Micromonospora humi sp. nov., isolated from peat swamp forest soil

Apakorn Songsumanus,1 Somboon Tanasupawat,1 Chitti Thawai,2 Khanit Suwanborirux3 and Takuji Kudo4

1Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Biology and Microbiol Resource Management Unit, Scientific Instrument Center, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
3Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
4Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan

A novel actinomycete, strain P0402T, was isolated from peat swamp forest soil collected in Thailand. Its taxonomic position was determined by using a polyphasic taxonomic approach. The chemotaxonomic characteristics of this strain matched those of the genus *Micromonospora*, i.e. the presence of meso-diaminopimelic acid and N-glycolyl muramic acid in the peptidoglycan, whole-cell sugar pattern D, phospholipid type II, and cellular fatty acid type 3b. Phylogenetic analysis based on 16S rRNA gene sequences revealed a close relationship between strain P0402T and *Micromonospora coxensis* JCM 13248T (99.0 % similarity), *Micromonospora eburnea* JCM 12345T (99.0 %), *Micromonospora marina* JCM 12870T (98.9 %), *Micromonospora halophytica* JCM 3125T (98.7 %), *Micromonospora chalcea* JCM 3031T (98.7 %), *Micromonospora purpureochromogenes* JCM 3156T (98.6 %) and *Micromonospora aurantiaca* JCM 10878T (98.5 %). It could be clearly distinguished from these type strains based on low levels of DNA–DNA relatedness and phenotypic differences. On the basis of the data presented, strain P0402T is suggested to represent a novel species of the genus *Micromonospora*, for which the name *Micromonospora humi* sp. nov. is proposed. The type strain is P0402T (=JCM 15292T =PCU 315T =TISTR 1883T).

Micromonospora is a genus of the family *Micromonosporaceae* that was described by Ørskov (1923). Strains representing members of the genus *Micromonospora* have distinct morphological characteristics in that they produce single spores on the substrate mycelium and lack aerial mycelium. The rate at which novel species of the genus *Micromonospora* have been discovered has increased (Kawamoto, 1989; Kasai et al., 2000; Hirsch et al., 2004; Kroppenstedt et al., 2005; Trujillo et al., 2005, 2006, 2007; Thawai et al., 2004, 2005a, b, 2007; Ara & Kudo, 2007; Jongrungruangchok et al., 2008a, b; Huang et al., 2008; Garcia et al., 2010; Tanasupawat et al., 2010; Kirby & Meyers, 2010; Wang et al., 2011). At the time of writing, there are 44 species of the genus *Micromonospora* with validly published names (Euzéby, 2010), many of which were isolated from Thailand, including *Micromonospora auratinigra*, *M. eburnea*, *M. siamensis*, *M. narathiwatensis*, *M. chaiyaphumensis*, *M. krabiensis* and *M. marina* (Thawai et al., 2004, 2005a, b, 2007; Jongrungruangchok et al., 2008a, b; Tanasupawat et al., 2010). In this study, we describe a novel strain of the genus *Micromonospora* isolated during an investigation of the biodiversity of actinomycetes in peat swamp forest soil in Thailand.

Strain P0402T was isolated at Phu Sang National Park, Phayao province, in the northern part of Thailand by using wet heat at 70 °C for 15 min and the standard dilution technique on starch casein nitrate agar (Tanasupawat et al., 2010) supplemented with nystatin (50 mg l⁻¹) and nalidixic acid (20 mg l⁻¹). Plates were incubated at 30 °C for 14 days and a single colony was then transferred to and purified on yeast extract-malt extract agar [International Streptomyces Project (ISP) medium no. 2] as described by

The GenBank/EMBL/DBJ accession number for the 16S rRNA gene sequence of strain P0402T is GU459068.

Three supplementary tables are available with the online version of this paper.
Shirling & Gottlieb (1966). The pure isolate was maintained on ISP 2 slants at 4–10 °C. Strain P0402T grown on ISP 2 for 14 days was observed by light microscopy. Cell morphology was observed by scanning electron microscopy (Itoh et al., 1989). The Hucker–Conn method was used for Gram staining (Hucker & Conn, 1923). Phenotypic properties were examined by using standard methods (Arai, 1975; Williams & Cross, 1971; Gordon et al., 1974). For determination of cultural characteristics, the strain was grown at 30 °C for 14 days on various agar media (Shirling & Gottlieb, 1966; Asano & Kawamoto, 1986) after which colony colours were determined with reference to Jacobson et al. (1958). Temperature, pH and NaCl concentration ranges for the growth of strain P0402T were tested on ISP 2 at 30 °C for 14 days. Carbon utilization medium (ISP 9) supplemented with 1% sole carbon source was used to determine the carbon utilization profile of the strain. Production of melanin and H2S was examined on tyrosine agar (ISP 7) and peptone iron agar (ISP 6).

For chemotaxonomic investigations, freeze-dried cells were collected from 4-day-old cultures grown in ISP 2 broth on a rotary shaker at 30 °C. The cell-wall peptidoglycan was prepared by the method of Kawamoto et al. (1981). The isomer of diaminopimelic acid was determined by the TLC method of Stanek & Roberts (1974). The N-acyl group of the muramic acid in the peptidoglycan was analysed spectrophotometrically by using the method of Uchida & Gottlieb (1966). The Hucker–Conn method was used for determination of cultural characteristics of strain P0402T, as described by Ezaki et al. (1989). Levels of DNA–DNA relatedness were determined according to the Microbial Identification System (MIDI) program, version 1.83 (Thompson et al., 1997). The 16S rRNA gene sequence was determined by Ezaki et al. (1989). The 16S rRNA gene was amplified by using primers 27F and 1492R as described by Nakajima et al. (1999). The 16S rRNA gene sequence was multiply aligned with selected sequences obtained from the GenBank/EMBL/DDBJ databases by using the CLUSTALX program, version 1.83 (Thompson et al., 1997). The aligned sequences were manually edited before reconstructing the phylogenetic tree by the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Kluge & Farris, 1969) methods in the MEGA 4 software (Tamura et al., 2007). Confidence levels for the branches of the phylogenetic tree were examined by bootstrap analysis (Felsenstein, 1985) based on 1000 resamplings. Gaps and ambiguous nucleotides were deleted manually before analysing sequence similarity values by CLUSTALX (Thompson et al., 1997).

Strain P0402T had morphological, cultural and chemotaxonomic properties consistent with its classification in the genus Micromonospora. The strain formed well-developed and branched substrate hyphae. No aerial mycelium was produced. Spores at maturity were spherical to oval, smooth and non-motile (Fig. 1). The phenotypic characteristics of strain P0402T are presented in the species description below and in Table 1 and Supplementary Table S1 (available in IJSEM Online). The strain contained meso-diaminopimelic acid in the cell wall. The acyl type of the cell wall in the peptidoglycan was determined to be the glycolyl type. Whole-cell sugars detected were glucose, xylose, mannose, ribose, galactose, arabinose and rhamnose [pattern D of Lechevalier & Lechevalier (1970)]. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol and phosphatidylethanolamine [pattern type PII of Lechevalier et al. (1977)]. Predominant fatty acids of strain P0402T were iso-C15 : 0 (12.72 %), iso-C16 : 0 (22.61 %), anteiso-C17 : 0 (7.47 %), C17 : 0 (13.56 %), C17 : 1ω8c (12.51 %) and anteiso-C15 : 0 (10.61 %) (Supplementary Table S2). This pattern corresponded to fatty acid type 3b of Kroppenstedt (1985). The predominant menaquinones were MK-10(H4) (64.5 %) and MK-10(H6) (35.6 %). The DNA G+C content of strain P0402T was 73.0 mol%.

Analysis of the almost-complete 16S rRNA gene sequence (1478 nt) of strain P0402T indicated that it was placed in a monophyletic clade with Micromonospora cossensis JCM 13248T (99.0% similarity), M. eburnea JCM 12345T (99.0%), M. marina JCM 12870T (98.9%), Micromonospora halophy-
Microconsomasa carbonacea DSM 43168T (98.7%), Micromonaspora chalcea JCM 3031T (98.7%), Micromonaspora purpureochromogenes DSM 3156T (98.6%) and Micromonaspora aurantiaca JCM 10878T (98.5%), based on the results from both the neighbour-joining and the maximum-parsimony methods (Fig. 2).

Comparison with the descriptions of these previously characterized species of the genus Micromonaspora showed that strain P0402T could be distinguished from them based on a combination of biochemical and physiological properties, in particular decomposition of L-tyrosine, utilization of D-fructose, glycerol, melibiose, raffinose and D-ribose, growth at pH 5, and maximum NaCl tolerance (5%) (Table 1).

Levels of DNA–DNA relatedness between strain P0402T and the type strains of the above species were ≤15.19% (Supplementary Table S3). These values were obtained...
from the means of three determinations and are below the threshold value of 70% for distinguishing genomic species (Wayne et al., 1987). It is evident from the genotypic and phenotypic data presented that strain P0402T represents a novel species of the genus Micromonospora, for which the name Micromonospora humi sp. nov. is proposed.

Description of Micromonospora humi sp. nov.

Micromonospora humi sp. nov. (hu’mi. L. gen. n. humi of earth, soil, the source from which the type strain was isolated).

Aerobic, Gram-stain-positive, mesophilic actinomycete that forms a well-developed and extensively branched substrate mycelium. No aerial mycelium is produced. The colour of the vegetative mycelium on ISP 2 is sepia brown, turning to brownish black upon sporulation. Spores are spherical to oval, smooth and non-motile. Positive for starch hydrolysis, gelatin liquefaction and milk peptonization. Negative for nitrate reduction and L-tyrosine decomposition. Utilizes L-arabinose, D-galactose, D-glucose and lactose as sole carbon sources for energy, but not D-fructose, glycerol, raffinose, D-mannitol, L-rhamnose, inositol, melibiose, cellobiose, D-ribose or salicin. Grows at 20–30 °C, at pH 5–8 and in the presence of up to 5 % NaCl. Grows optimally at 30 °C, at pH 7.3–8 and in the presence of <4 % NaCl. The cell-wall peptidoglycan contains glutamic acid, alanine and meso-diaminopimelic acid. The acyl type of the cell wall is glycolyl. The predominant menaquinones are MK-10(H4) and MK-10(H6). Major cellular fatty acids are iso-C15:0, iso-C16:0, C17:0, C17:1ω9c and anteiso-C15:0. The DNA G+C content of the type strain is 73.0 mol%.

The type strain, P0402T (=JCM 15292T =PCU 315T =TISTR 1883T), was isolated from peat swamp forest soil in Thailand.

Table 1. Differential characteristics between strain P0402T and the type strains of related species of the genus Micromonospora

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition of tyrosine</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Growth at pH 5</td>
<td>+</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>w</td>
<td>–</td>
<td>w</td>
</tr>
<tr>
<td>Maximum NaCl tolerance (%)</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>–</td>
<td>w</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycerol</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>w</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>–</td>
</tr>
<tr>
<td>Melibiose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Acknowledgements

This study was supported by the Thailand Research Fund for a 2006 Royal Golden Jubilee PhD Program as a scholarship to A.S. and in part by the Faculty of Pharmaceutical Sciences Research Fund (2006), Chulalongkorn University, Bangkok, Thailand.

References

