321, 323
intermediate expression, 151 polynomial k-CFA, 192, 193
intermediate term, 151 procedure call graph, 100
interprocedural analysis, 80, 192 process pool, 336
interprocedural flow, 82, 140 process, 334
intraprocedural analysis, 80 program point, 278
isolated entries, 37 proof by coinduction, 376
isolated exits, 37 proof by induction, 376
isomorphism, 361 proof normalisation, 306, 352
join semi-lattice, 65 property space, 65
label consistent, 37 reduced product, 249
label, 34 reduced tensor product, 249
latent effect, 23 reduction operator, 237
least element, 358 reductive, 217, 366
least fixed point, 217, 254, 366 reference variable, 313

388 INDEX

region name, 325 syntax directed 0-CFA, 166
region polymorphic closure, 327 temporal order, 333

region variable, 325 tensor product, 245, 264

region, 325, 327, 338 term, 140

relational analysis, 136, 243 total function space, 245, 362

representation function, 210, 230, trace, 13, 132

235, 252, 256 transfer function, 66

reverse flows, 35 transitions, 52

safe approximation, 165 type environment, 22, 279

second-order analysis, 206 type reconstruction, 295, 303

selector names, 101 type schema, 321, 329, 338

semantic correctness, 289 type substitution, 302

semantically reaching definitions, type variable, 294, 300

13 type, 22, 279, 338

semantics based, 3, 29 typing judgement, 280, 282, 315,

semantics directed, 3, 29 323, 330, 339

sequential composition, 240 underlying type system, 278

set constraints, 195 underlying type, 281
unification procedure, 296, 299, 301sets of states analysis, 257 uiomkGA 8,10 9

shape conformant subtyping, 318, upper a , 232

343 upper adjoint, 232

shape graph, 106, 111 upper bound operator, 218

sharing information, 110 - upper bound, 357

simpe anotaion,300upper closure operator, 263simple annotation, 300 valid path, 87

simple substitution, 301 values, 335

simple type environment, 300 value, 15
value, 150, 287

simple type, 300 well-founded induction, 371

smash product, 362 well-founded ordering, 371

states, 104 widening operator, 219, 260

state, 52 worklist, 72, 175
static single assignment, 129 du-chain, 50, 130, 143
storable value, 327 ud-chain, 50, 130
store, 84, 314, 327 k-CFA, 193
strict, 360 bind-construct, 84, 151

structural induction, 370 close-construct, 150
subeffecting, 282, 317, 323, 331,

340
subject reduction result, 155
substitution, 295
subsumption rule, 19, 21
subtyping, 318, 323, 331, 340
surjective, 359
syntactic completeness, 302, 308
syntactic soundness, 302, 306

Bibliography

[1] 0. Agesen, J. Palsberg, and M. Schwartzbach. Type inference of
SELF: Analysis of objects with dynamic and multiple inheritance. In
Proc. ECOOP'93, volume 707 of Lecture Notes in Computer Science.
Springer, 1993.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, Tools. Addison Wesley, 1986.

[3] A. Aiken. Set constraints: Results, applications, and future directions.
In Proc. Second Workshop on the Principles and Practices of Concur-
rent Programming, volume 874 of Lecture Notes in Computer Science,
pages 171-179. Springer, 1994.

[4] A. Aiken and E. Wimmers.-Type inclusion constraints and type infer-
ence. In Proc. FPCA '93, pages 31-41. ACM Press, 1993.

[5] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with condi-
tional types. In Proc. POPL '94, pages 163-173. ACM Press, 1994.

[6] T. Amtoft, F. Nielson, and H. R. Nielson. Polymorphic subtyping
for side effects. Technical Report DAIMI PB-529, Computer Sci-
ence, Aarhus University, 1997. - [ANN97book] for the report but
[ANN98book] for the final version.

[7] T. Amtoft, F. Nielson, and H.R. Nielson. Type and behaviour recon-
struction for higher-order concurrent programs. Journal of Functional
Programming, 7(3):321-347, 1997.

[8] T. Amtoft, F. Nielson, H.R. Nielson, and J. Ammann. Polymorphic
subtyping for effect analysis: The dynamic semantics. In Analysis and
Verification of Multiple-Agent Languages, volume 1192 of Lecture Notes
in Computer Science, pages 172-206. Springer, 1997.

[9] Anonymous. Details to be provided. ?9, ??, 19??

[10] A. Arnold and I. Guessarian. Mathematics for Computer Science. Pren-
tice Hall International, 1996.

389

390 BIBLIOGRAPHY

[11] A. Banerjee. A modular, polyvariant, and type-based closure analysis.
In Proc. ICFP '97, pages 1-10. ACM Press, 1997.

[12] P. N. Benton. Strictness logic and polymorphic invariance. In Proc. Sec-
ond International Symposium on Logical Foundations of Computer Sci-
ence, volume 620 of Lecture Notes in Computer Science, pages 33-44.
Springer, 1992.

[13] P. N. Benton. Strictness properties of lazy algebraic datatypes. In
Proc. WSA '93, volume 724 of Lecture Notes in Computer Science,
pages 206-217. Springer, 1993.

[14] S. K. Biswas. A demand-driven set-based analysis. In Proc. POPL '97,
pages 372-385. ACM Press, 1997.

[15] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control flow
analysis for the ir-calculus. In Proc. CONCUR'98, number 1466 in
Lecture Notes in Computer Science, pages 84-98. Springer, 1998.

[16] F. Bourdoncle. Abstract interpretation by dynamic partitioning. Jour-
nal of Functional Programming, 10:407-435, 1992.

[17] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In
Proc. Formal Methods in Programming and Their Applications, volume
735 of Lecture Notes in Computer Science, pages 128-141. Springer,
1993. " -

[18] G. L. Burn, C. Hankin, and S. Abramsky. Strictness Analysis for
Higher-Order Functions. Science of Computer Programming, 7:249-
278, 1986.

[19] W. Charatonik and L. Pacholski. Set constraints with projections are
in NEXPTIME. In Proc. FOCS '94, pages 642-653, 1994.

[20] D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and struc-
tures. In Proc. PLDI '90, pages 296-310. ACM Press, 1990.

[21] C. Colby. Analyzing the communication topology of concurrent pro-
grams. In Proc. PEPM '95, pages 202-214. ACM Press, 1995.

[22] C. Colby. Determining storage properties of sequential and concurrent
programs with assignment and structured data. In Proc. SAS '95, vol-
ume 983 of Lecture Notes in Computer Science, pages 64-81. Springer,
1995.

[23] A. Cortesi, G. Fil6, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
Complementation in abstract interpretation. In Proc. SAS '95, Lecture
Notes in Computer Science, pages 100-117. Springer, 1995.

BIBLIOGRAPHY 391

[24] A. Cortesi, G. Fil6, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
Complementation in abstract interpretation. ACM TOPLAS, 19(1):7-
47, 1997.

[25] P. Cousot. Semantics Foundation of Program Analysis. In S. S. Much-
nick and N. D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 10, pages 303-342. Prentice Hall International,
1981.

[26] P. Cousot. Types as abstract interpretations. In Proc. POPL '97, pages
316-331. ACM Press, 1997.

[27] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proc. POPL '77, pages 238-252. ACM Press,
1977.

[28] P. Cousot and R. Cousot. Static determination of dynamic properties of
generalised type unions. In Conference on Language Design for Reliable
Software, volume 12(3) of ACM SIGPLAN Notices, pages 77-94, 1977.

[29] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In Proc. POPL '79, pages 269-282, 1979.

[30] P. Cousot and R. Cousot." Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. In
Proc. PLILP '92, volume 631 of Lecture Notes in Computer Science,
pages 269-295. Springer, 1992.

[31] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. In Proc. POPL '78, pages 84-97. ACM
Press, 1978.

[32] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadek.
Efficiently computing static single assignment form and the control
dependence graph. ACM TOPLAS, 13(4):451-490, 1991.

[33] B. A. Davey and H. A. Priestley. Introduction to Lattices and Or-
der. Cambridge Mathematical Textbooks. Cambridge University Press,
1990.

[34] A. Deutsch. On Determining Lifetime and Aliasing of Dynamically Al-
located Data in Higher Order Functional Specifications. In Proc. POPL
'90, pages 157-169. ACM Press, 1990.

[35] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In Proc. PLDI '94, pages 230-241. ACM Press, 1994.

392 BIBLIOGRAPHY

[36] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function pointers. In
Proc. PLDI '94, pages 242-256. ACM Press, 1994.

[37] K.-F. Fax6n. Optimizing lazy functional programs using flow inference.
In Proc. SAS '95, volume 983 of Lecture Notes in Computer Science,
pages 136-153. Springer, 1995.

[38] K.-F. Fax6n. Polyvariance, polymorphism, and flow analysis. In
Proc. Analysis and Verification of Multiple-Agent Languages, volume
1192 of Lecture Notes in Computer Science, pages 260-278. Springer,
1997.

[39] C. N. Fischer and Jr. R. J. LeBlanc. Crafting a Compiler. Ben-
jamin/Cummings, 1988.

[40] C. Flanagan and M. Felleisen. Well-founded touch optimizations for fu-
tures. Technical Report Rice COMP TR94-239, Rice University, 1994.

[41] C. Flanagan and M. Felleisen. The semantics of future and its use in
program optimization. In Proc. POPL '95, pages 209-220. ACM Press,
1995.

[42] Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the
theory-practice gap. In Proc. TAPSOFT '89, volume 352 of Lecture
Notes in Computer Science--pages 167-183. Springer, 1989.

[43] Y.-C. Fuh and P. Mishra. Type inference with subtypes. Theoretical
Computer Science, 73:155-175, 1990.

[44] K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of
control flow analyses for CML. In Proc. ICFP '97, pages 38-51. ACM
Press, 1997.

[45] R. Ghiya and L. Hendren. Connection analysis: a practical interproce-
dural analysis for C. In Proc. of the eight workshop on languages and
compilers for parallel computing, 1995.

[46] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in c. In G. Kahn, editor,
Proc. POPL '96, pages 1-15. ACM Press, 1996.

[47] R. Giacobazzi and F. Ranzato. Compositional optimization of dis-
junctive abstract interpretations. In Proc. ESOP '96, volume 1058 of
Lecture Notes in Computer Science, pages 141-155. Springer, 1996.

[48] R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive ab-
stract interpretation. Science of Computer Programming, 32:177-210,
1998.

BIBLIOGRAPHY 393

[49] R. Giegerich, U. Mbncke, and R. Wilhelm. Invariance of approximative
semantics with respect to program transformations. In Proc. GI -
11. Jahrestagung, volume 50 of Informatik Fachberichte, pages 1-10.
Springer, 1981.

[50] P. Granger. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics, 30:165-190, 1989.

[51] P. Granger. Static Analysis of Linear Congruence Equalities among
Variables of a Program. In Proc. TAPSOFT '91, volume 493 of Lecture
Notes in Computer Science, pages 169-192. Springer, 1991.

[52] M. S. Hecht. Flow Analysis of Computer Programs. North Holland,
1977.

[53] N. Heintze. Set-based analysis of ML programs. In Proc. LFP '94,
pages 306-317, 1994.

[54] N. Heintze. Control-flow analysis and type systems. In Proc. SAS
'95, volume 983 of Lecture Notes in Computer Science, pages 189-206.
Springer, 1995.

[55] N. Heintze and J. Jaffar. A decision procedure for a class of herbrand
set constraints. In Proc. LICS '90, pages 42-51, 1990.

[56] N. Heintze and J. Jaffar. An engine for logic program analysis. In
Proc. LICS '92, pages 318-328, 1992.

[57] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

[58] S. Jagannathan and S. Weeks. Analyzing Stores and References in a
Parallel Symbolic Language. In Proc. LFP '94, pages 294-305, 1994.

[59] S. Jagannathan and S. Weeks. A unified treatment of flow analysis in
higher-order languages. In Proc. POPL '95. ACM Press, 1995.

[60] S. Jagannathan and A. Wright. Effective flow analysis for avoiding
run-time checks. In Proc. SAS '95, volume 983 of Lecture Notes in
Computer Science, pages 207-224. Springer, 1995.

[61] T. P. Jensen. Strictness analysis in logical form. In Proc. FPCA
'91, volume 523 of Lecture Notes in Computer Science, pages 352-366.
Springer, 1991.

[62] T. P. Jensen. Disjunctive strictness analysis. In Proc. LICS '92, pages
174-185, 1992.

394 BIBLIOGRAPHY

[63] M. P. Jones. A theory of qualified types. In Proc. ESOP '92, volume
582 of Lecture Notes in Computer Science, pages 287-306. Springer,
1992.

[64] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-
like structures. In S. S. Muchnick and N. D. Jones, editors, Program
Flow Analysis: Theory and Applications, chapter 4, pages 102-131.
Prentice Hall International, 1981.

[65] N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In
Proc. POPL '82, pages 66-74. ACM Press, 1982.

[66] N. D. Jones and F. Nielson. Abstract Interpretation: a Semantics-
Based Tool for Program Analysis. In Handbook of Logic in Computer
Science volume 4. Oxford University Press, 1995.

[67] P. Jouvelot. Semantic Parallelization: a practical exercise in abstract
interpretation. In Proc. POPL '87, pages 39-48, 1987.

[68] P. Jouvelot and D. K. Gifford. Reasoning about continuations with
control effects. In Proc. PLDI '89, ACM SIGPLAN Notices, pages
218-226. ACM Press, 1989.

[69] P. Jouvelot and D. K. Gifford. Algebraic reconstruction of types and
effects. In Proc. POPL '91,'-iages 303-310. ACM Press, 1990.

[70] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7:305-317, 1977.

[71] M. Karr. Affine Relationships among Variables of a Program. Acta
Informatica, 6(2):133-151, 1976.

[72] G. Kildall. A Unified Approach to Global Program Optimization. In
Proc. POPL '73, pages 194-206. ACM Press, 1973.

[73] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization.
In Proc. POPL '98, pages 107-120. ACM Press, 1998.

[74] W. Landi and B. G. Ryder. Pointer-Induced Aliasing: A Problem
Classification. In Proc. POPL '91, pages 93-103. ACM Press, 1991.

[75] W. Landi and B. G. Ryder. A safe approximate algorithm for inter-
procedural pointer aliasing. In Proc. PLDI '92, pages 235-248. ACM
Press, 1992.

[76] J. Larus and P. Hilfinger. Detecting conflicts between structure ac-
cesses. In Proc. PLDI '88, pages 21-34. ACM Press, 1988.

BIBLIOGRAPHY 395

[77] J. M. Lucassen and D. K. Gifford. Polymorphic effect analysis. In
Proc. POPL '88, pages 47-57. ACM Press, 1988.

[78] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks -
a unified model. Acta Informatica, 28(2):121-163, 1990.

[79] F. Masdupuy. Using Abstract Interpretation to Detect Array Data
Dependencies. In Proc. International Symposium on Supercomputing,
pages 19-27, 1991.

[80] R. Milner. Communication and Concurrency. Prentice Hall Interna-
tional, 1989.

[81] J. Mitchell. Type inference with simple subtypes. Journal of Functional
Programming, 1(3):245-285, 1991.

[82] B. Monsuez. Polymorphic types and widening operators. In Proc. Static
Analysis (WSA '93), volume 724 of Lecture Notes in Computer Science,
pages 267-281. Springer, 1993.

[83] F. Nielson. Abstract Interpretation using Domain Theory. PhD thesis,
University of Edinburgh, Scotland, 1984.

[84] F. Nielson. Program Transformations in a denotational setting. ACM
TOPLAS, 7:359-379, 1985.

[85] F. Nielson. Tensor Products Generalize the Relational Data Flow Anal-
ysis Method. In Proc. 4th Hungarian Computer Science Conference,
pages 211-225, 1985.

[86] F. Nielson. A formal type system for comparing partial evaluators.
In D. Bjorner, A. P. Ershov, and N. D. Jones, editors, Proc. Partial
Evaluation and Mixed Computation, pages 349-384. North Holland,
1988.

[87] F. Nielson. Two-Level Semantics and Abstract Interpretation. Theo-
retical Computer Science - Fundamental Studies, 69:117-242, 1989.

[88] F. Nielson. The typed \-calculus with first-class processes. In
Proc. PARLE'89, volume 366 of Lecture Notes in Computer Science,
pages 355-373. Springer, 1989.

[89] F. Nielson. Semantics-directed program analysis: a tool-maker's per-
spective. In Proc. Static Analysis Symposium (SAS), number 1145 in
Lecture Notes in Computer Science, pages 2-21. Springer, 1996.

[90] F. Nielson and H. R. Nielson. Finiteness Conditions for Fixed Point
Iteration. In Proc. LFP '92, pages 96-108. ACM Press, 1992.

396 BIBLIOGRAPHY

[91] F. Nielson and H. R. Nielson. From CML to process algebras. In Proc.
CONCUR '93, volume 715 of Lecture Notes in Computer Science, pages
493-508. Springer, 1993.

[92] F. Nielson and H. R. Nielson. From CML to its process algebra. The-
oretical Computer Science, 155:179-219, 1996.

[93] F. Nielson and H. R. Nielson. Operational semantics of termination
types. Nordic Journal of Computing, pages 144-187, 1996.

[94] F. Nielson and H. R. Nielson. Infinitary Control Flow Analysis: a
Collecting Semantics for Closure Analysis. In Proc. POPL '97. ACM
Press, 1997.

[95] F. Nielson and H. R. Nielson. The flow logic of imperative objects. In
Proc. MFCS'98, number 1450 in Lecture Notes in Computer Science,
pages 220-228. Springer, 1998.

[96] F. Nielson and H. R. Nielson. Flow logics and operational semantics.
Electronic Notes of Theoretical Computer Science, 10, 1998.

[97] F. Nielson, H.R. Nielson, and T. Amtoft. Polymorphic subtyping for
effect analysis: The algorithm. In Analysis and Verification of Multiple-
Agent Languages, volume 1192 of Lecture Notes in Computer Science,
pages 207-243. Springer, 1997.

[98] H. R. Nielson, T. Amtoft, and F. Nielson. Behaviour analysis and safety
conditions: a case study in CML. In Proc. FASE '98, number 1382 in
Lecture Notes in Computer Science, pages 255-269. Springer, 1998.

[99] H. R. Nielson and F. Nielson. Bounded fixed-point iteration. Journal
of Logic and Computation, 2(4):441-464, 1992.

[100] H. R. Nielson and F. Nielson. Higher-Order Concurrent Programs with
Finite Communication Topology. In Proc. POPL '94. Springer, 1994.

[101] H. R. Nielson and F. Nielson. Communication analysis for concurrent
ML. In F. Nielson, editor, ML with Concurrency, Monographs in Com-
puter Science, pages 185-235. Springer, 1997.

[102] H. R. Nielson and F. Nielson. Flow logics for constraint based analysis.
In Proc. CC '98, volume 1383 of Lecture Notes in Computer Science,
pages 109-127. Springer, 1998.

[103] H.R. Nielson, F. Nielson, and T. Amtoft. Polymorphic subtyping for
effect analysis: The static semantics. In Analysis and Verification of
Multiple-Agent Languages, volume 1192 of Lecture Notes in Computer
Science, pages 141-171. Springer, 1997.

BIBLIOGRAPHY 397

[104] J. Palsberg. Closure analysis in constraint form. ACM TOPLAS, 17
(1):47-62, 1995.

[105] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems.
Wiley, 1994.

[106] H. D. Pande and B. G. Ryder. Data-flow-based virtual function reso-
lution. In Proc. SAS '96, volume 1145 of Lecture Notes in Computer
Science, pages 238-254. Springer, 1996.

[107] J. Plevyak and A. A. Chien. Precise concrete type inference of object-
oriented programs. In Proc. OOPSLA '94, 1994.

[108] A. Podelski and L. Pacholski. Set constraints - a pearl in research on
constraints. In Proc. Third International Conference on the Principles
and Practice of Constraint Programming, volume 1330 of Lecture Notes
in Computer Science, pages ??-?? Springer, 1997.

[109] J. H. Reif and S. A. Smolka. Data Flow Analysis of Distributed Com-
municating Processes. International Journal of Parallel Programming,
19(1):1-30, 1990.

[110] J. Reynolds. Automatic computation of data set definitions. In Infor-
mation Processing, volume 68, pages 456-461. North Holland, 1969.

[111] B. K. Rosen. Monoids for rapid data flow analysis. SIAM J. Comp.,
9:159-196, 1980.

[112] E. Ruf. Context-insensitive alias analysis teconsidered. In Proc. PLDI
'95, pages 13-22. ACM Press, 1995.

[113] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. In Proc. TAPSOFT
'95, volume 915 of Lecture Notes in Computer Science, pages 651-665,
1995.

[114] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in
languages with destructive updating. In Proc. POPL '96, pages 16-31.
ACM Press, 1996.

[115] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. ACM TOPLAS, 20(1):1-50,
1998.

[116] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proc. POPL '99, pages ??-?? ACM Press, 1999.

[117] D. Schmidt. Data flow analysis is model checking of abstract interpre-
tations. In Proc. POPL '98, pages 38-48. ACM Press, 1998.

398 BIBLIOGRAPHY

[118] P. Sestoft. Replacing function parameters by global variables. Master's
thesis, Department of Computer Science, University of Copenhagen,
Denmark, 1988.

[119] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to
analysis. In Proc. POPL '97, pages 1-14. ACM Press, 1997.

[120] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow
Analysis. Prentice Hall International, 1981.

[121] 0. Shivers. Control flow analysis in Scheme. In Proc. PLDI '88, volume
7 (1) of ACM SIGPLAN Notices, pages 164-174. ACM Press, 1988.

[122] 0. Shivers. Data-flow analysis and type recovery in Scheme. In P.Lee,
editor, In Topics in Advanced Language Implementation, pages 47-87.
MIT Press, 1991.

[123] 0. Shivers. The semantics of Scheme control-flow analysis. In
Proc. PEPM '91, volume 26 (9) of ACM SIGPLAN Notices. ACM
Press, 1991.

[124] J. H. Siekmann. Unification theory. Journal of Symbolic Computation,
7:207-274, 1989.

[125] G. S. Smith. Polymorphic-inference with overloading and subtyping.
In Proc. TAPSOFT '93, volume 668 of Lecture Notes in Computer
Science, pages 671-685. Springer, 1993.

[126] G. S. Smith. Polymorphic type schemes for functional programs with
overloading and subtyping. Science of Computer Programming, 23:197-
226, 1994.

[127] B. Steensgaard. Points-to analysis in almost linear time. In Proc. POPL
'96, pages 32-41. ACM Press, 1996.

[128] D. Stefanescu and Y. Zhou. An equational framework for the flow
analysis of higher order functional programs. In Proc. LFP '94, pages
318-327, 1994.

[129] B. Steffen. Generating data flow analysis algorithms from modal spec-
ifications. Science of Computer Programming, 21:115-239, 1993.

[130] J. Stransky. A lattice for abstract interpretation of dynamic (lisp-like)
structures. Information and Computation, 1990.

[131] J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect
Inference. Journal of Functional Programming, 2(3):245-271, 1992.

BIBLIOGRAPHY 399

[132] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In
Proc. LICS '92, pages 162-173, 1992.

[133] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245-296, 1994.

[134] Y.-M. Tang. Control-Flow Analysis by Effect Systems and Abstract
Interpretation. PhD thesis, Ecole des Mines de Paris, 1994.

[135] M. Tofte. Type inference for polymorphic references. Information and
Computation, 89:1-34, 1990.

[136] M. Tofte and L. Birkedal. A region inference algorithm. ACM
TOPLAS, 20(3):1-44, 1998.

[137] M. Tofte and J.-P. Talpin. Implementing the call-by-value lambda-
calculus using a stack of regions. In Proc. POPL '94, pages 188-201.
ACM Press, 1994.

[138] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 132:109-176, 1997.

[139] J. Vitek, R. N. Horspool, and J. S. Uhl. Compile-Time Analysis of
Object-Oriented Programs. In Proc. CC '92, volume 641 of Lecture
Notes in Computer Science, pages 236-250. Springer, 1992.

[140] A. B. Webber. Program analysis using binary relations. In Proc. PLDI
'97, volume 32 (5) of ACM SIGPLAN Notices, pages 249-260. ACM
Press, 1997.

[141] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.
- [WiMa95].

[142] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis
for C programs. In Proc. PLDI '95, pages 1-12. ACM Press, 1995.

[143] A. K. Wright. Typing references by effect inference. In Proc. ESOP
'92, volume 582 of Lecture Notes in Computer Science, pages 473-491.
Springer, 1992.

[144] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115:38-94, 1994.

