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disease modelling in human pluripotent
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The emphasis in human pluripotent stem cell (hPSC)
technologies has shifted from cell therapy to in vitro
disease modelling and drug screening. This review
examines why this shift has occurred, and how current
technological limitations might be overcome to fully
realise the potential of hPSCs. Details are provided for
all disease-specific human induced pluripotent stem cell
lines spanning a dozen dysfunctional organ systems.
Phenotype and pharmacology have been examined in
only 17 of 63 lines, primarily those that model neuro-
logical and cardiac conditions. Drug screening is most
advanced in hPSC-cardiomyocytes. Responses for
almost 60 agents include examples of how careful tests
in hPSC-cardiomyocytes have improved on existing in
vitro assays, and how these cells have been integrated
into high throughput imaging and electrophysiology
industrial platforms. Such successes will provide an
incentive to overcome bottlenecks in hPSC technology
such as improving cell maturity and industrial scalability
whilst reducing cost.
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Introduction

When human embryonic stem cells (hESCs) were first isolated
from blastocyst stage embryos in 1998 [1], many researchers
believed that within 10-15 years the technology would be
sufficiently advanced to allow cell replacement of tissues
damaged by injury, disease or aging. Within the next few
years, approximately 1200 hESC lines had been derived
(http://www.umassmed.edu/iscr/index.aspx) and it became
possible to produce human induced pluripotent stem cells
(hiPSCs) by reprogramming somatic cells with just four
genetic factors [2, 3]. This provided a considerable resource
of human pluripotent stem cells (hPSCs) that could be propa-
gated during long-term culture and yet be differentiated to a
variety of lineages representative of the three embryonic germ
layers [4]. Clinically relevant cell types included cardiomyo-
cytes and blood lineages (mesoderm), hepatocytes and pan-
creatic lineages (endoderm) and neural and dermal lineages
(ectoderm).

An unexpected hurdle was that methods to culture and
differentiate hPSCs were inefficient and labour-intensive [5].
Improvements in cell passaging and commercial provision of
defined culture media (e.g. mTeSR [6], Stem Cell Technologies;
StemPro, Invitrogen [7]) reduced the labour required by indi-
vidual labs. Nevertheless, even defined media are susceptible
to considerable batch to batch variability, probably due to
growth factor manufacture inconstancies or degradation of the
growth factors during storage. Growth substrate is another
source of variability. hPSCs are typically grown on biological
substrates such as human or mouse feeder cells, extracted
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matrices (e.g. Matrigel) or recombinant proteins (e.g. laminin,
collagen, fibronectin and vitronectin), all of which are expens-
ive, variable and/or labile [8]. Although synthetic substrates
that support pluripotency in defined culture media are an
exciting development [9, 10], further refinement is needed.
For example, hPSCs can be maintained on Corning®™
Synthemax™ substrates in mTeSR culture medium [10] but
a single 6-well plate costs $75 and passaging cells requires
manual scraping, which is not amenable to scaled auto-
mation. For differentiation, it is now very encouraging that
protocols exist to yield purities in excess of 50-70% for many
cell types. However, the diversity of methods published for
each differentiated cell lineage [11] belies the challenge of
successfully reproducing protocols between different hPSC
lines and labs.

The use of hPSC-derivatives in cell
replacement therapy faces challenges

In addition to the difficulties discussed above, cell transplan-
tation also brings many other hurdles to the fore. These
include regulatory and ethical issues, whether cells survive,
engraft in the correct location and function after delivery,
whether patients can be recruited successfully, and the costs
associated with clinical trials. The first to transplant hESC
derivatives into humans in 2009 [12], Geron Corporation
had to convince the Food and Drug Administration (FDA) that
their GRNOPC1 neural progenitor cell line was suitable
for transplantation into patients with thoracic spinal cord
injury with a 22,000 page document detailing the in vitro
and preclinical characterisation that had been performed over
many years. Although no adverse events were recorded after
GRNOPC1 transplantation and the Regulators approved pro-
gression to a Phase II trial, spiralling costs led Geron to
abandon their entire hESC programme in late 2011. Many
researchers viewed this as a major setback for clinical trans-
lation of hPSC-based cell replacement therapies. However,
Advanced Cell Technology (ACT) recently received FDA
approval for clinical trials to treat macular degeneration with
hESC-derived retinal pigment epithelium (RPE) cells [13] and
these trials will be watched with interest. Nevertheless, it
is sobering that after 14 years of research, there is only one
active clinical trial using hPSC-derivatives (see clinicaltrials.
gov). It is now becoming accepted that a faster route to
realising the potential of hPSCs and their differentiated
derivatives is through in vitro application, particularly in drug
safety assessment and in providing novel models of genetic
disease.

Human conditions are not always reflected
in animal models because of species
differences

Although in vitro disease modelling could theoretically be
realised by harvesting primary cells from healthy donors or those
carrying a relevant genetic condition, for many cell types this is
not a realistic option. For example, harvesting heart tissue on an
industrial scale is limited by suitable donors, lack of proliferation
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of cardiomyocytes, variability in preparation, disease state and
cell viability. These problems are particularly pronounced if the
cells are sourced from cadavers. Consequently, there is consider-
able reliance on material derived from animals. Mice are most
commonly used for modelling disease because of the relative
ease of precisely manipulating the genome by gene targeted
homologous recombination [14]. However, there are major differ-
ences in the gene expression and physiology between animals
and humans, from the single cell level up to the whole animal.
The beat rate of the mouse heart is approximately ten times faster
than the human (500 bpm vs. 60 bpm) but it has an electro-
cardiogram duration 5-10 times shorter (450 milliseconds vs.
50-100 milliseconds) [15]. Increases in heart rate are associated
with increased force of contraction in humans but decreased
force in mice [16]. Whereas repolarisation of the mouse cardi-
omyocytes is driven primarily by I, Ik siowt, Iksiow Iss ion
channels, this function is provided by the potassium channels,
Ik, and Iy, in human cells [15]. There are species differences in
the role of the regulatory molecule, phospholamban [15], and
expression of structural genes also varies. In humans, expres-
sion of alpha and beta myosin heavy chains («-/B-MHC) locates
to the atria and ventricles, respectively [17], but in the mouse
oMHC is expressed in both locations [18]. The surface marker,
SIRPA, is expressed on cardiomyocytes from human but not
mouse hPSCs, and so only the human cells can be enriched by
fluorescence or magnetic activated cell sorting [19].

Such differences mean that extrapolation from mouse to
human can be misleading. In humans, long QT syndrome
(LQTS) type 1 and type 2 are caused by mutations that affect
function of Iy and Iy,, respectively, and can lead to palpita-
tions, syncope (fainting), seizures and sudden cardiac death
[20]. Since repolarisation of the mouse heart does not rely on
these channels, this animal cannot be used to model the
conditions. Outside the cardiovascular system, the survival
motor neuron 2 gene (SMN2) gene is implicated in develop-
ment of spinal muscular atrophy in humans, but this gene is
not present in mice, flies and worms [21]. The gene sequence
of a-synuclein found in healthy wildtype mice and rats can
confer Parkinson’s disease in humans [22]. The ontology of
organs affected by cystic fibrosis in humans differs markedly
from that in mice [23]. Such observations have prompted
development of novel in vitro human-based systems for
studying human genetic disease.

Development of hPSC-based models of
human genetic disease is needed

Human pluripotent stem cells have the potential to play a
major role in providing models of genetic disease. Early efforts
were directed towards using hESCs, and there are about a
dozen examples of where cases in which this has been
achieved [24]. Lines carrying myotonic dystrophy type 1, cystic
fibrosis and Huntington disease have been derived by isolating
hESCs from pre-implantation genetic diagnosis (PGD) embryos
[25]. However, PGD screens for only a limited number of
genetic conditions, few scientists have access to these facilities
and the use of embryos (even those that harbour detrimental
genetic lesions) is ethically sensitive in many countries.
Alternatively, gene targeting has been used to inactivate
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genes, such as HPRT1 in male hESCs, to produce an in vitro
model of the metabolic disorder Lesch Nyhan syndrome [26].
However, while manipulation of the hPSC genome has become
more routine in the last few years [27], engineering specific
polymorphisms, deletions or amplifications is time consum-
ing, requires a reasonable level of skill, and becomes increas-
ingly challenging proportionate with the number and
complexity of modifications required, even when nuclease-
based methods are used [28].

In contrast, hiPSC technology is readily accessible, and has
the potential to revolutionise in vitro disease modelling
(Table 1; Fig. 1). It is relatively straightforward for scientists
to establish collaborations with clinicians who care for
patients with a particular genetic condition, and the ethical
frameworks for informed patient consent are commonplace
within most universities and industrial settings. Many com-
mercial providers of stem cell reagents now offer complete off-
the-shelf kits to progress from patient sample to reasonably
well characterised hiPSC lines. Consequently, less than 5 years
after the first report of reprogramming somatic cells [3], 63
hiPSC models have been produced for 43 diseases affecting the
heart, smooth muscle, skeletal muscle, immune system, skin,
central nervous system, blood and eye, as well as imprinting,
metabolic and multi-organ disorders (Table 1). It can be
expected that the number of hiPSC lines available will rise
exponentially over the next few years.

Nevertheless, it is noteworthy that, with the exception of
the eye disorder retinitis pigmentosa, only hiPSCs models
affecting the heart and central nervous system have been used
to evaluate effects of drug treatment in detail (Table 1; Fig. 1).
This highlights several critical factors that are often over-
looked in hiPSC technology: How will the phenotype of the
disease be quantified in vitro? How will benefits of different
methods of therapeutic intervention be evaluated? If a disease
phenotype is present, how does it relate to the patient’s
condition? Is the therapy tested in vitro relevant to the patient,
and is there potential for clinical translation? As shown in
Table 1, the level of genetic and/or pharmacological charac-
terisation in the majority (46/63) of hiPSC models is limited,
and the answers to these questions are outstanding.

Phenotype assessment in hiPSC-derived
neurons and cardiomyocytes

Most progress has been made in phenotyping and evaluating
drugs in hiPSC-based models of neurological and cardiac con-
ditions (Table 1). Motor-, cortical- and dopaminergic-neurons
from hiPSC harbouring mutations associated with neuro-
degenerative (e.g. Alzheimer’s, Parkinson’s and Huntington’s
diseases, schizophrenia) and neurodevelopmental disorders
(e.g. Rett syndrome, spinal muscular atrophy, familial dysauto-
nomia) have been successfully generated. Quantitative
phenotyping of these cells has indicated severe defects in
growth, migration and function compared to healthy controls.
They therefore provide platforms for drug validation (Table 1).
For example, the known anti-psychotic drug, loxapine, has been
shown to improve neuronal connectivity in schizophrenia
models [29], while compound E, a tobacco-derived y-secretase
inhibitor, decreased secretion of pathogenic AB42 in Alzheimer’s
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models [30, 31]. Rett syndrome models have also been used for
validation of experimental drugs such as gabazine, a GABA,
receptor antagonist [32].

Genetic disorders that affect the structure, ion channel
composition and functionality in the heart also provide a
quantifiable phenotypic readout. One of the consequences
of the multi-system disorder of LEOPARD syndrome is cardiac
hypertrophy, which has been partially phenocopied using
hiPSC-cardiomyocytes [33]. The techniques of patch clamping
and multi-electrode array (MEA) have proved valuable in
interrogating electrophysiology from single or multi-cell
clusters of cardiomyocytes, respectively [34]. Alterations in
calcium handling can be visualised using realtime microscopy
in the presence of calcium sensitive dyes [35]. Data from hiPSC
lines carrying mutations that cause LQTS and catecholamin-
ergic polymorphic ventricular tachycardia (CPVT) are starting
to produce evidence that patient-relevant phenotypes and
drug response can be recreated in vitro. In the case of
LQTS2, caused by mutations in the I, channel, hiPSC-derived
cardiomyocytes developed arrhythmias when exposed to iso-
prenaline, a stressor used clinically to precipitate and diag-
nose the condition [34]. This effect could be reversed by
applying the patient’s own medication, nadolol, a 3-blocker.
Dantrolene and roscovitin, drugs known to be beneficial in
moderating calcium flux, stabilised ion flux in hiPSC models of
the calcium channel disorders, CPVT and Timothy syndrome
(linked to LQT type 8), respectively [35-37].

Human induced pluripotent stem cell-cardiomyocytes
are now providing novel routes to test more experimental
drugs. The arrhythmias seen in the LQTS2 models were
abolished by the potassium channel modulators, nicorandil
and pinacidil (K"arp channel openers) or PD-118057 (Ix,
channel activator) [34, 38]. Encouragingly, it has been
shown that hiPSC-cardiomyocytes can replicate relatively
subtle differences between patients. hiPSCs were produced
from a healthy donor as well as from a mother and daughter,
wherein the mother was clinically asymptomatic (no arrhyth-
mias) with a moderately prolonged QT interval and the
daughter was symptomatic with an excessively prolonged
QT interval (arrhythmias, syncope and seizure episodes).
Recording action potential durations from the different
hiPSC-cardiomyocytes showed that the clinical profile was
reflected in vitro (i.e. action potential longest in the daughter’s
cells, then the mother’s, then the healthy control) and only
hiPSC-cardiomyocytes produced from the daughter developed
spontaneous arrhythmias [34]. Establishing whether such
in vitro to in vivo associations hold true for other conditions
will be important for hiPSC technologies to become widely
accepted.

Assessing the need for humanised
cardiotoxicity testing platforms

The ability to quantify functional responses in lineages such as
hPSC-cardiomyocytes will likely find use in drug safety assess-
ment. In recent years, high rates of drug attrition and with-
drawal from market (because of unexpected cardiotoxicity)
have imposed a multi-billion dollar burden on the pharma-
ceutical industry. More than ten drugs used to treat various
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Figure 1. Current status and emerging technologies in disease mod-
elling and drug screening for hiPSC-based models of human genetic
disease. hiPCS-based models of human disease affecting the heart,
smooth muscle, skeletal muscle, skin, central nervous system (CNS),
liver, blood and eye have been generated. However, only those
affecting the heart, CNS and eye have been used to evaluate the
effects of drug treatment. Emerging technologies for scale-up, auto-
mation and high throughput analysis will enable use of hiPSC-dis-
ease models for drug discovery and safety evaluation in an industrial
setting. Green and blue arrows show processes amenable to scale-
up and automation, or high-content imaging and electrophysiology
analysis.

non-cardiac conditions (e.g. inflammatory disease, psychosis,
bacterial infection, pain) have been withdrawn from market
because of unexpected side effects on the heart [39]. Side
effects can damage the structural integrity and survival of
cardiomyocytes, as is the case with the anti-inflammatory
drug, Vioxx [39] and many anti-cancer drugs, such as doxor-
ubicin [40]. Beat regularity and duration (QT prolongation or
shortening) can also be affected, which can lead to polymor-
phic ventricular tachyarrhythmia, seizures and sudden death.
Indeed, in 2010 this was the reason for the US FDA requesting
withdrawal of propoxyphene, an opioid pain reliever mar-
keted by Xanodyne Pharmaceuticals [41], and of sibutramine,
a weight loss agent marketed by Abbott Laboratories [42]. With
development costs of each drug averaging $1.5 billion, high
profile withdrawals are extremely damaging for the companies
involved, as well as for patients taking the medication; the
serotonin agonist, cisparide, caused 125 deaths before its use
ceased [43].

The use of suboptimal screening and safety assessment
platforms underlies the reason for which drugs with poten-
tially lethal side effects are not eliminated from the develop-
ment pipeline before they reach the clinic. Early in most

Bioessays 35: 281-298,© 2012 WILEY Periodicals, Inc.

development pipelines, drugs are tested for channel modulat-
ing activity by utilising aneuploid cell lines (e.g. Chinese
hamster ovary [CHO] or human embryonic kidney [HEK] cells)
engineered to overexpress single ion channels. Such assays
bear little relation to the complex multi-channel phenotype of
functional cardiomyocytes [44]. This issue is illustrated by the
in vitro culture responses seen with verapamil, a ‘safe’ drug in
routine clinical use for treatment of hypertenstion, angina
pectoris and cardiac arrhythmia. In CHO cells forced to over-
express HERG, verapamil blocks the potassium Iy, channel,
thereby predicting an association with prolonged QT interval
[45]. In reality, while outward ion flux through I, channels is
blocked in functional cardiomyocytes, verapamil also blocks
inward flux through L-type calcium channels (Ic,.1), and the
overall effect on QT interval is cancelled out [45]. Similarly,
ranolazine, a drug used to treat angina, blocks opposing
sodium Iy, and potassium I, channels, with limited effect
on QT duration [46].

As discussed earlier, there are substantial differences in
gene expression and physiology between species, which can
limit the effectiveness of extrapolating toxicity from animals
to humans. Indeed, data from non-rodents or rodents are
respectively, 63 and 43% predictive of whether a drug will
be toxic in humans. Even when data are combined from
rodents (mice and rats) and non-rodents (dogs and monkeys),
only 71% predictivity is achieved [47]. Notably, mice are at
least 10x more tolerant to 37% of drugs than humans, while
rats and dogs tolerate 4.5-100-fold the concentration of
various chemotherapeutic agents as humans (e.g. ThioTEPA,
Myleran, Actinomycin-D, Mitomycin C, Mithramycin,
Fludarabine) [48]. Conversely, potentially valuable drugs
might be eliminated during development because of overt
toxicity in animals, when in fact they might be completely
innocuous in humans. By way of example, chocolate and coffee
can cause organ failure and death in dogs. This is because,
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relative to humans, the methylxanine ingredients, theobromine
and caffeine, of these foods are poorly metabolised in dogs,
which leads to potentially fatal toxic build up [49].

Despite these inadequacies, regulatory guidelines (e.g.
international conference on harmonisation; ICH S7B) require
extensive animal use in safety assessment because predictivity
of current in vitro assays is insufficient. This has major
implications for the number of animals used, and is not in
line with the developing 3Rs (replacement, refinement and
reduction of animal use) policies of many countries. For
example, in the UK in 2008, a total of 475,290 animal pro-
cedures were performed to supply the needs of drug safety
assessment and toxicity testing [50]. New EU regulation for the
registration, evaluation, authorisation and restriction of
chemicals (termed REACH) will require toxicological testing
of 30,000 compounds, and some reports suggest that this will
require up to 54 million animals over the next 10 years in
Europe alone [50, 51].

These observations lead to the conclusion that any new
human-based in vitro assays that improve or complement
existing tests would benefit 1. patients through better drug
safety; 2. the 3Rs, through reduced animal use; and 3. phar-
maceutical companies, through reduced preclinical costs and
drug withdrawals.

Progress towards using hPSC-
cardiomyocytes in cardiac safety
assessment

In the last few years, tremendous progress has been made in
improving the efficiency and robustness of cardiac differen-
tiation from hPSCs, thereby providing a renewable source of
human cardiomyocytes. The three differentiation strategies
employed are formation of (i) three-dimensional aggregates
known as embryoid bodies, (i) two-dimensional monolayers
or (iii) co-cultures with an inducer cell line such as END-2;
these methods have recently been reviewed [11]. The cardio-
myocytes display many of the gene expression patterns associ-
ated with in vivo development of the heart, including gene
expression, ion channel formation, electrophysiological
responsiveness and excitation-contraction coupling [52].

These attributes suggest that hPSC-cardiomyocytes could
provide a human-based in vitro assay system for drug testing.
Indeed, the pharmacological responses of hPSC-cardiomyo-
cytes have been quantified from nearly 60 different com-
pounds and drugs (Table 2). While the range of agents is
extensive, most studies have only used one or two concen-
trations of drug that are at the upper end or exceed clinically
relevant doses. Nonetheless, several important points are
emerging, as considered below (see also Tables 1 and 2,
and references therein).

First, functionality in hPSC-cardiomyocytes has been
shown for many of the key ion channels (potassium: I,
Iy, Ity Lo, Ixq; sodium: Iy,; calcium: Ic,;, SERCA2a) and reg-
ulator molecules (e.g. receptors: muscarinic, adrenoceptors,
acetylcholine, ryanodine) found at the cell membrane or in the
sarcoplasmic reticulum. Second, functional responses can be
quantified by methods of relevance to the pharmaceutical
industry, such as patch clamp electrophysiology and calcium
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detection. Third, responses can be measured from cardiomyo-
cytes derived from a range of healthy and disease-carrying
hPSC lines. Fourth, the complex multi-ion channel phenotype
of hPSC-cardiomyocytes provides an advantage over CHO cells
forced to overexpress a single channel. Dual channel blocking
agents such verapamil (blocks Iy, and Ic,;) and ranolazine
(blocks Iy, and Iy,) are QT-neutral when clinically relevant
doses are applied to hPSC-cardiomyocytes. Fifth, in some
cases, hPSC-cardiomyocytes can detect toxic effects at lower
doses than is possible in animal systems. We have found
that the I, blocker, risperidone, causes increased field poten-
tial duration of hPSC-cardiomyocytes at 0.1 uM [46], but data
from GlaxoSmithKline indicate that prolongation occurs in
guinea-pig myocytes at 1 pM. Moreover, direct comparison
between hPSC-cardiomyocytes and myocytes isolated from
dogs or rabbits concluded that the human cells more accu-
rately predicted moxifloxacin-induced cardiotoxicity [53].
Finally, a careful study examined drug effects over a 6-log
dose-response range that covered the estimated unbound
therapeutic plasma concentrations [54]. There was good
association between clinical and hPSC-cardiomyocyte toxicity
for drugs such as quinidine and b,L-sotalol known to
prolong QT interval, whereas drugs with a low incidence of
arrhythmogenesis (e.g. cisapride, terfenadine, sertindole,
sparfloxacin) only caused prolongation of field potential
duration at higher doses [54].

Limitations and challenges to overcome
in hPSC technology

The emerging data for disease modelling and drug screening
are encouraging. However, this is a new field with limitations
yet to be overcome. Although hESCs are often considered the
gold standard, these cells are derived from spare embryos
donated by couples experiencing fertility problems, hence
the need for in vitro fertilisation (IVF) treatment. It is known
that different methods of embryo culture can alter epigenetic
status [55]. For hiPSC derivation, delivery of reprogramming
factors can be achieved by viral (e.g. retroviruses, lentiviruses,
adenoviruses, sendaivirus) or non-viral (episomes, plasmids,
miRNA, mRNA and protein) strategies [56]. It is notable that
virtually all disease models have used the ‘original’ retroviral
and lentiviral methods (Table 1) [2, 3], and a potential concern
is random integration of the viral genome into the host
genome [57]. Assessment is further complicated, because it
depends on whether the reprogramming factors are contained
on single or multiple vectors, and whether small molecule
enhancers of hiPSC production were used [56, 58]. There is not
yet a consensus on the cell type to reprogram [56], although
skin and blood cells are preferred because of the ease of
patient consent, minimal discomfort to the patient, and acces-
sibility. Each of these variables has the capacity to alter the
genotype, epigenome and phenotype of the hiPSCs produced,
as well as the subsequently derived differentiated lineages.
Therefore, it is difficult to know whether problems reported for
hiPSC (e.g. transfer of epigenetic legacy from somatic cells to
hiPSC, improper reprogramming/disease modelling [e.g. Fragile
X] or genetic instability) [59] are inherent to the technology
or are a consequence of the reprogramming method(s) used.
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Detailed studies to resolve these issues are required, as is a
consensus of the best cell type to reprogram and how.

In addition to the careful consideration of how disease
presentation will be phenotyped in vitro (discussed eatlier),
there is also an issue of whether hPSC derivatives mature
sufficiently in culture to make them fit for their intended pur-
pose. To date, drug treatment and phenotypic studies in hiPSC-
derived neurons have been more successful for neurodevelop-
mental disorders than late-onset neurodegenerative disorders,
likely because of the foetal-like properties of the cells [60].
The absence of functional potassium channels (Ix;) and shifted
activation of sodium channels (Iy,) indicates an immature status
of hPSC-cardiomyocytes, and has raised concerns about their
suitability in drug screening [61]. Therefore it is encouraging
that maturation of hPSC-cardiomyocytes can be facilitated
by prolonged time culture [62, 63], transgenic overexpression
of calsequestrin [64], formation of 3D aggregates [62], tissue-
engineered constructs and mechanical stress [65, 66].

It is unlikely that hiPSC technology will successfully model
all disorders. The epigenetic status that underlies some dis-
eases will be erased during somatic cell reprogramming, while
for other conditions a suitable phenotype may not be present
in an in vitro setting [59]. Although several studies have now
demonstrated robust association with the phenotypes and
drug responses seen in hiPSCs models with known patient
pathologies (e.g. LQTS), similar validation is required for
a broad range of conditions (Table 1). The timing of some
late onset conditions may exceed the lifespan of hiPSC-
derivatives in culture, and innovative strategies are required.
For example, the dopaminergic neurons differentiated from
hiPSCs carrying a mutation in the PINKI gene (causes
Parkinson’s disease) only showed altered patterns of survival
when additionally treated with a mitochondrial stressor [67].
Finally, differentiation of the hiPSC into relevant cell types is
necessary. So far, hiPSC modelling has been restricted to about
10 tissue or organ systems (Table 1) and future work will be
needed to expand this range.

Industrial scalability of hPSC technologies

For hPSC derivatives to be used for disease modelling and drug
screening at an industrial level (Fig. 1), sufficient numbers
of cells need to be produced in a cost-effective manner.
Undifferentiated hPSCs have been produced using stirred
bioreactors in suspension [68] and using fully automated
robotic platforms such as the CompacT SelecT, which cultures
adherent cells in up to 90 T175 flasks [69]. However, the cost of
the reagents for hPSC culture is prohibitive because of the
reliance of expensive culture media that contain various
growth factors. To this end, high throughput screening has
sought to identify putative chemicals that maintain pluripo-
tency in the absence of growth factors or that improve cell
survival after passage [70-72]. Such approaches have ident-
ified a series of inhibitors of the Rho kinase pathway and
prosurvival compounds such as Y27632 that are now used
by many labs during routine hPSC culture. The same degree
of success has not been achieved in replacing basic fibroblast
growth factor (bFGF), which remains the gold standard for
maintaining hPSC pluripotency in many labs.
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Similar to the undifferentiated state, scaled production of
differentiated lineages has been achieved, but also tends to
rely on costly growth factors; in the case of hPSC-cardiomyo-
cytes these typically include bFGF, bone morphogenetic
protein (BMP4) and activin A [11]. Commercial production
of hPSC-cardiomyocytes is now in progress, with GE-health-
care, Cellular Dynamics International and Cellartis/Cellectis
charging approximately $2000-3000 per vial of ~1 million
cells. It is encouraging that small molecules that promote
cardiac differentiation are being identified from high through-
put screens and from rational compound selection (Table 3).
Time- and concentration-dependent application of the BMP
inhibitor, dorsomorphin, has proved to be highly effective in
improving cardiomyocyte differentiation efficiencies [73].
In time, it is hoped that such strategies will allow hPSC-
cardiomyocytes to be produced to short time scales, in large
quantities at low cost. This goal has been achieved for
production of >3 x 10° mPSC-cardiomyocytes in stirred bio-
reactors [74]. Elegant work has also shown pipeline conver-
sion of mouse fibroblasts into iPSCs and then into iPSC-
cardiomyocytes in a single suspension bioreactor [75]; the
challenge now is to translate the high efficiency ‘inducible
secondary’ iPSC reprogramming into a technology that is
compatible with human cells.

Progress towards high throughput
analysis

In an industrial setting, drug discovery and safety evaluation
relies on high content imaging of many thousands of wells in
96-, 384- and 1,536-well plates (Fig. 1). Various manufacturers
offer fully automated platforms [76] such as BD pathway
(BD Biosciences), In Cell Analyser 2000 (GE-healthcare),
ImageXpress (Molecular Devices), Opera (Perkin Elmer)
and Cellomics Arrayscan (ThermoFisher). These deliver a
vast array of information on cell physiology and function,
including cell number, cell shape/size, proliferation, viability,
membrane integrity, phagocytosis, apoptosis, cell migration,
cell-cell contacts and organelle health (e.g. numbers, size,
shape, activity of nucleus, mitochondria, lysosomes) [77].
Fluorescent assays are also used to readout on G-protein
coupled receptor (GPCR) activity, calcium handling and trans-
genic reporter expression [77]. As discussed above, such plat-
forms have been used to evaluate molecules that help
maintain pluripotency or promote differentiation of hPSCs
but they are starting to find use in phenotypic evaluation of
differentiated cells. The Cellomics Arrayscan platform was
used to evaluate the effect of various modulators of hyper-
trophy (e.g. angiotensin II, phenylephrine, p38-MAPK) on cell
morphology of hPSC-cardiomyocytes by examining 1,000-
1,500 cells per well in 96-well plate formats [78]. Data have
been presented by Cellular Dynamics International on quanti-
fication of the cardiotoxic effect of valinomycin, etoposide and
rotenone in hPSC-cardiomyocytes using high content imaging
of changes in mitochondrial and lysosomal physiology, DNA
damage and oxidative stress. At a recent Predictive Toxicology
Meeting in London (February 2012), data from GE-healthcare
showed how 26 anti-cancer agents changed 19 different cell
morphological and functional parameters in hPSC-cardiomyo-
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cytes. The analysis was carried out on three replicates, two
timepoints and seven doses in a 384-well plate format using
the In Cell 2000 platform. This analysis produced graphical
profile sets that were associated with high, moderate, low or
no drug-induced cellular toxicity.

High throughput electrophysiology provides a route to
recording functional readouts from viable cells. The pharma-
ceutical industry uses PatchXpress, lonWorks and QT-screen
to assess the effect of channel modulators on transgenic CHO
cells overexpressing I, potassium channel. Recently, it was
demonstrated that high purity hPSC-cardiomyocytes could
be adapted to the PatchXpress platform [79]. This allowed
simultaneous recording from 16 channels and the authors
quantified the effect of tetrodotoxin, nifedipine and E4031
on Iy, Icar and Iy, respectively [79]. Further integration of
hPSC-derivatives into high throughput platforms will help
accelerate the use of these cells by the pharmaceutical
industry.

Conclusions and future perspectives

Recent developments have boosted the likelihood of wide-
spread use of hPSC-derivatives in disease modelling and
drug development. Reprogramming somatic cells with four
genetic factors has allowed rapid derivation of many hiPSC
disease models. Differentiation efficiencies have radically
improved, while clinical pathologies have been demonstra-
bly replicated in cardiac and neural hiPSC-based models.
Such models respond appropriately to pharmacological chal-
lenge, particularly for LQTS and potassium or calcium
channel blockers. Nevertheless, hPSC technology requires
improvements. Standardised methods that stabilise the gen-
otype, epigenome and phenotype of hPSCs and their deriva-
tives are paramount, as are methods to quantify phenotypic
responses in lineages other than hPSC-cardiomyocytes and
neurons. Current differentiation methods vyield hetero-
geneous populations of immature cells; for cardiomyocytes,
this includes ventricular, atrial and pacemaker subtypes [34],
but mature ventricular cells are most relevant to drug safety
assessment. Although hPSCs and their derivatives are adapt-
able to high throughput screening, current methods are
not cost effective. These are surmountable issues, especially
when driven by the needs of the pharmaceutical industry,
where industry figures show that 98% of sales are based on
products of >5 years old. 110,000 jobs have recently been lost
in the US, and patent expiry will cost the industry USD$130
during 2011-2014. Not surprisingly, most major pharmaceut-
ical companies now have in-house stem cell programmes,
and collaborate with academic groups or purchase hPSC
products from commercial suppliers [39]. Just as new bio-
informatics approaches are being applied to predict adverse
drug interactions [80], so too will hPSC technologies in order
to further understand disease and develop new drugs.
Estimates indicate that even if an assay improves predict-
ability of toxicity in humans by just 1%, up to $100 million
will be saved by the pharmaceutical industry. Therefore,
even small, incremental, improvements can be extremely
worthwhile pursuing.
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