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Abstract 

 The nonlinear evolution of an ion ring instability in a low-

! 

"  magnetospheric 

plasma is considered. The evolution of the two-dimensional ring distribution is 

essentially quasilinear. Ignoring nonlinear processes the time-scale for the quasilinear 

evolution is the same as for the linear instability 

! 

1 "
QL
~ #

L . However, when nonlinear 

processes become important, a new time scale becomes relevant to the wave saturation 

mechanism.  Induced nonlinear scattering of the lower-hybrid waves by plasma electrons 

is the dominant nonlinearity relevant for plasmas in the inner magnetosphere and 

typically occurs on the timescale nTWmM
NL

)/(~1 !" , where W is the wave energy 

density, nT is the thermal energy density of the background plasma, and

! 

M m  is the ion 

to electron mass ratio, which has the consequence that the wave amplitude saturates at a 

low level, and the timescale for quasilinear relaxation is extended by orders of 

magnitude. 
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I. Introduction 
 
 Ring distributions appear commonly in space plasmas. For example they are 

observed in association with magnetosonic waves1 from the plasmapause out to 

geostationary orbit2. Ring distributions form in the magnetospheric ring current due to 

charge exchange with neutral Hydrogen. They may also form from the earthward 

convection of ions after substorms when the low energy portion of the ions are lost as 

they 

! 

E " B drift in the Earth’s field.3,4 Additionally ring distributions are created in a 

variety of active ionospheric experiments where a beam of neutral atoms is released 

perpendicular to the magnetic field.5,6 The photo-ionization of the neutral atoms and 

subsequent gyration about magnetic field lines generates a velocity ring distribution. 

They are also observed in the cometary bow shock when a water molecule becomes 

ionized, and begins gyrating with the solar wind velocity. Space shuttle water releases, 

which are required to get rid of excess water produced by the fuel cells, produce ion ring 

distributions.7 

 Ring velocity distributions are highly anisotropic and are unstable with a variety 

of wave modes.8,9,10,11,12  In the magnetosphere these distributions are observed along 

with waves with frequencies ranging from a few harmonics of the proton cyclotron 

frequency up to the lower hybrid frequency.3 For the low-

! 

"  magnetosphere, only 

electrostatic ion-cyclotron waves and lower-hybrid waves are considered here. 

The evolution of the ring distribution has previously been considered in both 

theory and simulation.13,14,15,16 In one-dimensional hybrid and particle simulations, the 

saturation of the ring-instability happens due to particle trapping.15,17  However in two 

dimensions14, ignoring non-linear interactions, the instability saturates due to quasilinear 
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relaxation of the ring ions, i.e., the wave energy grows exponentially while 

simultaneously the waves diffuse the ring ions until the instability has vanished and all 

waves are absorbed by the ring ions resulting in their thermalization. 

In section 2, the basic linear instability theory for the ring distribution is reviewed. 

In particular, the main electrostatic instabilities relevant for the low-

! 

"  

magnetosphere/ionosphere occur at either the ion-cyclotron harmonics or the lower-

hybrid frequency depending on whether the ions are magnetized (

! 

" <#
i
, i.e., when the 

growth rate is smaller than the ion cyclotron frequency) or unmagnetized 

! 

" >#
i( ) 

respectively. Additionally the basic equations for the electric field for waves near the 

lower-hybrid frequency are derived, and it is shown that the electrostatic lower-hybrid 

waves are the short wavelength limit of the electromagnetic whistler and magnetosonic 

waves. In section 3, the basic theory for the quasilinear evolution of the ring velocity 

distribution is described and is shown to be a two-dimensional phenomena. Since the rate 

for quasilinear evolution, which is governed by the linear instability rate 

! 

1 "
QL
~ #

L , is 

very fast compared to the rate of injection of free energy for the instability, e.g., by 

storm/substorm injections, various nonlinear processes may appear. The main 

nonlinearities from weak turbulence theory are analyzed.  In a low beta plasma the 

dominant nonlinearity for lower-hybrid waves is nonlinear wave particle scattering, 

sometimes referred to as nonlinear Landau damping, which is a three-dimensional 

phenomenon.18 In section 4, the nonlinear scattering rate 

! 

"
NL( )  is derived. For lower 

hybrid waves 

! 

"
NL
~ #

M

m

W

nT
, which can be quite large even for small 

! 

W nT .  It is shown 

in section 5 that because of this character, the wave amplitude is maintained at a low 

amplitude due to nonlinear scattering. A steady state is achieved by the balance of the 
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rates of NL scattering and the loss of the turbulence energy due to ion Landau damping or 

convection from the region where the ring is localized. This implies that the timescale of 

the relaxation is not controlled by the linear growth rate, but rather the nonlinear growth 

rate.  

  

 



 5 

II. Linear Instability Theory of the Ion-Ring Distribution  

 Consider an ion-electron plasma with Maxwellian distributions and an ion-ring 

distribution where the ion-ring species is heavier than the background ions 

! 

"
r

<"
i
 in a 

uniform magnetic field 
0
B . The distribution function for ring-ions if the thermal speed 

! 

v
tr
 of the ring ions is small 1v >>

trr
V , can be approximated as a delta-function 

distribution  

( ) ( ) !
!
"

#
$
$
%

&
''= (( 2

2

||

2/1||ring

v
expVv

V

1
v,v

tr

r

rtr vv
f )

*
, (1) 

where 

! 

V
r
 is the ring ion speed. The distribution ei,=jf  of the ion and electron background 

with number density j
n  is taken to be a Maxwellian  

! 

f j=i,e v",v||( ) =
1

# 3 / 2
vtj
3
exp $

v"
2

vtj
2

% 

& 
' ' 

( 

) 
* * exp $

v||
2

vtj
2

% 

& 
' ' 

( 

) 
* * , (2) 

where the thermal speed of either the proton(i) or electron(e) species is denoted tj
v . The 

thermal speed tj
v  is related to the temperature of the species jT  using 

! 

vtj = 2Tj /m j , 

where 

! 

m j  is the mass of the species; throughout this article only an isothermal plasma is 

considered where 

! 

T
e

= T
i
. The distributions (1) and (2) are normalized such that 

! 

2" f v#,v||( )$ dv
||

= f v#( )  and 

! 

v"d v" f (v" )# =1.  

 The main instability to be considered here is the electrostatic lower-hybrid 

instability. Therefore the frequency range of unstable waves will be restricted to 

! 

"
i
<<# <<"

e
, though other instabilities such as for low-frequency 

! 

" <<#
i
 inertial 

Alfven waves are possible19. Furthermore, due to the anisotropic nature of the ring 

distribution, the most unstable wavenumbers occur for 

! 

k
||

<< k" , where 

! 

k
||
 and k"  are the 
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components of the wavevector parallel and perpendicular to the magnetic field 

respectively.   

 Using the cold plasma model in a dense plasma 

! 

" pe

2
>>#e

2 , the current18 in the 

frequency range 

! 

"
i
<<# <<"

e
 is due to the relative drift between the effectively 

unmagnetized ions and magnetized electrons  

! 

j n
0
e = "

cE # $ b

B
0

"
i%

&e

1"
%LH

2

% 2

' 

( 
) ) 

* 

+ 
, , 
cE #

B
0

+
ieE - b

m%
 . (3) 

Ampere’s law 

! 

"
2
A = #4$ j c  in the Coulomb gauge 

! 

" # A = 0 , along with the electric 

field equation 

! 

E = "ik# + i$A c  where 

! 

"  and 

! 

A  are the scalar and vector potentials 

respectively, results in the equations for the electric field 

! 

Ex = "ikx#
k
2

k$
2

Ey = Ex

i%

&e k
2

E
||

= "ik
||
#

k
2

1+ k
2

. (4) 

Taking the divergence of the current 

! 

" # j = 0 gives the general dispersion relation for 

waves with frequency 

! 

"
i
<<# <<"

e
,  

! 

" 2

#
e

2
=

k
2

1+ k
2

"
LH

2

#
e

2
+

k ||
2

1+ k$
2

% 

& 
' ' 

( 

) 
* * , (5) 

where the normalized wavenumber 

! 

k = kc " pe  was introduced. 

! 

" pj

2
= 4# n je

2
m j  is the 

plasma frequency of species j with charge 

! 

q j = ±e  , density 

! 

n j , mass 

! 

m j , the cyclotron 

frequency 

! 

" j = eB
0
m j c , and 

! 

b = B0 B
0

. From the dispersion relation (5) there are 

three important limits: when 

! 

k" >>1 and 

! 

k || k" <<#
LH

$
e
, 

! 

" ="
LH

= #
e
#

i
 is the 

lower hybrid frequency in a dense plasma and both 

! 

E
x
 and 

! 

E
||
 are electrostatic while the 

electromagnetic component 

! 

Ey  is small, when 

! 

k" <1 but 

! 

k || k" <<#
LH

$
e
, 

! 

" 2
= k

2
V
A

2 



 7 

the dispersion for magnetosonic waves, when 

! 

k" <1 and 

! 

k || >>"
LH

#
e

 

! 

" 2
= k

2

k ||
2

#
e

2 the 

dispersion for whistler waves. The electric field (4) shows that all three waves are 

formally electromagnetic but propagate at different wave normal angles. 

Specifically, the unstable waves considered are the lower hybrid waves which are 

the short wavelength limit, 1/ >>pekc ! , of electromagnetic whistler waves according to 

(4) and (5). In this limit, the linear dispersion relation can be derived using the 

electrostatic approximation !"#=
rr

E . The general dispersion relation is 

  

! 

D ",
r 
k ( ) =1+ #

0

j

j

$ = 0 , where the sum is taken over all species 

! 

j  where 

! 

"
0

j  is 

susceptibility of each species.20,21  If the electron and proton distributions are Maxwellian 

as in (2) then their susceptibilities may be written21,22 as 

! 

"
0

e
=
2# pe

2

k
2
vte
2
1+

#

k
||
vte

Z
#

k
||
vte

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) +

# pe

2

*e

2

k+
2

k
2

,  (6) 

and 

! 

"
0

i
=
2# pi

2

k$
2
vti
2
1+

#

k$vti
Z

#

k$vti

% 

& 
' 

( 

) 
* 

% 

& 
' 

( 

) 
* ,  (7) 

respectively, where 

! 

Z  is the plasma dispersion function.  

The ion susceptibility (7) is equivalent to the susceptibility of a species with a 

Maxwellian distribution when there is no magnetic field. Formally, the reduction of the 

background plasma ion susceptibility to its simple unmagnetized form, (7) can be made if 

! 

" #
i
+ $ /16k

||

2%
i

2
>1.11 For flute modes (

! 

k
||

= 0 ), this reduces to the condition that the 

growth rate be larger than the cyclotron frequency of the ions 

! 

"
i,r

, i.e. 

! 

" >#
i,r

. The 
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procedure for transforming the magnetized susceptibility to its unmagnetized form (7) is 

treated more fully elsewhere21,23  

 It was demonstrated24 that when 

! 

" # k
||
v
||

>>$
i,r

, and 

! 

k"
i,r

>>1 the susceptibility 

of the ion species for a general distribution can be expressed as 

! 

"
0

j = #
$ pj

2

k
2

v%dv%&
1

v%

'f j
'v%

1#
$

$ 2 # k%
2
v%
2( )
1/ 2

( 

) 

* 
* 

+ 

, 

- 
- 
. (8) 

When the ring distribution can be expressed as a delta function (2), the susceptibility for 

ring ions obtained by integrating (8) has a simple form 

! 

"
0

r = #
$ pr

2 $

$ 2
# k%

2
Vr

2( )
3 / 2

. (9) 

Depending upon the parameters of the ring distribution and background plasma, 

several types of electrostatic instabilities generated by a ring distribution are possible, and 

the possibilities are treated in detail elsewhere.22 For flute modes, 0|| =k , if both ion 

species are effectively unmagnetized, the unstable modes lie near the lower hybrid 

frequency which is 

! 

" # $
e
$

i
 and the instability involves the ring-ions and the 

background ions. While if the background ions remain magnetized, the ring distribution 

is unstable to ion-cyclotron waves.22 

The electrostatic dispersion relation for unmagnetized ions and magnetized 

electrons is obtained from the individual susceptibilities  (6), (7), and (9). If 

! 

k
||
/k" << m /M , and the electrons and ions are cold 

! 

" k
||,#vte,i >>1, then the dispersion 

relation can be simplified for the background ions and electrons by expanding the Z-

function in the large argument limit, 
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! 

D ",k( ) =1+
" pe

2

#e

2
$
" pe

2

" 2

k
||

2

k%
2
$
" pi

2

" 2
$

&" pi

2"

" 2
$ k%

2
Vr

2( )
3 / 2

= 0 , (10) 

where it is assumed that 

! 

k" >> k
||
 and 

! 

" =
n
r
/n

e

M
r
/M

 is the ratio of ring ion number density 

! 

n
r
 to electron number density 

! 

n
e
 to ring mass 

! 

M
r
 to proton mass 

! 

M . Quasineutrality 

requires 
rie
nnn += , where 

! 

n
i
 is the ion number density. If 

! 

k
||
/k" << m /M then the 

electron contribution to the dispersion relation (16) represented by the third term on the 

right hand side of the equality, can be ignored. The subsequent solution, after solving for 

the real and imaginary parts reveals an instability at the lower hybrid frequency  

! 

"LH

2

=
" pi

2

1+
" pe

2

#e

2

, (11) 

with growth rate  

! 

" =
sin(4# 5)

2
$ 2 / 5%

LH
. (12)
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III. Quasi-linear Theory of the Ring-Velocity Distribution 

 The quasilinear relaxation of the unmagnetized ring distribution has previously 

been considered.13,14 It was shown analytically that the quasilinear relaxation of the 

unmagnetized ring leads to the stabilization of the ring instability similar to that of the 

relaxation of a one dimensional beam of fast particles by the Langmuir waves excited by 

the beam particles. However there is an important difference between the relaxation of a 

2-dimensional ring-distribution and a 1-dimensional beam: in the large scale nearly 

homogeneous magnetized plasma the ring instability generates waves with wave vectors 

in all directions in the plane normal to the background magnetic field.  The resonant 

region in 2-dimensional velocity and wave vector space is determined by the condition 

!" cosv=v ##$= kk
k

rr
, (13) 

where the range of unstable wavenumbers lies between 

! 

k
1

< k < k
2
 in the plane 

perpendicular to the magnetic field and 

! 

"  is the angle between 

! 

k  and the velocity 

vector

! 

v . In 1-dimension the resonant region is simply ||||vk=!  which allows trapping of 

resonant particles in the wave potential well.  For the 2-dimensional case the resonant 

region of velocity space occupies an infinite volume in which 

! 

v" ># /k"  just for a single 

| !k | value which makes trapping not possible due to overlapping wave potential wells. 

The 1-dimensional relaxation establishes a stationary plateau in the resonant part of the 

distribution function concurrent with wave spectral energy density. In 2-dimensions the 

relaxation ends when all waves have been absorbed   by ring and background ions.13, 14 It 

is clear that the maximum wavenumber (minimum phase velocity) 
2
k  is determined by 
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the damping of the background ions. The minimum wavenumber is determined from the 

ring speed 
r
Vk /

1
!= .  

 If the ring distribution is also warm, i.e., the cold ring distribution limit of the 

susceptibility for the ring ions (9) is violated, and the dispersion relation (10) will be  

! 

D ",k( ) =1+
" pe

2

#e

2
$

2" pi

2

k%
2
vti

2
1+

"

k%vti
Z

"

k%vti

& 

' 
( 

) 

* 
+ 

& 

' 
( 

) 

* 
+ 

                $," pi

2 v%dv%

f ring

" 2 $ k%
2 v%

2( )
3 / 2

" k%

-

. = 0

, (14) 

with the electron and ion susceptibilities as in  (6) and (7) respectively. The last term in 

(14), which represents the ring distribution, is derived from (8) using integration by parts 

under the assumption that the ring distribution is narrow and there are no ring particles 

for 

! 

v" #$ /k" . Then the growth rate due to the ring distribution is  

! 

"R =#
$LH

4

k%
2

&f ring

&v%
'

dv%

k%
2 v%

2 ($LH

2
. (15) 

 The stability threshold is due to the competition between the growth of waves 

from the ring distribution and Landau damping from the background ions. From the 

dispersion relation, the damping due to the warm thermal background ions can be found 

similarly to the growth from the ring (15) 

! 

"D =
#LH

4

k$
2

%f
back

%v$
&

dv$

k$
2
v$
2 '#LH

2

. (16) 

The thermal background distribution 

! 

f
back

 is a Maxwellian distribution as in (2). The total 

growth rate can be written  

! 

" k = "R + "D =
#LH

4

k$
2

%( fback +&f ring)

%v$
'

dv$

k$
2 v$

2 (#LH

2
. (17) 
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The set of equations describing the quasilinear evolution of the ring distribution 

are13  

! 

"fring

"t
= #

1

v$

"

"v$

%LH

4

n
0
Mrk$%LH /v $

&

'
Wkdk$

k$
2
v$
2 #%LH

2

(

v$

"fring

"v$
, (18) 

! 

W
k

= n0
e
2
E
k,"

2

2M# 2
=W

k0 exp 2 $
k
dt%( ) , (19)  

where the growth rate is determined from (15), and the LH wave energy density, 

! 

W
k

= n
0
e
2
E
k,"

2

2M# 2 , is due to the electron 

! 

E " b drift. 

However these equations do not include the evolution of that part of the 

background distribution that is resonant with the unstable waves. Therefore we extend 

this model of the quasilinear evolution of the ring distribution to include the background 

ion distribution by using the total growth rate (17) and including a diffusion equation for 

the background ions  

! 

"f
back

"t
= #

1

v$

"

"v$

%LH

4

n
0
Mk$

Wkdk$

k$
2
v$
2 #%LH

2

%LH /v $

&

'
1

v$

"f
back

"v$
.  (20) 

The set of equations (17)-(20) is valid when the distribution functions backf  and 

ringf  as well as wave vector k
r

are isotropic in the plane normal to magnetic field lines. 

Figure 1 shows the numerical solution to the equations for the distributions 

! 

f
back

 and 

ringf . During the initial growth period, the resonant ring ions transfer their energy to the 

waves. Eventually the interaction of the ring particles with the waves broadens the ring 

distribution lowering the growth of the waves and transferring the wave energy back to 

the ring ions. However during this time the waves also diffuse the background ions 

creating a non-Maxwellian tail to the distribution. Because the minimum phase velocity 
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is controlled by damping of the background plasma ions, the maximum wavenumber 
2
k  

increases during the evolution of the distribution.  

 As a result of the diffusion of background ions and the creation of a non-

Maxwellian tail, the damping from the background plasma ions will be reduced because 

the background ion distribution flattens. In principle this would lead to a modification of 

the marginal stability criterion.  

 The linear and quasilinear analysis of Sections 2 and 3 are valid as long as we 

ignore the nonlinear processes.  Increasing wave amplitude makes nonlinear processes 

inevitable.  The following section will show that the wave amplitudes required for 

nonlinear interaction between the linear modes are actually small which leads to the early 

saturation of the ring distribution instability. First, however, the nonlinearities for lower-

hybrid waves are examined. 18,25,26 
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IV. Non-Linear Scattering of LH waves 

A complete theory for the ring velocity distribution should not only include quasilinear 

diffusion but also nonlinear wave-wave and wave-particle interaction. For the isothermal 

low beta magnetosphere, the decay of LH waves to ion-acoustic waves is forbidden and 

the main nonlinearity is due to nonlinear Landau damping.18,25,26 For calculating NL 

effects* we will use Vlasov equation in drift approximation for a low-beta plasma25  

  

! 

"fe

"t
+ vz

"fe

"z
+ c

r 
E #

r 
b 

B
0

r 
$ fe %

r 
$ 

c

&eB0

d
r 
E '

dt
fe

( 

) 
* 

+ 

, 
- %

eEz

m

"fe

"vz

= 0 . (21) 

where 

! 

fe = fe v
||
,r t,µ " mv#

2
/2B

0( ), and 

! 

b = B B
0
. However, for the LH waves the 

electromagnetic effects are not dominant, 

! 

E = "#$ , and 

! 

b is in the parallel direction. 

The NL scattering rate follows from imaginary part of the equation of NL dispersion 

relation  

! 

k
2"k = 4#q j dv$

j= e,i

% fkj
(1) + fkj

(2) + fkj
(3)( ), (22) 

where the nonlinear densities are defined 

! 

"nkj
(i)
n
0

= dvfkj
( i)# . The superscripts (1), (2), and 

(3) correspond to the first, second, and third order perturbations of the distribution 

function 

! 

f  such that 

! 

f
(i)
~ "

i. The linear part of the NL dispersion relation (22), 

! 

"
k
#
k

= k 2#
k
$ 4%e &n

ki

(1) $&n
ke

(1)( ) , is equivalent to (10).  

The first order distribution function is obtained from the last two terms on the left 

hand side of the drift kinetic equation (21)  

                                                
*Additional details of plasma weak nonlinear theory, including nonlinear scattering by 
particles using the drift-kinetic equation, are available18, 27 in Ganguli et al., Phys. 
Plasmas 17, 052310 (2010), and Rudakov et al., Phys. Plasmas 18, 012307 (2011).  
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)0(

,2

||

)0(

||,

||||

)1(

v
fEk

i

m

e

v

f
E

k

i

m

e
f k

e

kk !!
"

+
#

=
$

$

%
. (23) 

In a homogeneous plasma,   

! 

r 
" fe

(0)
= 0, the third term of (21) is zero, thus for the higher 

order terms 

! 

fk
(n ) = "

1

# " k||v||

e

m

1

$e

E k1 % k 2( )
||
fk2
(n"1)

k1+k2= k

& . (24) 

However the main NL terms arising from )2(

kf  and )3(

kf  are obtained only from the third 

term since 
  

! 

c
r 
E "

r 
b B

0( )
r 
# fe

(1),(2)
$ 0  since the fourth and fifth terms are smaller as 

e
!/"  

and 

! 

k
||
/k" respectively. Thus the second term on the right hand side of (23) can be 

neglected from the higher order distribution function (24).  

 After symmetrizing with respect to 

! 

k
1
 and 

! 

k
2
, and using the definition for the 

electric field 

! 

E
||

= "ik
||
#
k
, the second order electron distribution function is 

! 

fk
(2) =

i

" # k||v||

e
2

2m
2

1

$e

%f (0)

%v||

        k1 & k 2( )
||
'k1'k2

k2,||

"2 # k2,||v||

#
k1,||

"1 # k1,||v||

( 

) 
* 

+ 

, 
- 

k1+k2= k

.
. (25) 

And the third order electron distribution function is 

! 

fk
(3) =

"1

# " k||v||

e
2

2m
2

1

$e

q

m

1

$e

%k1%k2%k3 k1 & k 2 + k 3( )( )
||

k 2 & k 3( )
||

k1+k2+k3= k

'

         
1

#2 +#3( ) " k2,|| + k3,||( )v||

k3,||

#3 " k3,||v||

"
k2,||

#2 " k2,||v||

( 

) 
* 

+ 

, 
- 
.f (0)

.v||

. (26)  
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Integrating the distributions over velocity space,  

! 

"ne
(2)

n0 = i
e
2

2m
2

1

#e

k1 $ k 2( )
||
%k1%k2

k2,||

&2

'
k1,||

&1

( 

) 
* 

+ 

, 
- dv.

/f (0) /v||
& ' k||v||

,  (27) 

! 

"nk1,#k1,k

(3)
n0 =

#1

$k # k||v||

e
2

2m
2

1

%e

e

m

1

%e

&k1
2
&k

k3,||

$3 # k3,||v||

#
k2,||

$2 # k2,||v||

' 

( 
) 

* 

+ 
, 

               k1 - k( )
||

2

k1+k2+k3= k

. dv/
1

$k1 #$k( ) # k1,|| # k||( )v||

0f (0)

0v||

. (28) 

 The nonlinear dispersion relation (22) can be written in a simple form  

022 11

)3(

,1,11

1

1

)2(

1,1 =++ !!!!" kkkkkkk

k

kkkkkkk
###$##$#$ , (29) 

after defining the nonlinear susceptibilities as 

! 

"k1,k2
(2) = #

i

2

1

k1 + k2( )
2
$ pe

2 c

B
k1 % k 2( )

||

k2,||

$2

#
k1,||

$1

& 

' 
( 

) 

* 
+ dv,

-f (0) -v||
$ # k||v||

, (30) 

! 

"k1,#k1,k
(3) =

1

2

$ pe

2

k
2

c
2

B
2

1

$k

kk,||

$k

#
k1,||

$k1

% 

& 
' 

( 

) 
* k1 + k( )

||

2

k1

, dv-
1

$k1 #$k( ) # k1,|| # k||( )v||

.f (0)

.v||
, (31) 

using the second and third order density perturbations (27), and (28), respectively. The 

nonlinear susceptibilities 

! 

"
k1,k2

(2)
,  "

k1,k2,k3

(3) , determine how the fields 

! 

"
k1

,  "
k2

, and 

! 

"
k3

 couple 

to produce the nonlinear dispersion relation (29). The superscript (1) is omitted on the 

linear susceptibility 

! 

"
k

(1)
# "

k
. The NL dispersion relation (29) determines the dynamics of 

the potential of the daughter wave 

! 

"
k
, due to the presence of the pump (mother) wave 

! 

"
k1

 

and the low frequency beat wave 

! 

"
k#k1. The factor of 2 is due to the symmetry between 

! 

"
k#k1,k1

(2)
= "

k1,k#k1

(2)  and 

! 

"
k1,#k1,k

(2)
= "#k1,k1,k

(2) . 
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The low frequency field 

! 

"
k#k1 is similarly determined from a wave equation for 

the coupling between the pump wave and the daughter wave 

! 

"
k
, 

! 

"
k#k1$k#k1 + 2"

k,#k1
(2) $

k

k1

% $#k1 = 0. (32) 

Substituting 

! 

"
k#k1 from (32) into (29) determines the wave kinetic equation28  

! 

"
k
#
k
$

4"
k$k1,k1
(2) "

k,$k1
(2)

"
k$k1

#
k1
#$k1#k

k1

% + 2"
k1,$k1,k
(3) #

k1
#$k1#k = 0 . (33) 

Substituting the nonlinear susceptibilities in the wave-kinetic equation (33) yields, in the 

limit 

! 

|"
k1
#"

k
|<<"

k1
,  

! 

"k = k1 # k( )
||

2 c
2

B
2

1

$ k

2
%k1

2 $ pe

2

k
2

dv&
k|| ' k1,||( )(f (0) (v||

$ '$1 ' k ' k1( )vk1

)

$ pe

2

k ' k1( )
2 dv&

k|| ' k1,||( )(f (0) (v||

$ '$1 ' k ' k1( )v

1+" i $ '$1( ) +"e $ '$1( )
'1

* 

+ 

, 
, 
, 
, 
, 

- 

. 

/ 
/ 
/ 
/ 
/ 

   = ' k1 # k( )
||

2 c
2

B
2

1

$ k

2
%k1

2 k ' k1( )
2

k
2

"e $ '$1( ) 1+" i $ '$1( )( )
1+" i $ '$1( ) +"e $ '$1( )k1

)

, (34) 

where the susceptibilities were defined in  (6)-(7). Since 

! 

" #,k( ) $ 0  near the lower hybrid 

frequency 

! 

" #"
LH

, and the growth rate is determined from 

! 

" #,k( ) $ i%
NL
&"

k
&# , where 

! 

"#k "$ % 2 /$( )$ pe

2
&e

2 .  The LH wave energy density, 

! 

Wk1 = k
1

2 "k1
2

# $% $# 8& = # pe

2 'e

2( ) Ek1

2

4& , is primarily due to the energy of the 

electron 

! 

E " b drift.  For the subsonic condition that 
  

! 

"
i

2 << # $#
1( )
2

<<
v 
k $

r 
k 
1( )
2

C
s

2  

where MmC
tes
2/v

22
! , 

! 

"
i
# $#

1( ) > "
e
# $#

1( )  and the NL scattering rate due to thermal 

electrons is 
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! 

"
NL

 =
#

LH

4

k1 $ k( )
||

2

k
2
k1

2

M

m

W
k1

n0Te

%
e
ImZ(%

e
)

k1

& . (35) 

 As already stated, the nonlinear scattering rate is a three-dimensional 

phenomenon.18 It was shown in section 2 that lower-hybrid waves are the electrostatic 

limit of a more general completely electromagnetic dispersion relation. The nonlinear 

scattering rate (35) for lower-hybrid to lower-hybrid scattering was recently extended 

include scattering from lower-hybrid to whistler/magnetosonic waves.18 The resulting 

scattering rate is 

! 

"NL ~
# pe

2

#k

k
2

1+ k
2

k1 $ k( )
||

2

k
2
k1
2

k1
2

1+ k1
2

k1

%
& e ImZ(& e )

1+ #k1 '#k( )
2

k1 ' k
( 
) 
* + 

, 
- 
2

Cs

2
. 

/ 
0 

1 

2 
3 

2

Ek1

2

44n0Te
. (36) 

This can be understood as a generalization of the scattering rate (35) where instead of the 

electrostatic field 

! 

E
||

= "ik
||
#
k
, the fully electromagnetic parallel electric field 

! 

E
||

= "ik
||
# k

2

1+ k
2

( ) from (4) is used.  NL scattering rates (35) and (36) correspond to 

the broadband turbulence 
NL
!"# >> case. The detailed analysis of the parametric decay 

of the monochromatic LH wave 
NL
!"# <<  in a non-isothermal plasma 

ie
TT >> when the 

beat wave 

! 

"
k1
#"

k( ) meets the resonance condition with and ion sound wave resulting in 

vanishing real parts of the linear dispersion relation (i.e., 

! 

Real(1+ "
i
+ "

e
) = 0)) in the 

denominator of (34) has been analyzed elsewhere.26  

 Physically, the induced scattering from the electrostatic lower-hybrid waves to 

the electromagnetic whistler waves can be understood by examining the dispersion 

relation (5), which is shown in Figure 2. In each scattering event, the frequency decreases 

slightly and the waves follow a path of near constant frequency. On the other hand the 
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wave vector changes substantially. For 

! 

k ~ 1, the waves can acquire an electromagnetic 

component and may convect away from the region where the ring distribution (and hence 

the turbulence) is localized. Assuming that the characteristic dimension of the region of 

localization is L, the wave convection time is 
Aconv
VL /~!  where the group velocity is 

approximately 
A
V . This represents an energy loss mechanism that is not accounted for in 

the quasilinear picture discussed in Sec. 3. 

 For broadband turbulence ( )
s

kC>>!"! ~ , the rate of a wave 

! 

k1," k1( ) to 

scatter into a wave 

! 

k,"
k( ) is obtained by summing the contribution from all waves within 

the frequency interval 

! 

"
k

+ #"  where 

! 

"# ~ k1 $ k C
s
~ k1 + k %

e

1/ 2#
LH

. After summation 

this leads to an estimate for the rate 

e

k

eLHNL

Tn

W

m

M

k

k

k

k
kk

0

1

2

1

2

1

2

2

2/1
1

11

~

++
+ !"#  (37). 

 For unstable ring distribution the nonlinear scattering rate (35)-(37), can be 

estimated by noting that the unstable wave vectors are 

! 

k1 " k ~ #
LH
/V

r
, so that 

! 

k1 + k "
e

1/ 2
~ C

s
V
r
which makes

! 

"
NL
#$

LH

C
s

V
r

M

m

W
k1

n
0
T
e

. This rate can be large for just 

small wave amplitudes because of the mass ratio M/m, and may be comparable to the 

linear instability rate itself (12). Therefore the effect of nonlinear scattering on the 

quasilinear theory from Section 3 must be considered. 
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V. Modified Quasilinear Evolution due to Nonlinear Scattering 
 

 The equation for the growth of wave energy from the linear instability was stated 

in  (19) where the wave energy grows exponentially. In quasilinear theory the ring 

particles diffuse so as to limit the growth of wave energy. In this description all the waves 

are resonant with the ring particles. However the inclusion of nonlinear scattering will 

pump energy from wavenumbers 

! 

k
1
 to 

! 

k  according to (35)-(37), and a new set of waves 

will be introduced which are not resonant with the ring particles. Thus  (19) will be 

modified to include nonlinear scattering, 

! 

"W
k1

"t
= 2 #

k1

L $ #
k1

NL
W

k( )( )Wk1
, (38) 

and this will also limit the growth of the resonant wave energy. The nonlinear growth rate 

! 

"
k1

NL
W

k( )  depends on the amplitude of waves 

! 

W
k
, which are not resonant with the ring 

ions, and will not be absorbed according to the quasilinear description of Section 3. The 

amplitude 

! 

W
k
 is similarly determined by the scattering rate 

! 

"
k

NL
W

k1( ) and the loss of 

energy 

! 

"
loss

. The rate of loss may for example be due to nonlinear scattering of 

electrostatic lower hybrid waves to electromagnetic whistlers that may convect away as 

discussed in Section 4.  

! 

"W
k

"t
= 2 #

k

NL
W

k1( ) $ # loss( )Wk
. (39) 

Because of the energy loss, only a small fraction of the energy extracted from the ring 

distribution by the instability is reabsorbed by the ring ions contrary to the standard 

quasilinear theory.  
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In a steady state, the wave saturation from (38) will occur approximately for 

! 

"
k1

L
= "

k1

NL . Estimating the linear growth (12) as 

! 

"
k1

L
~ #

LH
n
r
n
0( ) M

r
M

0( )( )
2 / 5

, and using 

the nonlinear growth rate 
e

k

r

s

LHNL

Tn

W

m

M

V

C

0

1!" # , the saturated wave energy is  

! 

W
k1

n
0
T
e

"
m

M

V
r

C
s

n
r
n
0

M
r
M

# 

$ 
% 

& 

' 
( 

2 / 5

. (40)  

 Since all the energy extracted from the ring distribution is not reabsorbed, the 

time scale for quasilinear relaxation of the ring will be slower and is estimated as  

! 

1 "NL ~ #L
Wk1

Ering

~ $LH

nr n0

Mr M

% 

& 
' 

( 

) 
* 

4 / 5

m

M

n
0
mvte

2

nrMrVr

2

Vr

Cs

~ $LH

nr n0

Mr M

% 

& 
' 

( 

) 
* 

+1/ 5
m

Mr

% 

& 
' 

( 

) 
* 

Te

MrVrCs

.    (41) 

The amount of energy in the ring is

! 

Ering " nrMrVr

2 . For the solar-wind comet 

interaction29 this energy may become available for wave generation by photoionization of 

water molecules from the comet. The rate (41) is mostly independent of the small ring 

density since 

! 

n
r
/n

0( )
1/ 5

~ 1. The typical parameters of the ring distribution and 

background plasma are: the ring mass, 

! 

M
r
M ~ 18  for the water molecule, the ring 

velocity 

! 

V
r
~ 500km /s, 

! 

T
e
~ 10eV , and skmC

s
/30~  in the solar wind. For these 

parameters the rate of quasilinear relaxation of the proton ring distribution is rather small 

LHNL
!" 4

103~1
#

$ .  Thus the timescale 

! 

"
NL

 (41) is at least 103 times longer than when 

nonlinear scattering is not included. Consequently the numerical simulation of this 

nonlinear phenomenon is highly CPU time intensive. 

 Thus the inclusion of nonlinear scattering has modified the theory of the ring 

quasilinear relaxation in two important ways. The quasilinear theory must be extended to 

three-dimensions. Nonlinear Landau resonance is lost in a 2D PIC simulation if 
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background magnetic field B0 is in the plane of simulation. Furthermore, in simulations 

with B0 in the simulation plane the scattering diminishes strongly18 because 
  

! 

r 
k 
1
"

r 
k ( )

||

2

= 0 . 

And finally the quasilinear evolution timescale of the ring distribution instability is 

extended by orders of magnitude. 
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VI. Conclusion 

The quasi-electrostatic instability of the ion ring distribution for the low-

! 

"  

magnetosphere that was considered here is for lower-hybrid waves.  Previous studies 

assumed that although the ring distribution is two-dimensional the analysis can be done 

in one dimension. Simulations done in this fashion showed that the instability saturates 

by trapping.15, 17 In two-dimensions however, the stabilization of the ring instability is 

essentially quasilinear, i.e., the wave amplitude grows exponentially while 

simultaneously diffusing the ring ions as to limit the instability. While ignoring nonlinear 

processes the time-scale for the quasilinear evolution is the same as for the linear 

instability 

! 

1 "
QL
~ #

L . In nature the free energy for the instability is supplied on a 

timescale much longer than the linear timescale, and the analysis for the quasilinear 

evolution should include nonlinearities.  

For lower-hybrid waves, the nonlinear scattering or nonlinear Landau damping, 

with the rate 

! 

"
NL
~ #

M

m

W

nT
, is a three-dimensional phenomenon. The scattering rate for 

lower hybrid waves can be extended to the whistler/magnetosonic wavevector range. The 

PIC simulation30 by McClements et al. of a ring distribution shows that at the midpoint of 

the simulation when the initially rapidly rising wave energy begins to slow down, 

approximately 5% of the ring energy is transferred to electron heating (at the end of the 

simulation it is 10%)  while amplitude of waves is 0.1% of the ring energy. This is 

contrary to quasilinear theory where the energy lost by the ring in the initial unstable 

phase is about the energy of the waves, i.e. the energy of the waves should be about 5% 

of the ring energy as well. Thus there is more than an order of magnitude discrepancy 

between the energy lost by the ring and energy density of waves, which is in qualitative 
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agreement with the nonlinear theory presented where wave energy density saturates at a 

relatively low level due to nonlinear processes (nonlinear scattering in our case), and is 

redistributed in k-space to be ultimately absorbed by plasma.  In reality, after scattering 

the newly born electromagnetic waves could convect away from the region of creation. 

This possibility that the energy is not available for reabsorption by the ring ions leads to a 

modification of the ring quasilinear evolution. In quasi-steady state the amplitude of 

waves is estimated as 

! 

W
k1
n
0
T
e
" m M . Subsequently the quasilinear relaxation 

timescale of the unstable ring distribution is extended by orders of magnitude. 
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Figure 1. a) The initial ring distribution (shown by the red dashed line) and the initial background ion 
distribution (shown by the dashed blue line). The solid line shows the distributions at a later time according 
to (19). The wave growth at low energy (v2) leads to diffusion of the background ions and the creation of a 
non-Maxwellian tail. b)  The instantaneous growth rate as (18). The creation of the non-Maxwellian tail 
leads to a reduction in the damping rate at large 

! 

k"  (small phase velocity). Thus at later times, the growth 
occurs at larger 

! 

k" . 
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Figure 2. Dispersion surface for intermediate frequency range waves 

! 

"
H

<<# <<"
e
 with dispersion relation (5). In 

each scattering, the waves follow a path of near constant frequency, and can scatter from lower-hybrid waves to 
whistler waves. 


