Chris Bartel

Chris Bartel
University of Minnesota Twin Cities | UMN · Department of Chemical Engineering and Materials Science

Group site - https://bartel.cems.umn.edu

About

63
Publications
9,217
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,664
Citations
Citations since 2016
63 Research Items
1663 Citations
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600

Publications

Publications (63)
Article
Full-text available
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis...
Preprint
A central aim of materials discovery is an accurate and numerically reliable description of thermodynamic properties, such as the enthalpies of formation and decomposition. The r$^2$SCAN revision of the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) balances numerical stability with high gene...
Article
Full-text available
Nitride perovskites have only been experimentally realized in very few cases despite the widespread existence and commercial importance of perovskite materials. From oxide perovskites used in ultrasonics to halide perovskites that have revolutionized the photovoltaics industry, the discovery of new perovskite materials has historically impacted a w...
Article
Full-text available
Improvements in the efficiency and availability of quantum chemistry codes, supercomputing centers, and open materials databases have transformed the accessibility of computational materials design approaches. Thermodynamic stability predictions play a central role in the efficacy of these approaches and should be considered carefully. This review...
Preprint
Full-text available
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis...
Article
Computational materials discovery efforts utilize hundreds or thousands of density functional theory calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability. Howev...
Article
Aluminum nitride (AlN) is a promising material for electronic substrates and heat sinks. However, AlN powders react with water that adversely affects final part properties and necessitates processing in organic solvents, increasing the cost of AlN parts. Small quantities of yttrium oxide (Y2O3) are commonly added to AlN particles to enable liquid p...
Article
Finding high‐voltage Ca cathode materials is a critical step to unleashing the full potential of high‐energy‐density Ca‐ion batteries. First‐principles calculations are used to demonstrate that P‐type layered calcium transition metal (TM) oxide materials (CaTM2O4) with a range of TM substitutions (TM = Ti, V, Cr, Mn, Fe, Co, and Ni) have excellent...
Article
Full-text available
Pandey et al. (2021) demonstrate the importance of diversifying training data to make balanced predictions of thermodynamic properties for inorganic crystals.
Article
Full-text available
In this paper we develop the stability rules for NASICON-structured materials, as an example of compounds with complex bond topology and composition. By first-principles high-throughput computation of 3881 potential NASICON phases, we have developed guiding stability rules of NASICON and validated the ab initio predictive capability through the syn...
Preprint
Full-text available
Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability....
Preprint
Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability....
Preprint
Full-text available
Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability....
Preprint
Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability....
Article
Full-text available
CaFe2O4-type sodium postspinels (Na-CFs), with Na⁺ occupying tunnel sites, are of interest as prospective battery electrodes. While many compounds of this structure type require high-pressure synthesis, several compounds are known to form at ambient pressure. Here we report a large expansion of the known Na-CF phase space at ambient pressure, havin...
Article
Autonomous experimentation driven by artificial intelligence (AI) provides an exciting opportunity to revolutionize inorganic materials discovery and development. Herein, we review recent progress in the design of self-driving laboratories, including robotics to automate materials synthesis and characterization, in conjunction with AI to interpret...
Article
A promising high-voltage spinel oxide cathode material MgCrMnO4 with 18% Mg/Mn inversion was synthesized successfully. A new custom operando battery device was designed to study the cation migration mechanisms of the MgCrMnO4 cathode using 0.1 M Mg(TPFA)2 electrolyte dissolved in triglyme and activated carbon as the anode. For the first time in mul...
Article
Full-text available
Solid‐state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing reaction conditions and precursors for ceramic synthesis can be a laborious, trial‐and‐error process, as heterogeneous mixtures of precursors often evolve through a complicated series of reaction intermediates. Here,...
Article
Autonomous synthesis and characterization of inorganic materials require the automatic and accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep learning algorithm to identify complex multi-phase mixtures. At the core of this algorithm lies an ensemble convolutional neural network trained on simulated diffr...
Preprint
Full-text available
Autonomous synthesis and characterization of inorganic materials requires the automatic and accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep learning algorithm to identify complex multi-phase mixtures. At the core of this algorithm lies an ensemble convolutional neural network trained on simulated diff...
Preprint
In this paper we develop the stability rules for NASICON structured materials, as an example of compounds with complex bond topology and composition. By applying machine learning to the ab-initio computed phase stability of 3881 potential NASICONs we can extract a simple two-dimensional descriptor that is extremely good at separating stable from un...
Article
Calcium dodecahydro- closo -dodecaborate, CaB 12 H 12 , has a percolating Ca migration path with low activation barrier (650 meV) and can be doped with Al, Bi, or a number of trivalent rare-earth cations.
Article
Magnesium batteries hold potential for overcoming the safety and energy density limitations faced by Li-ion batteries. However, the development of Mg battery technology is plagued by the poor kinetics of Mg transport in solid state materials. Recently, the chalcogenide spinel structure was found to be suitable for rapid Mg ²⁺ diffusion. [1] Based o...
Preprint
Alloying is a powerful tool for tuning materials that facilitates the targeted design of desirable properties for a variety of applications. In this work, we provide a comprehensive investigation of the synthetic accessibility and electronic properties of nine alkaline-earth chalcogenide anion alloys (CaS$_{1-x}$O$_x$, CaS$_{1-x}$Se$_x$, CaS$_{1-x}...
Preprint
Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Optimizing ceramic synthesis routes is usually a laborious, trial-and-error process, as heterogeneous mixtures of powder precursors often evolve through a complicated series of reaction intermediates. Here, we show that phase e...
Preprint
Calcium dodecahydro-closo-dodecaborate, CaB12H12, was calculated to have a percolating Ca migration path with low activation barrier (650 meV). The formation of Ca vacancies required for diffusion was calculated to be thermodynamically feasible by substitution of Ca with Al, Bi, or a number of trivalent rare-earth cations
Article
Calcium dodecahydro-closo-dodecaborate, CaB12H12, was calculated to have a percolating Ca migration path with low activation barrier (650 meV). The formation of Ca vacancies required for diffusion was calculated to be thermodynamically feasible by substitution of Ca with Al, Bi, or a number of trivalent rare-earth cations.
Article
Full-text available
Machine learning has emerged as a novel tool for the efficient prediction of material properties, and claims have been made that machine-learned models for the formation energy of compounds can approach the accuracy of Density Functional Theory (DFT). The models tested in this work include five recently published compositional models, a baseline mo...
Article
Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of h...
Article
MgCr2S4 thiospinel is predicted to be a compelling Mg-cathode material, but its preparation via traditional solid-state synthesis methods has proven challenging. Wustrow et al. [Inorg. Chem. 57, 14 (2018)] found that the formation of MgCr2S4 from MgS + Cr2S3 binaries requires weeks of annealing at 800 °C with numerous intermediate regrinds. The slo...
Article
All-inorganic halide double perovskites have emerged as a promising class of materials that are potentially more stable and less toxic than lead-containing hybrid organic-inorganic perovskite optoelectronic materials. In this work, 311 cesium chloride double perovskites (Cs2BB’Cl6) were selected from a set of 903 compounds as likely being stable ba...
Preprint
Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of h...
Preprint
Machine learning has emerged as a novel tool for the efficient prediction of materials properties, and claims have been made that machine-learned models for the formation energy of compounds can approach the accuracy of Density Functional Theory (DFT). The models tested in this work include five recently published compositional models, a baseline m...
Article
Seven MgLn 2 X 4 (Ln = lanthanoid, X = S, Se) spinels are calculated with density functional theory to have low barriers for Mg migration (< 380 meV) and are stable or...
Preprint
We report seven new MgLn<sub>2</sub>X<sub>4</sub> (Ln = lanthanoid, X = S, Se) spinels that have low barriers for Mg migration (< 380 meV) and are stable or nearly stable (within 50 meV/atom of stability with respect to competing structures and compositions) as calculated with density functional theory. As the size of the Ln increases, Mg mobility...
Preprint
MgCr<sub>2</sub>S<sub>4</sub> thiospinel is predicted to be a compelling Mg-cathode material, but its preparation via traditional solid-state synthesis methods has proven challenging. Wustrow et al. [Inorg. Chem. 57, 14 (2018)] found that the formation of MgCr<sub>2</sub>S<sub>4</sub> from MgS + Cr<sub>2</sub>S<sub>3</sub> binaries requires weeks o...
Article
Full-text available
The performance of density functional theory approximations for predicting materials thermodynamics is typically assessed by comparing calculated and experimentally determined enthalpies of formation from elemental phases, ΔHf. However, a compound competes thermodynamically with both other compounds and their constituent elemental forms, and thus,...
Article
The synthesis of inorganic metal nitrides poses a challenge due to the low reactivity of N2 gas at low temperatures, yet entropy driven formation of N2 gas at high temperature. In contrast, synthetic approaches using more activated forms of nitrogen can be used to overcome the inertness of N2, but increased exothermicity can also result in diminish...
Article
Full-text available
Exploratory synthesis in new chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional materia...
Article
Solar thermochemical ammonia (NH 3 ) synthesis (STAS) is a potential route to produce NH 3 from air, water, and concentrated sunlight. This process involves the chemical looping of an active redox pair that cycles between a metal nitride and its complementary metal oxide to yield NH 3 . To identify promising candidates for STAS cycles, we performed...
Article
Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite o...
Article
Flash heating and high temperature processing of two biomass feed materials is presented as a sustainable thermochemical technique to leverage the entire carbon content of the starting material for various end-uses. Microalgae and rice hulls were flash pyrolyzed in a drop-tube reactor to form exclusively gas and solid products in the temperature ra...
Preprint
The performance of density functional theory (DFT) approximations for predicting materials thermodynamics is typically assessed by comparing calculated and experimentally determined enthalpies of formation from elemental phases, {\Delta}Hf. However, a compound competes thermodynamically with both other compounds and their constituent elemental form...
Article
Full-text available
The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizab...
Preprint
Full-text available
Exploratory synthesis in novel chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional mater...
Article
The addition of aluminum oxide (Al2O3) as a sintering aid to yttria‐stabilized zirconia (YSZ) reduces the required densification temperature. Sintering aids are incorporated using a number of processes which can lead to ambiguity when determining the effect of the sintering aid on the densification mechanism. In this study, a novel method for sinte...
Preprint
The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, thus impeding a comprehensive perspective of the effects of temperature and composition on materials stability and synthe...
Article
Full-text available
We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn3MoN4 and ZnMoN2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn3...
Article
Helium gas accumulation from alpha decay during extended storage of spent fuel has potential to compromise the structural integrity the fuel. Here we report results obtained with surrogate nickel particles which suggest that alumina formed by atomic layer deposition can serve as a low volume-fraction, uniformly-distributed phase for retention of he...
Article
To continue to meet global energy demands, efficient methods of utilizing renewable energy must be developed. Converting solar energy into chemical fuels is a promising approach, but efficient and cost effective methods for producing solar fuels have not yet been developed. Solar thermal water splitting is a particularly promising possibility becau...
Article
Aluminum nitride (AlN) is used extensively in the semiconductor industry as a high thermal conductivity insulator, but its manufacture is encumbered by a tendency to degrade in the presence of water. The propensity for AlN to hydrolyze has led to its consideration as a redox material for solar thermochemical ammonia (NH3) synthesis applications whe...

Network

Cited By

Projects

Project (1)