
C.-Y. Lin et al.: A Graph-based Approach for Automatic Service Activation and Deactivation on the OSGi Platform

Contributed Paper
Manuscript received July 10, 2009 0098 3063/09/$20.00 © 2009 IEEE

1271

A Graph-based Approach for Automatic Service Activation
and Deactivation on the OSGi Platform

Chin-Yang Lin, Cheng-Liang Lin, and Ting-Wei Hou, Member, IEEE

Abstract —More and more mobile and embedded devices,

such as home appliances and network devices, have selected
OSGi as the software management platform. As a result, the
resource management of the OSGi platform has become a
critical issue. This paper focuses on how to enhance the
efficiency of resource utilization in terms of the service
activation and deactivation. We propose the Service Activator
(SA), which is designed as an OSGi bundle, to on-demand
activate and deactivate OSGi services, so that the resources
required by services can be allocated and deallocated
automatically. This involves a graph-based representation of
services dependencies and two new algorithms. We have
implemented the SA on an OSGi implementation
(Knopflerfish); a home network prototype with a home
surveillance scenario is presented to demonstrate the
feasibility. Furthermore, a simulator is developed to further
evaluate the SA in terms of several scenarios; the results show
that the SA performs well for a wide range of bundles, and the
processing overhead is low.1

Index Terms — OSGi, resource-constrained device, eager
resource allocation, service activation, graph-based.

I. INTRODUCTION
Consumer electronics (CE) appliances are typically resource-

constrained; they have limited computing power, storage
capacity and communication capabilities [1], [2]. Therefore,
efficient utilization of shared resources (i.e. allocation and de-
allocation) for these appliances becomes a critical issue [3].
Increasingly, these devices employ a middleware-based
architecture and rely on the middleware to manage the resources
[2], [4]. However, most of these middlewares, including the
OSGi (Open Service Gateway initiative) [5], adopt the eager
resource allocation (ERA) scheme [6], [7]. Under this scheme,
the resource allocation is made before the resource is to be used;
all the services are activated at system initialization and consume
a significant amount of system resources. ERA thus comes with
two major drawbacks (1) long startup time and (2) unnecessary
resource consumption as the number of services increases.

In this paper, the OSGi is considered as the target platform,
since it is widely used in many applications, including personal
devices, automobiles, industrial automation, application servers

1 This work was partially supported by the TOUCH center project of the

National Science Council of Taiwan, R.O.C., under Grants No. NSC98-2218-
E-006-003.

 The authors are with the Department of Engineering Science, National
Cheng-Kung University, Tainan City 701, Taiwan R.O.C (e-mail: {chinyang,
chengliang, hou}@nc.es.ncku.edu.tw). The corresponding author is Ting-Wei,
Hou (e-mail: hou@nc.es.ncku.edu.tw).

and resource-constrained devices [8]-[10]. Many recent studies
have focused on building an OSGi-based context-aware
infrastructure in smart space environments [11]-[13] and the
security issues [14], [15], which normally rely on the OSGi
framework to manage the resources. In the OSGi specification,
there are two mechanisms that can be used to mitigate the
potential problems of ERA. The first is the Lazy Activation
Policy [6] that allows activating bundles lazily by simply
specifying this policy for them. This mechanism, to a certain
extent, can save resources and system initialization time because
bundles can be activated as they are first used. However, these
lazy activation bundles would not be automatically deactivated
even though they are not being used.

The second is the Declarative Services (DS), a new service
component model integrated in OSGi R4 specification [7],
[16]. It is based on a centralized instance manager to manage
the components and their life cycle; each service component is
associated with an XML-based description file. Application
developers can achieve the service (or service component)
activation and deactivation by carefully declaring the
component descriptions. Unlike the Lazy Activation Policy,
which is only performed on the bundles layer, DS performs
the activation and deactivation of services, thus enabling
finer-grained resource management. (Note that an OSGi
bundle logically can contain more than one service) However,
this declarative model may introduce more complexity. With
the expansion of services, writing the description files would
be error-prone. Moreover, since the dependencies between
service components must be predefined, it would not be
adaptive to the dependency changes at runtime.

In this paper, we attempt to propose an efficient way to
enhance both the resource utilization and the scalability,
especially when resources are scarce. Our approach is aimed
at freeing application developers from manually dealing with
resource allocation and deallocation while developing service-
based OSGi applications. We approach the resource allocation
problem by automating the service activation and
deactivation. Technically, the Service Activator (SA),
designed as an OSGi bundle, is introduced to automate the on-
demand activation and deactivation of OSGi services. This
involves a graph-based approach that monitors the services
runtime dependencies and helps to determine whether a
service should be activated/deactivated. The proposed
approach has the following characteristics:

 Automation: The SA automatically activates services
on-demand and deactivates them when they are not
being accessed; it also enables the possibility of
deactivating the services involved in circular references.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1272

 Simplicity: Our approach is built on top of the OSGi
framework and does not introduce a new component
model. Also, it is intuitive and very simple to use;
developers need not handle any description files.

 Backward Compatibility: The approach keeps to the
original programming model, so it can apply to any
OSGi-compliant framework; it can also be easily
applied to the existing service-based OSGi applications
in comparison with using the DS model.

 Flexibility: Developers can decide which services
should be put under the control of the SA, so the
management effort is limited to the significant services.

We have conducted an experiment based on an OSGi
implementation (Knopflerfish [17]) and a simulation for
further evaluating the SA to demonstrate the effectiveness of
the proposed approach.

The rest of the paper is organized as follows. Section II
presents our system architecture. Section III describes the
Service Activator in detail. Section IV is our implementation
and experimental results, followed by the conclusions.

II. SYSTEM ARCHITECTURE
The OSGi specifications [5] define a standardized service

platform for developing and deploying service-oriented
applications. The core of the service platform is the OSGi
framework that sits on top of a Java virtual machine and
supports the deployment of extensible and downloadable
service applications. This platform follows the well-known
service-oriented interaction pattern [18] that consists of three
main roles: service providers, service requesters and a service
registry. Service providers publish their services into the
service registry, and service requesters query the service
registry to discover the published services.

In OSGi, a service is normally described as a Java interface
and is packaged along with its implementations into a modular
unit called a bundle. A bundle is physically a JAR file that
contains the associated code and resources, as well as a
manifest file describing the information about the bundle; it
can be installed, updated, or removed on the fly. Each bundle
can publish (register) or use (request) services. We call the
bundle that publishes services the service-providing bundle,
and the bundle that uses services the client bundle. From a
developer's perspective, bundles interact with each other
through providing and using services to form an application.

Fig.1 illustrates the system architecture. The Service
Activator (SA) plays the key role in achieving the automation
of service activation and deactivation, which is implemented
and deployed as an OSGi bundle. It contains two key parts:
Service Dependency Graph (SDG) and Circular References
Handler (CRH). The SDG is the core structure used to
internally represent the services runtime dependencies; the
CRH is used to deal with the circular dependencies according
to the dependency information in the SDG.

In the proposed architecture, a new type of service called
m-service, abbreviated from “managed service”, is introduced;
only the m-services would be put under the management of

the SA; and each m-service bundle includes at least one m-
service. Each m-service object must meet the requirement that
the class of the object extends the abstract class M-Service, as
shown in Fig. 2. It also implements service interfaces and
behaves like standard OSGi service objects.

Fig. 1. System Architecture

One major difference is that each m-service object needs to

implement two abstract methods, activate and deactivate, in
M-Service. These two methods are designed for the SA to
achieve the service activation and deactivation. For any m-
service s, the activation/deactivation of s means the invocation
of the activate/deactivate method of s. The activate/deactivate
method is invoked by the SA and contains the resource
allocation/deallocation code. The activation/deactivation of an
m-service thus corresponds to the allocation/deallocation of
the resources required by the m-service.

To capture the changes in runtime dependencies between
bundles (that are not explicitly managed by the OSGi
framework), each m-service is designed as a service factory. In
OSGi, a service factory is essentially a service; any client can
request/release it by invoking the standard getService/
ungetService method defined in the OSGi framework. It differs
from a normal service in that: (1) it must implement the
ServiceFactory interface (i.e. the getService and ungetService
methods); (2) its getService method is invoked by the OSGi
framework when a new client bundle requests it; and (3) its
ungetService method is invoked by the OSGi framework when
a client bundle releases it. Such an indirection mechanism in
OSGi was originally designed to provide customized services.
We utilize this mechanism to dynamically intercept the changes
in dependencies and to separate m-services from normal
services, which is accomplished by the customized methods
getService and ungetService in M-Service.

Fig. 2. The class diagram of M-Service

In Fig. 3, the sequence diagram of the getService operation

is presented to illustrate how the above mechanism works,
where a client queries the OSGi service registry to discover a

C.-Y. Lin et al.: A Graph-based Approach for Automatic Service Activation and Deactivation on the OSGi Platform 1273

registered m-service by invoking the getService method. In
this case, the m-service object is not returned directly. Instead,
the getService method of the registered m-service (i.e. the
getService method in M-Service) would be invoked by the
OSGi framework, resulting in an invocation on the Service
Activator (i.e. add dependency). The SA then updates the
SDG accordingly and performs the service activation when
needed, as shown in Fig. 3. Finally, the m-service object is
returned to the client.

Fig. 3. Sequence diagram for get Service operation with Service Activator

Under this architecture, developers have the flexibility of

choosing only the key services as m-services. All that is
needed is to let each of the key services extend the M-Service
and put the resource allocation/deallocation code in the
activate/deactivate method.

III. THE SERVICE ACTIVATOR
The Service Activator (SA) is designed as an OSGi bundle

to provide two main functions: (1) the on-demand activation
and deactivation of OSGi services and (2) the deactivation of
the services involved in circular references. The key to these
functions is the adoption of a service dependency graph
(SDG) and two graph-based algorithms inspired by the
algorithms used in garbage collection [19].

A. The Graph-based Approach
To efficiently accomplish the automation of service

activation and deactivation, we need an efficient way to keep
track of the dynamic service dependencies between bundles.
Although the OSGi framework provides APIs for developers
to look up the bundle-to-service dependencies, it is hard and
actually time-consuming to obtain a whole picture of the
dynamic dependencies among bundles and services. In order
to satisfy our needs, we maintain a service dependency graph
(SDG) to continuously monitor the runtime dependencies, in
which the graph maintenance is carried out if any dependency
changes during the running of the OSGi framework.

In addition to helping identify the services/bundles not being
used, the graph-based approach brings several advantages. For
example, the detailed structures and relationships given in the
graph can assist in further analysis of the dependencies among
bundles and services (e.g. cyclic dependency). Moreover, we

can easily enrich the graph by adding additional properties,
constraints or other meta-information to the graph nodes
and/or edges. Such an extensibility creates the potential for
optimization, particularly for decision-making tasks.

Since the algorithms presented herein all rely upon the SDG,
it is important to understand how the SDG is maintained and
how the elements in the graph are mapped to the OSGi
services and bundles.

 Graph Structure
The service dependency graph (SDG) is a directed graph

representing dependencies among bundles and services, with the
nodes in the graph being the bundles, and the edges being the
bundle-to-service dependencies. A bundle node in the graph
encapsulates (1) a set of service entries representing the m-
services registered by the bundle, (2) the outgoing edges with
each one representing a dynamic dependency from the bundle to
a registered m-service, and (3) properties/states specific to our
algorithms. Since an OSGi application is normally composed of
a set of dependent bundles, under this approach an application
can be represented as a sub-graph of the SDG.

The example in Fig. 4 illustrates the structure of SDG. The
bundle nodes and service entries are, respectively, represented
with circles and squares. Each directed edge points from a
bundle node (client bundle) to a service entry (target service);
the source of the edge, plotted as a solid black circle, is
included in each bundle node to implicitly signify all of the
outgoing edges from the bundle.

Fig. 4. An example of the service dependency graph

In this graph snapshot, SDG consists of four bundle nodes

{B1, B2, B3, B4} and four edges {(B3, s1), (B3, s3), (B1, s2), (B4,
s2)}. Each of the nodes is a client and/or a service-providing
bundle. It is easy to see that B1 serves as both a client and a
service-providing bundle, B2 is a service-providing bundle,
and both B3 and B4 are client bundles.

 Graph Updates
To keep the SDG up-to-date, additional care must be taken

to deal with the situation where the runtime dependencies may
change at any moment (due to the dynamic nature of OSGi).
The SDG is initially empty and is updated through an event-
driven adaptation algorithm that modifies the graph structure
whenever one of the following events occurs.
1. START_BUNDLE Event: This event refers to the “start

bundle event” defined in the OSGi framework. It causes
a bundle node creation.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1274

2. STOP_BUNDLE Event: This event refers to the “stop
bundle event” in the OSGi framework. It causes the
removal of a bundle node and the dependencies related
to the node (i.e. the incoming and outgoing edges).

3. ADD_DEPENDENCY Event: This event, written
AD(B, s), is triggered when a client bundle B asks for
(via the getService method) an m-service object s. It
causes the addition of the edge (B, s) and a target service
entry for s (if the entry does not exist).

4. REMOVE_DEPENDENCY Event: This event, written
RD(B, s), is triggered when a client bundle B releases
(via the ungetService method) a service object s. It
causes the removal of the edge (B, s).

Here, the events START_BUNDLE and STOP_BUNDLE
are captured by simply listening to the changes in bundles'
lifecycle states (notified by the OSGi framework). The events
ADD_DEPENDENCY and REMOVE_DEPENDENCY are
respectively mapped to the invocation of the methods
getService and ungetService, which, as mentioned earlier, are
specific to the m-services. Since in OSGi, stopping a bundle
will cause all the services registered by this bundle to be
automatically unregistered, triggering a STOP_BUNDLE
event can therefore introduce a number of the
REMOVE_DEPENDENCY events to be triggered.

B. Service Activation and Deactivation
The automation of service activation and deactivation means

the ability to activate m-services on-demand and deactivate
them when no clients are accessing them. To this end, we
employ an algorithm modified from the reference counting
algorithm used in garbage collection [19]. The algorithm is
seamlessly incorporated into the SDG manipulation.

The basic idea is to keep a reference count for each m-
service, say s; the reference count of s, denoted by rc(s), is
used to reflect the number of bundles that are currently using
s, and is stored in the service entry associated with s.
Whenever a dependency to s is established, rc(s) is
incremented, and whenever one is removed, rc(s) is
decremented. In the case where rc(s) is decremented to zero, s
would be eligible for deactivation.

Additionally, we keep a state per service entry to signify
whether a given m-service has already been activated. Each
m-service is always in one of two states: INACTIVE and
ACTIVE. The INACTIVE state is an initial state and indicates
that the service is not ready to serve. This implies that either
the service has never been activated or the service has been
deactivated. The ACTIVE state means that the service is ready
to serve, which implies that the activate method of the service
must have been invoked and the service has not been
deactivated since then.

The SA makes decisions on whether to activate or
deactivate an m-service according to the above runtime
information. Given an m-service s, the activation and
deactivation of s are performed, respectively, when rc(s) is
incremented to 1 such that s is INACTIVE and when rc(s)
drops to zero such that s is in the ACTIVE state. Since the

increment is only attributed to the ADD_DEPENDENCY
event, the service activation must be on-demand (i.e.
postponed until a client actually wants to use the service). The
service deactivation can occur while triggering the
REMOVE_DEPENDENCY event or the STOP_BUNDLE
event, because both of the events lead to the removal of edge.

On the other hand, the SA introduces a new OSGi bundle
header in the manifest file, called ALWAYS_ON, which
developers can use to designate the bundles whose m-services
are not intended to be deactivated. That is because, in some
cases, a bundle may include only the services that are
supposed to be always running, e.g. a service which
encapsulates a thread of control and continuously monitors
some real-time information. It can also be expensive if a
considered m-service is frequently unregistered and re-
registered or if the cost of activating and deactivating it is
high. Application developers can prevent these kinds of
services from being deactivated by simply tagging the bundles
registering them with the ALWAYS_ON header. The content
of the header is read while the START_BUNDLE event is
triggered. One can think of this header as a means to reduce
the unnecessary computation and resource reallocation.

Fig. 5 outlines the procedures for the service activation and
deactivation, both of which are embedded in the graph
modification. Each time an ADD_DEPENDENCY event is
triggered, the SA invokes the procedure service_activation. It
creates a graph edge from a client bundle node to a target
service entry, followed by the operations related to the service
activation. The procedure service_deactivation is aimed at
removing a graph edge and performing the service
deactivation if needed. Note that the SA does not deactivate
any service whose enclosing bundle is tagged as
ALWAYS_ON (checked in the if-statement), even though the
reference count of the service is zero.

Fig. 5. The algorithm for service activation and deactivation

Unlike the traditional reference counting, our algorithm
does not carry out the service deactivation in a recursive
manner. That is, deactivating a service cannot result in more

C.-Y. Lin et al.: A Graph-based Approach for Automatic Service Activation and Deactivation on the OSGi Platform 1275

services being deactivated; the service deactivation time is
hence bounded. Furthermore, the deactivation work can also
be performed on the bundles layer. When a bundle is stopped,
a group of services registered by the bundle would be
considered for deactivation as a whole. For example, consider
the SDG in Fig. 4, and suppose that a STOP_BUNDLE event
for B2 is then triggered. In this case, stopping B2 involves
triggering the events RD(B1, s2), RD(B3, s1) and RD(B4, s2), so
the services s1 and s2 will be deactivated eventually (i.e., both
rc(s1) and rc(s2) reach zero).

C. Circular References Handler
The Circular References Handler (CRH), designed as part

of the SA, is targeted at dealing with the circular
dependencies, which enables the possibility of deactivating
the services involved in circular (or cyclic) references and
hence reduces the unnecessary resource consumption.

A circular dependency is a relation between two or more
bundles which either directly or indirectly reference each
other. For example, when a bundle B1 references a service
provided by another bundle B2 and B2 references a service
provided by B1, we say that B1 and B2 form a circular
dependency. Both B1 and B2 are called circular bundles. In
OSGi, a bundle essentially can be a client and/or a service-
providing bundle, so any circular dependency is considered
normal.

To illustrate the potential problem, consider the SDG in
Fig. 6, constructed from the following scenario: (1) service
request from B3: AD (B3, s1) is first triggered, followed by AD
(B1, s2); and (2) service request from B4: AD (B4, s3) is then
triggered, followed by AD (B2, s1).

It can be seen that AD (B3, s1) and AD (B4, s3) result in the
circular dependency between B1 and B2, as well as the
activation of s1, s2 and s3. Assume that RD (B3, s1) and RD
(B4, s3) are then triggered. The SA will only deactivate s3,
while leaving both s1 and s2 as they are, because the circular
dependency cannot be broken by either of these two events.
More precisely, both s1 and s2 would remain ACTIVE until
the occurrence of another event that can break the circular
references (e.g. stopping B1 or B2). In the worst case, s1 and s2
would never be deactivated, even though it may be safe to
deactivate both of them (this is application dependent).

Fig. 6. An example of circular dependency

To automate the deactivation of the services involved in

this situation, two points must be addressed: (1) identifying
the circular bundles and (2) determining whether the identified
bundles are eligible for deactivation. With SDG, the former is

trivial, since finding cycles in a directed graph is a typical
problem and would not be a key issue here. However, the
latter is technically hard, since the OSGi framework does not
provide any runtime information about whether a given
bundle can be safely deactivated. That is the reason why the
bundles B1 and B2 in the above case can only be deactivated
by manually breaking the circular references (e.g. stopping
B1).

We propose a method, realized as the CRH, to facilitate this
automation. The basic idea is to predefine candidates
(bundles) for possible deactivation, followed by a runtime
analysis of the SDG for identifying which of these candidates
can be safely deactivated, and then to deactivate the identified
candidates. Here, deactivating a candidate bundle means
deactivating all the services in the bundle, i.e., each of the
services in the bundle would be in the INACTIVE state.

The step of predefining candidates is performed at design
time, where developers designate part or all of the bundles as
candidates for possible runtime deactivation. Each of the
candidates must meet the requirement that it can be safely
deactivated when it is not being accessed from any application
entry. The application entry is the entry (starting) point of an
application. An application is normally composed of a set of
bundles and includes at least one application entry.

Since the application entries actually reflect the sources of
service requests, the criterion for designating candidate
bundles is that each candidate bundle must not include any
application entries. In general, a candidate should include only
the services designed as utility routines. The utility routine is
used as needed; it performs a single task or a small range of
tasks; and particularly, it is often considered as a “passive”
service that does not own a thread of control and must rely on
another thread to execute its code. It is difficult to identify
such candidates at runtime, but it is intuitive for the
developers.

Similar to the ALWAYS_ON header, CRH introduces a
new header, called PASSIVE, which the developers can use to
specify the candidates. These candidates are also called
PASSIVE bundles. Additionally, it is obvious that any bundle
tagged as ALWAYS_ON cannot be tagged as PASSIVE.

At runtime, the CRH is launched (when appropriate) for
deactivating the candidates that are not being accessed from
any of the application entries. We consider all the non-
PASSIVE bundles as the application entries (i.e. the maximal
set of application entries), called Roots in SDG. The target
problem of CRH is thus to identify the PASSIVE nodes that
are unreachable from any of the Roots in SDG.

To this end, we devise an algorithm based on the mark-scan
garbage collection technique [19], which can correctly find
the graph nodes unreachable from a given set of nodes in the
graph through a simple tracing procedure, even though the
nodes are involved in cyclic structures.

The new algorithm consists of three phases: MarkPhase,
which traces the SDG, starting from the nodes in Roots, to
mark all the visited nodes; ScanPhase, which scans all the

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1276

nodes in SDG for identifying the unmarked (i.e. unreachable)
PASSIVE nodes; and finally CollectPhase, which deactivates
the bundles identified in ScanPhase and updates the SDG
accordingly.

To avoid repeated deactivations, we add a boolean flag per
bundle node to signify whether a given bundle is deactivated
by CRH. For any bundle, this flag is initially false and is set to
true whenever the bundle is deactivated by CRH; it is reset to
false as soon as any of the included services is activated via
the ADD_DEPENDENCY event. The CollectPhase will
exclude all the bundles deactivated by CRH.

Fig. 7 depicts the pseudocode of the algorithm. First, the
procedures mark_phase and mark collaborate to find and mark
all the nodes reachable from Roots by performing depth-first
search from each node in Roots. The procedure scan_phase
then scans all the nodes in SDG to obtain the unmarked
PASSIVE nodes and reset the mark flag for each marked
node, where each of the unmarked PASSIVE nodes whose
associated bundles are not deactivated by CRH will be put in a
list, termed the DeactivationList. Finally, the procedure
collect_phase deactivates the bundles whose corresponding
nodes are contained in the DeactivationList. Recall that
deactivating a bundle means deactivating all the services in
the bundle. By removing all the incoming edges of a bundle
node, all the services provided by the bundle can be naturally
deactivated. Here, each removal of an edge corresponds to the
procedure service_deactivation in Fig. 5.

In the algorithm, both the MarkPhase and ScanPhase are
dedicated to the detection effort. The detection time is
dominated by the MarkPhase because it needs to traverse the
entire transitive closure of Roots; the complexity is thus
limited by the size of that transitive closure. As for the
collection time (i.e. the time for CollectPhase), it entirely
depends on the number of bundles identified in the ScanPhase.

Fig. 7. The algorithm for Circular References Handler

Consider the example in Fig. 6 again and assume that RD

(B3, s1) and RD (B4, s3) have been triggered. All that is needed
under this approach is to tag the bundles B1 and B2 with the
PASSIVE header. Then, at runtime, s1 and s2 would be
automatically deactivated while performing the CRH, since
both B1 and B2 are unreachable from Roots in this case.

Our approach only requires developers to determine which
of the bundles should be considered for deactivation; it does

not matter whether these bundles are involved in circular
references. Ideally, the CRH should be triggered on-demand.
Our current design of the trigger is simply based on the
available memory, which is checked after each service
deactivation to determine whether to perform the CRH. The
triggering occurs only if the available memory falls below a
preselected threshold.

IV. EXPERIMENTAL RESULTS
We implemented the proposed approach on an OSGi

implementation, Knopflerfish 2.2.0 [17], and conducted a
simulation for evaluating the SA to demonstrate the effectiveness
of the proposed approach. All the experiments are performed on
an x86-based platform with a VIA EPIA N-Series Nano-ITX
platform, using the operating system Debian kernel 2.6 and Java
2 Platform Standard Edition version 1.6. This platform is
equipped with a 1G VIA processor and 512MB RAM with only
required services. We first demonstrate our implementation
through a prototype and then present the simulation.

A. Implementation
Our implementation (based on Knopflerfish [17]) is

designed as an OSGi service gateway in a home network,
which employs a remote control interface modified from the
httpconsole bundle developed by Knopflerfish. Coupled with
a web server on the OSGi platform, users can access the
registered services via the remote control interface (i.e. a web-
based user interface). This interface also displays memory
usage information.

A scenario based on a “home surveillance service” is
presented to demonstrate how the Service Activator on the
OSGi platform works. The home surveillance service is
implemented as an m-service. It allows pictures captured by
the cameras in the house to be monitored remotely, where the
cameras are connected to the home network via wireless LAN
and are controlled by the service.

A likely scenario is that the parents may need to remotely
watch over their children and house while they are away. By
installing and starting the bundle that publishes the home
surveillance service on the gateway, the parents can easily use
this service through the web browser of a mobile device (e.g.
a smart phone) to take pictures of their kids or house, thus
achieving the remote control/monitor capability.

Fig. 8 illustrates this scenario by showing screenshots of the
web-based interface on a smart phone, where screenshot (a) is
the central home page where users can access services;
screenshot (b) is a console showing the states of the bundles
and services; screenshot (c) shows a result of using the home
surveillance service (by clicking the link named
“HomeSurveillance” in the home page); and finally the user
goes back to the home page, as shown in screenshot (d). This
figure reveals the difference in the memory consumption
before and after using the home surveillance service. That is
because this service is an m-service which is activated on-
demand and deactivated by the Service Activator when it is
not being accessed.

C.-Y. Lin et al.: A Graph-based Approach for Automatic Service Activation and Deactivation on the OSGi Platform 1277

In this study, we use this prototype with a simple scenario
to demonstrate the feasibility of our approach. In practice, the
effectiveness would be increased with the use of more bundles
and services on the home gateway.

Fig. 8. Illustration of the scenario

B. Simulation
Since there is no standard benchmark for evaluating the

proposed approach, we conducted a simulation to get a better
understanding of the approach. The simulation setup consists
of two independent phases, as shown in Fig. 9. First, the event
generator produces the event sequence files based on a set of
predefined configurations. Each file contains a sequence of
the four types of events presented in Section III-A to represent
a scenario. In the second phase, the simulator that serves as
the Service Activator reads and interprets these event
sequence files to run scenarios in an automated way.

configurations

Event GeneratorEvent Generator

Service ActivatorService Activator

simulation
results

event sequence
files

SDG

Phase One Phase Two

CRH

SimulatorSimulator

Fig. 9. Experimental Setup

In practice, the resources required by a service may include

CPU, memory, files, network and database connections. In
order to simulate the service activation and deactivation, each
service (represented by an ID number) in these sequence files
is assigned a quantitative value, in the range from 1 to 10, to

indicate the amount of resource required by the activation of a
service; the higher the value, the more the resources consumed
by the service. The system resource consumption with the
Service Activator is evaluated in terms of the amount
contributed by the service activations and deactivations, where
the amount is increased and decreased, respectively, for the
activation and the deactivation.

The event generation process is based on the random
selection. Each event sequence file is associated with a
configuration that specifies the ranges of random selections
and the proportion of both event types and bundle tags. A
configuration is defined by the following parameters:

 Bundle numbers (n): Bound of the size of SDG.
 Maximum number of services per bundle (p): The number

of services per bundle is in the range from 0 to p.
 Event numbers (m): Size of the generated event

sequence (say E), where m ≥ n, and the first n events in
E are START_BUNDLE events.

 Proportion of deactivation events (α): α = (the number of
deactivation events in E)/(m - n), where a deactivation
event is either a REMOVE_DEPENDENCY event or a
STOP_BUNDLE event, each of which accounts for half
of the number of deactivation events. The proportion of
activation (i.e. ADD_DEPENDENCY) events is (1 - α).

 Proportion of ALWAYS_ON bundles (β): β = (the
number of ALWAYS_ON bundles)/n.

 Proportion of PASSIVE bundles (γ): γ = (the number of
PASSIVE bundles)/n(1 - β), where the ALWAYS_ON
bundles are excluded from being the PASSIVE bundles.

All the configurations in this experiment use the same
values of the parameters: n = 1000, m = 2000 and p = 10. The
varying parameters are α, β and γ. Each presented result is an
average over 10 runs, each of these runs uses a different event
sequence file generated from the same configuration. Since n
= 1000 and m = 2000, only the second half of the entire event
sequence is displayed.

Fig. 10 displays the resource impact of different event
distributions, measured on varying α. The ratio of the resource
consumption with SA to that without SA (i.e. normal) is
plotted; the lower the ratio, the greater the resources saved by
the SA. It can be seen from Fig. 10 that the resource
consumption with SA decreases with increasing the
proportion of deactivation events (i.e. α).

Fig. 10. Resource impact of event distributions

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1278

Based on the same settings, the overall SDG processing
time is presented in Fig. 11. The node creation time does not
obviously vary with the α values, which is actually limited by
n. Both the creation and removal of edges depend on α, in
which the higher the α value, the more time the SA spends on
removing edges. Particularly, the results of the total
processing time are all around 25 ms, which implies that the
overhead of the service activation and deactivation is quite
low. (Note that these operations would be spread out during
the running of the OSGi framework.)

Fig. 11. SDG Processing Time

Fig. 12 shows the resource impact of using ALWAYS_ON

header, where α = 0.2 and γ = 0. It is easy to see that the
resources saved by the SA decrease with increasing β. That is
because ALWAYS_ON bundles would essentially prevent
services from being deactivated.

Fig. 12. Resource impact of using ALWAYS_ON header

In Fig. 13, we trigger the CRH per 100 events to observe

how the CRH would affect the resource consumption, where
α = 0.2, β = 0 and the PASSIVE header is taken into account
(i.e. γ). It is not surprising that the resources saved by the SA
increase with increasing the number of PASSIVE bundles (i.e.
candidates). This can also be seen in the column “Services
Deactivated” of TABLE I, where the number of services
deactivated increases with increasing γ.

Fig. 13. Resource impact of using PASSIVE header (with CRH)

TABLE I presents more details about the CRH, where

“CRH Time” represents the overall execution time of CRH;
“Detection Time” represents the time required by the
MarkPhase and ScanPhase of CRH, normalized to “CRH
Time”; and “Collection Time” represents the time required by
the CollectPhase of CRH, normalized to “CRH Time”. The
overall execution time is composed of the detection time and
the collection time. According to this table, the detection time
depends on the number of bundles marked, and the collection
time hinges on the number of services deactivated. Since the
overall execution time clearly depends on the detection time
(according to the trend), it is thus still dominated by the
MarkPhase of CRH (i.e. the traversal of the SDG).

TABLE I
BEHAVIORS OF THE CRH

γ SERVICES
DEACTIVATED

CRH TIME
(ms)

DETECTION
TIME (%)

COLLECTION
TIME (%)

BUNDLES
MARKED

0 0 34.9 100% 0% 4782
0.2 21 32.7 96% 4% 4202
0.4 76 29.3 90% 10% 3566
0.6 187 27.9 78% 22% 2723
0.8 389 27.6 59% 41% 1543

Finally, we measure the services deactivated by CRH based

on the settings in Fig. 13 with different values of β. As shown
in Fig. 14, the number of services deactivated decreases with
increasing β. That is because ALWAYS_ON bundles are
always considered as part of Roots (i.e. non-candidates).

Fig. 14. Deactivated services with a mixture of ALWAYS_ON and

PASSIVE headers

Overall, the simulation results show that the SA behaves
well for a wide range of event sequences and bundle numbers,
which significantly decreases the resource consumption by
automatically performing the service activation and
deactivation at runtime. By using the CRH, more bundles or
services can be deactivated, thus further reducing the resource
consumption. Moreover, the processing overhead of the SA is
almost negligible, since the execution time is very short.

V. CONCLUSIONS AND FUTURE WORK
We have presented a novel approach for automating the

service activation and deactivation on the OSGi platform, where
services are activated on-demand and are deactivated when no
clients are accessing them. The activation and deactivation of a
service correspond to the allocation and deallocation of the
resources required by the service, thus enhancing the efficiency

C.-Y. Lin et al.: A Graph-based Approach for Automatic Service Activation and Deactivation on the OSGi Platform 1279

of resource utilization. This automation essentially provides fine-
grained resource management, performing activation and
deactivation on the services layer. In particular, our approach is
simpler in both design and use in comparison with existing
mechanisms; it is built on top of the OSGi framework, involves
no complex component model and keeps to the original
programming paradigm. This approach can significantly ease the
difficulties of handling complicated resource allocation and
deallocation while developing OSGi applications.

The proposed approach has been designed and implemented
as an OSGi bundle, called Service Activator. The key is the
adoption of a service dependency graph and two graph-based
algorithms inspired by the algorithms used in garbage collection.
The conducted experiments, based on an OSGi implementation,
a home network prototype and a precise simulation, have shown
the feasibility and effectiveness of this novel approach.

In future work, we plan to enrich the dependency graph by
introducing more properties concerning the services or bundles,
so that the Service Activator can more intelligently determine
whether to activate/deactivate a service. We also plan to enhance
the mechanism of triggering CRH applied in this study by
considering more runtime resource information, such as CPU
loading and available memory. This will help the Service
Activator to more accurately identify the triggering points for the
CRH.

REFERENCES
[1] A. Moller, M. Akerholm, J. Fredriksson, and M. Nolin, “Evaluation of

component technologies with respect to industrial requirements,” Proc.
of EUROMICRO’04, pp. 56-63, 2004.

[2] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-aware
architectural middleware for resource constrained, distributed dystems,”
IEEE Trans. Software Eng., vol. 31, no. 3, pp. 256-272, March 2005.

[3] J. S. Rellermeyer and G. Alonso, “Concierge: a service platform for
resource-constrained devices,” Proc. of EuroSys'07, pp. 245-258, March
2007.

[4] F. Guidec, Y. Maheo, and L. Courtrai, “A java middleware platform for
resource-aware distributed applications,” Proc. of ISPDC'03, pp. 96-103,
2003.

[5] Open Service Gateway initiative Alliance, http://www.osgi.org/.
[6] Lazy Activation Policy, OSGi Service Platform Core Specification,

Release 4, section 4.
[7] Declarative Services Specification Version 1.0, OSGi Service Platform

Service Compendium, Release 4, section 112.
[8] A. Ibrahim and L. Zhao, “Supporting the OSGi service platform with

mobility and service distribution in ubiquitous home environments,” The
Computer Journal, vol. 52, no. 2, pp. 210-239, 2009.

[9] J. S. Rellermeyer, O. Riva, and G. Alonso, “AlfredO: an architecture for
flexible interaction with electronic devices,” Proc. of the
ACM/IFIP/USENIX 9th International Middleware Conference, pp. 22-
41, Dec. 2008.

[10] J.-E. Lim, O-H. Choi, and D.-K. Baik, “An evaluation method for
dynamic combination among OSGi bundles based on service gateway
capability,” IEEE Trans. Consumer Electron., vol. 54, no. 4, pp. 1698-
1704, 2008.

[11] T. Gu, H. K. Pung, and D. Zhang, “A service-oriented middleware for
building context-aware services,” Journal of Network and Computer
Applications, vol. 28, no. 1, pp. 1-18, 2005.

[12] R. P. Diaz Redondo, A. F. Vilas, M. R. Cabrer, J. J. Pazos Arias, J. G.
Duque, and A. Gil-Solla, “Enhancing residential gateways: a semantic
OSGi platform,” IEEE Intelligent Systems, vol. 23, no. 1, pp. 32-40,
2008.

[13] R. P. Diaz Redondo, A. F. Vilas, M. R. Cabrer, J. J. Pazos Arias, and M.
R. Lopez, “Enhancing residential gateways: OSGi services
composition,” IEEE Trans. Consumer Electron., vol. 53, no. 1, pp. 87-
95, 2007.

[14] P. Parrend and S. Frenot, “Security benchmarks of OSGi platforms:
toward Hardened OSGi,” Software: Practice and Experience, vol. 39, no
5, pp. 471- 499, 2009.

[15] P. H. Phung and D. Sands, “Security policy enforcement in the OSGi
framework using aspect-oriented programming,” Proc. of
COMPSAC'08, pp. 1076-1082, 2008.

[16] H. Cervantes and R. S. Hall, “Automating service dependency
management in a service-oriented component model,” Proc. of the 6th
International Workshop on Component-Based Software Engineering
(CBSE), pp. 91-96, 2003.

[17] Knopflerfish, http://www.knopflerfish.org/.
[18] R. S. Hall and H. Cervantes, “Challenges in building service-oriented

applications for OSGi,” IEEE Communications Magazine, vol. 42, no. 5,
pp. 144-149, May 2004.

[19] R. E. Jones and R. D. Lins, Garbage Collection: Algorithms for
Automatic Dynamic Memory Management, John Wiley and Sons: New
York, 1996, pp. 19-41.

Chin-Yang Lin received the B.S. and M.S. degrees in
Engineering Science from National Cheng Kung University,
Taiwan in 1999 and 2001, respectively. He is now a Ph.D
candidate in Engineering Science, National Cheng Kung
University. His major research interests include ubiquitous
computing, automatic memory management, embedded Java
platform and software engineering.

Cheng-Liang Lin received the B.S and M.S. degree in
Computer Science and Information Engineering from
Shu-Te University, Taiwan, in 2003 and 2005. And now
he is a Ph.D candidate in Engineering Science, National
Cheng Kung University. His major research is in software
methodologies, middleware collaboration, services design
for ubiquitous computing environments, Interactive

Digital TV and Java related technology.

Ting-Wei Hou received BS, MS, and Ph.D degrees all in
Electrical Engineering, National Cheng Kung University,
Taiwan, in 1983, 1985, and 1990 separately. He has been
an associate professor in Department of Engineering
Science, National Cheng Kung University since 1990. He
was a visiting scholar of CSRD of University of Illinois at
Urbana-Champaign, Illinois, U.S.A, during 1993-1994.

His major research is in embedded systems and system integration. He has
been the project leader of the pilot project on Healthcare IC cards in Penghu,
Taiwan from 1998 to 2003, which encouraged the National Healthcare IC card
project. He is currently working on Java based embedded systems, such as
Java Virtual Machines, Java obfuscators, MHP, OSGi, Java card applications,
and RFID applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

