
ANALYZING AND COMPARING SHOT PLANNING

STRATEGIES AND THEIR EFFECTS ON THE

PERFORMANCE OF AN AUGMENT REALITY

BASED BILLIARD TRAINING SYSTEM

CHIHHSIONG SHIH

Department of Computer Science

Tunghai University, No. 181 Section 3
Taichung Harbor Road, Taichung, Taiwan

Republic of China

shihc@go.thu.edu.tw

Published 17 December 2013

The shot planning of a cue after it collides with an object ball determines a player's success in a

billiard game. This paper proposes three novel gaming strategies to investigate the e®ect of cue
shots planning on gaming performance. The ¯rst algorithm considers the nearest pocket for

every selected target object ball, seeking optimal post collision positions. The second algorithm

considers all pocket and target object ball combinations during both the pre- and post-collision

optimal shot selection processes. The third algorithm considers a multi-objective optimization
process for optimal shot planning control. The simulations are conducted based on a collision

model considering the restitution e®ects. An augmented reality training facility is devised to

guide users in both aiming and cue repositioning control in a real-world billiard game. Exper-
imental results not only prove the reliability of our training device in selecting a proper shot

sequence using the all-pocket optimal shot planning algorithm, but it also proves the consist-

ency with the restitution theory.

Keywords: All pockets game strategies; multi-objective optimization; augment reality learning

systems; greedy shots planning; video streaming.

1. Introduction

To achieve an acceptable pro¯ciency level in billiards requires considerable practice.

As this can be frustrating and unfruitful for beginners, and at times also for more

advanced players, most research on computer billiards has focused on creating a

highly competitive billiards playing program that competes against humans. This

paper proposes an augmented-reality visual guide system that includes calculating

the ideal speed for repositioning the cue ball based on a shot planning strategy. The

cue placement after its collision with an object ball determines its success on suc-

cessive shots. Deriving a better shot planning algorithm and implementing it using

our tutoring system is a challenging task for players at various skill levels. Three

novel gaming strategies are proposed to investigate the e®ect of cue placement on
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gaming performance. The strategies search for the post-collision path, targeting the

optimal combination of object balls and pockets based on the multi-objective criteria

of tolerance and attack angles. The ¯rst strategy considers the nearest pocket for

every selected target object ball to search for optimal post-collision positions. The

second strategy considers combinations among all pockets and target object balls

during both the pre- and post-collision shot selection processes. The third algorithm

considers a multi-objective optimization process for optimal cue repositioning con-

trol. The objective functions considered include the tolerance angle and the inverse of

the attack angle. The goal is to ¯nd an optimal combination of both quantities. The

simulations are conducted based on a collision model, considering the restitution

e®ects. The restitution e®ect usually occurs in the collision occasion of two balls in

the real world. It greatly a®ects the cue de°ection path and should be considered in

the simulation scenario. Di®erent threshold values are tested to emulate the pro¯-

ciency levels of di®erent real-world players. Two di®erent object ball distributions

are also selected to test the di®erent algorithms under di®erent threshold values. The

nearest algorithm performs only slightly inferior than the all-pocket algorithm in

the sparse ball con¯guration, while the all-pocket algorithm greatly outperforms the

nearest algorithm in the cluster con¯guration. The all pocket algorithm is thus

considered suitable for di®erent kinds of ball con¯gurations in real-world gaming

scenarios.

The guidance system is modi¯ed from a vision tracking system and a PC running

a visual display1 of the table states including balls positions, aiming instructions and

cue stick orientation. The guidance system of this work displays the captured real-

time pool table image together with the attack instructions, including aiming

direction, ideal post-collision path, optimal cue position for the following shot, and

cue stick velocity. Users can adjust both the aiming direction and hitting velocity of

the cue stick, according to the guidance information analyzed by the all-pocket

search strategy in this work. The all-pocket game strategy is selected to apply the

maximum tolerance angle search sequentially on the ¯rst and subsequent shots

towards all accessible pockets along the post-collision paths, considering the resti-

tution caused de°ections. These functions greatly enhance system usability, which is

the new feature of this work.

Experimental results from the all-pocket shot planning strategy using our training

facility, tested by users with di®erent skill levels, outperformed the results without

guidance for the same user set. Players with di®erent pro¯ciency levels exhibit

di®erent performance enhancements. The high-skill players exhibit lower degrees of

enhancements, while low-skill players exhibit greater enhancements in di®erent ball

con¯gurations. The performance statistics from high-skill players using the guidance

system exhibit lower deviation errors than the simulation results for di®erent ball

con¯gurations. This not only proves the reliability of our augment reality training

device in guiding users towards optimal performance, but it also proves the con-

sistency between the theory of shot planning strategies with the experimental results

on table states.
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Various computer billiard gaming systems have been devised to address players

in both real and virtual game environments. These systems can be classi¯ed into

two research categories. The ¯rst category involves a system that is an opposing

counterpart to a player and creates a game playing scenario. Many billiard video

games and billiard robots belong to this category. The second category is enhancing

users' skills using various training gears. The following gives brief reviews for both

categories. In the ¯rst category, researchers have focused on creating intelligent

robotics20,21 for entertainment, including robot golf2, yo-yo,22 volleyball,23 chess,4,24

and ping pong25. Various simulations and analyses have been exercised on di®erent

popular billiard games,3,5–7,26 including 8-ball, 9-ball and snookers (see Refs. 8–11).

Smith19 applied arti¯cial intelligence to develop a playing strategy for the 8-ball

game. Leckie and Greenspan10,11 further analyzed the billiard motions' physics and

the nature of collisions and produced a physics engine for actual game development.

These works contributed to the correct simulation and prediction of game playing

results. However, no work actually contributed to the real-world billiards gaming

environment. The smart strategy and precise analysis present no methods to help

user enhance their enjoyment of the game. Lander12 developed many billiard models

considering ball-ball and ball-rail collision as well as slip-slide friction physics.

These are all important phenomenon happening in real-world billiard games,

critical to developing a simulation program. Many video billiard games use these

mathematical expressions in their game engines. They also lack further integration

with strategy planning and instruction media to help users in real-world games.

The second billiard system category aimed to help players in real billiard game

training. Jebara et al.13 demonstrated that a wearable computer and augmented

reality helps players enhance billiards games. A vision algorithm was implemented,

which interactively operated with the user to assist planning and aiming. This sys-

tem was similar to ours, as it analyzed table states in a greedy manner and its

instructions can be applied to enforce a precise stroke. Delay in the head-mounted

display, however, can cause dizziness. The cost is higher because it uses LCD goggles

as a front-end media. The game strategies are not discussed and implemented in the

front end to help users.

Larsen et al.5 described the Automated Pool Trainer (APT), a pool training

system developed at Aalborg University. It is a multi-modality system, utilizing

spoken interaction with a graphical output and computer-controlled laser pointer as

gaming guides. The trainee selected a suitable exercise from several prede¯ned

courses. The system then issued instructions on how to place the balls on the table

for optimal shot recording and player performance evaluation. A human expert's

experience helped plan the training courses. Using human expertise not only causes

inconsistency in the training program but also raises the system cost. No multi-

objective gaming strategies are analyzed and implemented in the guidance system.

Chou et al.11 propose a framework to build a billiards tutoring system based on

nine-ball video broadcasting analysis. They detect balls and trace their positions at

every time instant. The real-world spatial relationships between the table and balls
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provide the aiming and position play suggestions. Ball position information is also

utilized to distinguish each play into a corresponding event using a rule-based

method.

Previous papers by this author1,14 described a novel vision-based billiards ball

tracking system designed to provide players with an interactive guiding system to

orient the cue stick properly on the pool table. The major goal was to increase aiming

accuracy during the hitting process to promote fun play without a complex electronic

or mechanical setup on or around the playing table. The system achieves this goal by

tracking the actual ball center positions and cue stick orientation on the table using a

real-time vision system.

The target pocket and object ball are selected based on a preliminary reposition

analysis algorithm for the best sequential shots.1 The sequential shot algorithm

considers an idealized re°ection path after the collision of cue with an object ball

rolling into the nearest pocket. The imaginary guide line is calculated based on the

basic physical law of collision and changes its orientation around the cue ball

according to the selected target pocket and object ball position. The user then moves

the cue stick on the pool table, which the vision system traces. The cue stick cen-

terline is represented by another imaginary line on the display system. The user then

adjusts this center line by moving the cue stick to match the calculated ideal collision

line from the cue ball. Once both lines align on the visual display, the user can strike

the cue ball and watch the object ball roll into the selected pocket. This requires

extra computational resources to track and display the cue stick center line. The

aiming error easily stacks from the tracking and display cue stick calculations. The

idealized re°ection path, however, rarely occurs in an actual billiard game. The need

to cope the physical rebound model within the various shots planning algorithms

thus arises.

Table 1 compares the di®erent techniques used by other relevant works, and the

uniqueness of this work is bolded. This paper applies a restitution model to evaluate

the post-collision de°ection. Gaming strategies are designed and tested for optimal

performance on di®erent pool states and player pro¯ciency levels. The unique

strategies studied by this work include an all pockets and the multi-objective shots

planning algorithms. Optimal placement control of a cue after collision is then

possible using these simulations when hitting a cue ball. The way in which a user

learns about the hit stroke is also unique. The visual display of the analyzed

instructions from our optimal game strategy is also unique. The ghost ball and

optimal post-collision cue positions are displayed on a PC monitor, thus enhancing

the users' fun and skill using the augment reality techniques. By merging these

instructions with the real-time image of the billiard table, the cue stick does not have

to be traced. This not only reduces the computation load of the gaming console, but

also provides a more intuitive operation mode for users using the system.

This paper introduces the shot di±culty criterion as the basis of the shot planning

strategies in Sec. 2. Section 3 presents a restitution e®ect on the colliding cue

and object balls. The analysis is compounded within the search process on the

4 C. Shih
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post-collision path for the shot planning algorithms discussed in Sec. 4. Section 5.1

details the guidance system, including the data °ow and visual interface, which

repeatedly updates the screen from the pool table image stream. Given an optimal

strategy, an estimated travel distance is evaluated for the best possible successive

shots. Given this distance on the table, an initial velocity to drive the cue stick is

inversely calculated using a least square transformation matrix in cubic form, as

introduced in Sec. 5.2. This velocity is shown on the visual display as a guide for users

to drive the cue stick consistently. Sections 5.3 and 5.4 present simulation results and

those from the guidance system applying the shot planning algorithms, respectively.

Section 6 summarizes the comparison results and the performance analysis of the

shot planning algorithms.

2. Shots Di±culty Measurement

This section describes the criterion used to optimize the shot planning strategies.

This criterion has been discussed by Jebara et al.13 and is brie°y stated here. Given a

cue ball, we ¯nd an accessible path to an object ball and another accessible path from

this object ball to the target pocket. For a planning strategy to succeed, one must

¯nd the optimal angle at which to hit a cue ball, i.e., angle c, as a deviation from the

line connecting the cue ball to the solid object ball. A shot is harder when less

tolerance (angle d) is needed on angle c. A smaller value for angle d makes it harder

for a low-skill player to render the shot into the target pocket. Conversely, a high-

skill player can manage the error to be within the tolerance zone with ease and make

the shot. This is the basic theory for our shot planning algorithm.

b ¼ a sinðR=LÞ; ð1Þ

c ¼ a sin
2r sinðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 þ l2 � 4rl cosðaÞp
 !

; ð2Þ

d ¼ a sin
2r sinða þ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 þ l2 � 4rl cosða þ bÞp
 !

� c: ð3Þ

3. Rebound Restitution E®ect Analysis

For an optimal sequential shot algorithm to ¯nd the best combination of pockets and

object balls to sink, the correct rebound path of the cue after collision with selected

object balls must be derived. We use linear collision physics and consider the resti-

tution factor12 to predict the cue ball motion after its collision with a selected object

ball. In an ideal collision occasion of two rigid body balls, the cue de°ection is always

perfectly 90� from the rolling direction of the object ball towards the target pocket.

However, the collision between two billiard balls involves both elastic and plastic ball

body deformation in a real-world gaming scenario. The de°ection direction of the cue

after its collision with an object ball is analyzed ¯rst considering a restitution factor

6 C. Shih
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that usually occurs in a real collision situation. The derivation below indicates that

the de°ection is not 90� from the rolling direction of the object ball towards the

target pocket, as in Fig. 1. In Fig. 1, there are two balls: A is the cue ball, and B is the

object ball. We intend to analyze the post-collision cue ball velocity. We ¯rst break

the incident velocity of the cue ball, VA, into its components along the collision line,

VAn, and the tangent to the collision, VAt , where VAn ¼ VA cosðaÞ and VAt ¼
VA sinðaÞ; `a' is the attack angle. The pre-collision velocity of the object ball, VB, has

zero components along both the collision line, VBn, and the tangent to the collision,

VBt , i.e., VBn ¼ 0, and VBt ¼ 0.

The impulsive force acting during the collision is directed along the collision line.

The t component of the velocity of each ball after its collision thus does not change, i.e.,

V 0
At ¼ VA � sinðaÞ and V 0

Bt ¼ 0. Because the impulse forces are equal in magnitude

and opposite in direction, momentum is conserved before and after the collision12:

mAðVAnÞ þmBðVBnÞ ¼ mAðV 0
AnÞ þmBðV 0

BnÞ; ð4Þ
mAðVAnÞ þmBð0Þ ¼ mAðV 0

AnÞ þmBðV 0
BnÞ: ð5Þ

Since mA ¼ mB,

ðV 0
AnÞ þ ðV 0

BnÞ ¼ VA cosðaÞ: ð6Þ
This equation cannot be solved without more information. We introduced the

restitution factor,12 ", which is the scalar value between 0 and 1 relating the bodies'

velocities before and after a collision using the following equations. VBn is zero before

collision.

V 0
Bn � VAn ¼ "ðVAn � VBnÞ; ð7Þ

V 0
Bn � V 0

An ¼ "ðVA cosðaÞ � 0Þ: ð8Þ

VAn

CVmin a 

VA

VAt

B 

V’Bn

Rebound direction

Fig. 1. Restitution relation notations.
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Solving Eqs. (6) and (8), we get the velocities of the two billiard balls after the

collision.

V 0
An ¼ ð1� "ÞVA cosðaÞ=2; ð9Þ

V 0
At ¼ VA sinðaÞ; ð10Þ

V 0
Bn ¼ ð1þ "ÞVA cosðaÞ=2: ð11Þ

To derive the de°ection angle, �, in Figs. 1 and 2, we use the following equation:

tanð�Þ ¼ V 0
An=V

0
At ¼ ð1� "ÞVA cosðaÞ=2=VA sinðaÞ ¼ ð1� "Þ=2= tanðaÞ; ð12Þ

� ¼ atan½ð1� "Þ=2= tanðaÞ�: ð13Þ
The de°ection angle is thus found to be a function of the restitution coe±cient

and attack angle. Generally, given a constant restitution coe±cient, the de°ection

angle from the normal object ball motion direction is inversely proportional to the

magnitude of the attack angle. A smaller attack angle creates a larger de°ection, and

vice versa. This phenomenon can be evidenced from the simulation results of the

proposed reposition algorithms in Figs. 7–9.

We examine deriving an optimal initial speed to drive the cue to an optimal

location for the best subsequent shots, given the rebound cue de°ection path. To

achieve this goal, a minimum initial cue stick speed to drive the cue to hit a selected

object ball and sink it into a pocket must ¯rst be considered. Given such an initial

velocity, the object ball travels just enough to sink into the target pocket, and the cue

is de°ected and stops at a ¯xed location. This initial speed depends on the travel

distance from the object position to the pocket and from the cue to the object. Given

this minimum speed, it is possible to estimate the minimum post-collision cue pos-

ition. To ¯nd the optimal cue stick speed to drive the object ball into a target pocket

and send the cue to an optimal position for the next best shot, additional speed (or

S1

S2

Umin

Vmin

CVmin a S 
CVend

Fig. 2. Post collision physics schematic and notations showing minimum driving speed calculation.

8 C. Shih
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force) is needed. Our approach of ¯nding this optimal speed is described below. We

describe the procedure to ¯nd the minimum post-collision position of a cue ball with

an initial object ball speed that is enough to roll it towards a proper target pocket

and stop at the pocket center with zero speed. The basics of collision physics use a

restitution factor and are shown in Fig. 2, where the relevant notations are stated.

We use an inverse derivation process to ¯nd the minimum speed required by an

object ball to travel to the target pocket and stop at the pocket center. Given this

minimum object ball speed, the minimum initial cue speed after colliding with the

object ball can be derived.

The minimum post-collision travel distance of the cue ball can then be solved,

assuming a constant deceleration of the ball from the constant friction coe±cient

between the ball and table cloth. Equation (14) describes the regular Torricelli's

equation, which evaluates the ¯nal velocity given a constant deceleration and known

initial velocity without a known time interval. If we want the object ball to travel

with a minimum initial velocity and stop at the pocket center, its ¯nal velocity, �,

must be zero. We thus derive Eq. (15), where Umin is the minimum required initial

velocity to drive the object ball for a travel distance of S1 at a constant deceleration,

�, due to friction. Umin is equivalent to the V 0
Bn in Fig. 1. Given the calculated initial

object ball velocity, the incident velocity of the cue before colliding with the object

ball can be calculated using Eq. (15) and the restitution solution of Eq. (11), solving

them for the post-collision object ball velocity. The incident velocity of the cue before

collision can thus be expressed using the restitution factor, ", the travel distance, S1,

and the cut angle `a', as in Eq. (16). We must next decide the minimum post-collision

cue travel distance. After deriving the estimated initial cue velocity after collision,

the minimum post-collision cue travel distance is expressed as in Eq. (18) by setting

the end velocity to zero in Eq. (17).

Because the post-collision cue velocity can also be expressed as the sum of the

squares of two vertical components, V 0
An, and V 0

At , the minimum post-collision cue

travel distance, S2, can be expressed as in Eq. (20), by combining Eqs. (18) and (19).

We express V 0
An, and V 0

At using the cut angle, `a', and object sink distance, `S1'.

Equation (21) is derived by dividing Eq. (9) by (11). By further substituting Eq. (15)

into Eq. (21), we can express V 0
An as a function of the restitution factor, ", and S1, as

in Eq. (22). By substituting the right-hand side of Eq. (16) into the VA in Eq. (23),

the V 0
At quantity can be expressed using the restitution factor, ", and S1. Equation

(24) combines the V 0
An and V 0

At quantities from Eqs. (22) and (23) to form the ¯nal

S2 expression. The minimum post-collision travel distance thus appears to vary as

the cue driving force increases. After further simplifying Eq. (24), this quantity is a

function of the travel distance of an object into a pocket, the restitution factor and

the cutting angle, as in Eq. (25). To calculate the minimum speed for the cue to force

the collided object to sink into the target pocket, we use the same inverse procedure

as in Eqs. (14) to (25). Given the cue travel distance from the starting position to the

collision point, S, Eq. (26) gives the relation between the starting and ending vel-

ocities. After rearranging terms and substituting CVend into Eq. (16), the required

Analyzing and Comparing Shot Planning Strategies 9
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minimum cue speed is expressed as a function of S2, ", and S and cut angle `a', as in

Eq. (27).

v2 ¼ U 2
min � 2� �� S1; ð14Þ

V 0
Bn ¼ Umin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �� S1

p
¼ ð1þ "ÞVA cosðaÞ

2
; ð15Þ

CVend ¼ VA ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p
ð1þ "Þ cosðaÞ ; ð16Þ

0 ¼ V 2
min � 2� �� S2; ð17Þ

S2 ¼
V 2

min

2� �
; ð18Þ

V 2
min ¼ V 02

An þ V 02
At ; ð19Þ

S2 ¼
V 02

An þ V 02
At

2� �
; ð20Þ

V 0
An ¼ ð1� "Þ

ð1þ "ÞV
0
Bn; ð21Þ

V 0
An ¼ ð1� "Þ

ð1þ "Þ
ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p
; ð22Þ

V 0
At ¼ VA sinðaÞ ¼ CVend sinðaÞ ¼

2
ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p
ð1þ "Þ cosðaÞ sinðaÞ; ð23Þ

S2 ¼
V 02

An þ V 02
At

2� �
¼ 1

2� �

ð1� "Þ
ð1þ "Þ

ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p� �
2

þ 2
ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p
ð1þ "Þ tanðaÞ

� �2� �
; ð24Þ

S2 ¼ S1

ð1� "Þ
ð1þ "Þ
� �

2

þ 2

ð1þ "Þ tanðaÞ
� �

2
� �

; ð25Þ

CV 2
min ¼ CV 2

end þ 2� �� S; ð26Þ

CV 2
min ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2�S1

p
ð1þ "Þ cosðaÞ
� �2

þ 2� �� S : ð27Þ

Given this selected object and pocket combination, the motion direction and

minimum post-collision cue travel distance are determined using the analysis results

in Eq. (27). We then search along the path from the minimum stop points of post-

collision motion for an optimal position, using di®erent search algorithms introduced

in Sec. 4. After ¯nding the optimal position, Sopt is determined. The relationship

between pre-collision, CVend, and post-collision, Vopt, cue velocity can be expressed

as in Eq. (28) and illustrated in Fig. 3. The rebound de°ection angle, �, is decided

using Eq. (13) and used to calculate the necessary initial velocity to drive the cue

and stop at an optimal position. By combining Eqs. (28) and (29), the ending cue

velocity, CVend, can be expressed in Eq. (30) using Sopt, � and `a'. Equation (31)

10 C. Shih
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describes the relationship between the initial driving and ending speeds for the pre-

collision cue motion. After rearranging terms in Eq. (31) and substituting CVend with

the right-hand side terms of Eq. (30), Eq. (32) gives the expression for the optimal

initial cue stick speed, CVopt, using Sopt, S, cut angle `a', and rebound de°ection

angle, `�'. This quantity is used below to mark the estimated cue stick speed for both

the algorithm simulations results and the GUI front end of the guidance experiments

setups.

Vopt ¼ CVend

sinðaÞ
cosð�Þ ; ð28Þ

Vopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Sopt

q
; ð29Þ

CVend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Sopt

q cosð�Þ
sinðaÞ ; ð30Þ

CV 2
end ¼ CV 2

opt � 2� �� S ; ð31Þ

CV 2
opt ¼

2� �� Sopt

ðsinðaÞÞ2 cos ð�Þ2 þ 2� �� S : ð32Þ

This is the estimated velocity that the GUI draws for users to follow, placing the cue

at this position after colliding with the selected object ball.

4. Shots Planning Algorithms

Game playing strategies decide the success of many games. Chess relies heavily on

planning strategies several steps ahead of each move to win a game. Billiard games

emphasize both physical skills and strategy. The strategic part involves both

S1

Umin

Vopt

a S 
CVend

CVopt

Sopt

Fig. 3. Post collision physics schematic and notations showing optimal driving speed calculation notations.
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deciding the object balls and pocket combination to target and the position control of

the cue after colliding with selected object balls. The cue ball placement has decisive

e®ects on the follow-up shots. One extreme example is placing the cue close to object

balls that are near the jaws of nearby pockets, making it easy to sink the object ball.

The other extreme case occurs when the cue is far from an object ball or the object

balls are far from the pockets. We propose three search algorithms to serve as game-

playing strategies to locate the optimal cue position for the best follow-up shots.

Following the analysis results from Sec. 3, the cue picks the best object ball and

pocket combination for its ¯rst shot based on a maximum error tolerance criterion

with di®erent strategies. The ¯rst strategy is based on a nearest pocket selection

criterion. Figure 4 details the optimal nearest pocket search algorithm. The search

has two rounds: pre- and post-collision for a given cue position. An a priori search on

all object balls is exercised to ¯nd the best candidate with a maximum tolerance

angle to sink into the nearest pocket. A post-collision search is then conducted to ¯nd

the optimal position for the cue to sink the next object ball into the nearest pocket

with a maximum tolerance angle. Both searches consider collision-free cue paths

towards and away from the object ball for optimization process candidates. We

deliberately set a threshold value after evaluating the maximum tolerance angle in

the sequential search process of the algorithm. If the maximum tolerance angle

calculated during the sequential shot evaluation process falls below a certain

threshold value, the search stops. As players may exhibit di®erent pro¯ciency levels,

the threshold value can be set at di®erent values to emulate the sequential shot

results. A lower threshold value indicates that sequential shots can easily accrue

without breaking the search process for optimal next shots, while a higher threshold

value means that sequential shots may su®er an early search process termination.

Generally, a lower threshold value incurs more sequential shots and represents a

highly pro¯cient player, and vice versa. The nearest pocket algorithm is analyzed to

have O(MN) e±ciency, whereM is the number of object balls and N is the number of

post-collision search points. The computation complexity order is in the second-

degree polynomial order, caused by the double-nested loop of a post-collision search

for the optimal position for follow-up shots.

To test the algorithm, we select two object ball distribution patterns. The ¯rst

ball con¯guration used to test the algorithms is a sparse distribution with every ball

around the jaws of each pocket, while the second con¯guration is a more clustered

distribution with each ball farther from each pocket. We de¯ne the ball distribution

di±culty as the sum of the distance of the object balls to their nearest pockets.

Figure 5 shows one sample search based on the algorithm in Fig. 4, under a sparse

pattern with a low threshold value. Figure 6 shows sample search results of the

algorithm in Fig. 4, with a cluster pattern under a low threshold value. The cue starts

at a selected position, which is the same for Figs. 5 and 6. The continuous sequence of

successful shots is illustrated for the same initial cue position. As marked in Fig. 5,

the ¯rst shot picked by the nearest pocket algorithm is the number 3 object ball,

which is closest to the cue and at the jaw of a nearby pocket, the number 2 pocket.
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Fig. 4. Optimal shots planning algorithm aiming for the nearest pocket.
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1 2 
3 

4 

5 6 

7 8 

1

6 5 

3 2 

4 

(a) (b)

(c) (d)

Fig. 5. Simulated sequential shots from low threshold values, using the nearest pocket algorithm under a

sparse con¯guration.

1 2 
3 4 5 

6 
7

8 

1

6 5 

3 2 

4

(a) (b)

Fig. 6. Hit sequence simulation results from low threshold values, using the near pocket algorithm with a

clustered con¯guration.
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Not only does this give an intuitive proof of the correctness of our algorithm in

identifying the best ¯rst shot with the maximum error tolerance criterion, but the

post-collision cue stop position also provides a clear shot for the number 4 object ball

to sink into pocket number 3. The sequential shot order to clear the table is aiming

for the number 3, 4, 8, 1, and 5 object balls; the corresponding pocketing sequence is

2, 3, 6, 1, and 4. The cue rebound position after sinking each object ball is also

illustrated in each sub-¯gure of Fig. 5. For the fourth optimal shot, the program

picked ball number 1 instead of balls number 5, 6, and 7. This also illustrates that the

algorithm can ¯lter balls with inaccessible angles, bounded by their nearest pockets.

Given a ¯xed start cue position, the maximum number of sinkable object balls is

limited by the threshold value in the simulation situation and the aiming accuracy

that real-world players can render using our guidance system. More simulation

results on this con¯guration with di®erent threshold values are shown below. A more

di±cult ball con¯guration is arranged to test this algorithm in selecting the nearest

pockets, as in Fig. 6. There are only four sequential shots observed, given the same

start cue positions and threshold values as in Fig. 5.

The sink order in Fig. 6 is number 3, 7, 6, and 1, respectively. After colliding with

ball number 1, the cue stops close to the rail near pocket 2, and it becomes di±cult to

sink all other object balls on the table, as these balls are ¯xed to sink into the nearest

pockets, making the tolerance angles close to zero for remaining object balls, ¯ring

from the ¯nal cue stop position. This phenomenon is interesting and drives the need

to explore another algorithm, as in Fig. 7, to consider all pockets during the search

process.

Figure 7 details the optimal all-pocket search algorithm. The search again has two

rounds: pre- and post-collision for a given cue position. An a priori search on all

object balls towards all accessible pockets is exercised to ¯nd the best candidate with

a maximum tolerance angle. A post-collision search is then conducted to ¯nd the

optimal position for the cue to sink the next object ball into a suitable pocket with

(c) (d)

Fig. 6. (Continued )
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∈

Fig. 7. Optimal shots planning algorithm considering all pockets.
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the maximum tolerance angle. The search along the de°ected path, calculated using

Eq. (13), aims to ¯nd the optimal combination of object and pockets with a maxi-

mum tolerance angle for each cue sample point on the de°ection path. We deliber-

ately set a threshold value after evaluating the maximum tolerance angle in the

sequential algorithm search process. If the maximum tolerance angle calculated

during the sequential shots evaluations process falls below a certain threshold value,

the search stops; otherwise the a priori selected optimal object ball is marked as

invisible. The post-collision selected optimal candidate object and pocket combi-

nation are marked as new a priori selected optimal objects, and the whole search

process repeats. The all-pocket algorithm is analyzed to have O(MNK) e±ciency,

where M is the number of object balls, N is the number of post-collision search

points, and K is the number of pockets. The computation complexity order is in the

third-degree polynomial order, because the triple search operation of the nested loop

on the post-collision path seeks the optimal position for follow-up shots.

Figure 8 shows the simulated sequential shot results of the algorithm in Fig. 7,

given the same initial cue position as in Figs. 5 and 6 under a sparse pattern with a

low threshold value. The sequential shot order to clear the table aims for the number

3, 4, 8, 1, 6, 7, 2, 5 object balls, as in Fig. 6. However, the corresponding pocketing

sequence is 2, 3, 6, 1, 5, 6, 1, and 5; this di®ers from Fig. 6, which presents 2, 3, 6, 1, 5,

5, 2, and 4. This indicates that the algorithm can correctly ¯nd the optimal object

and pocket combinations along the rebound path of a priori object ball choice. As

marked in Fig. 8, the sixth shot picked by the all-pocket algorithm is the number 7

object ball sinking into pocket 6. Pocket 6 is certainly not the closest pocket to the

number 7 ball. The following shots continue to clean the table by sinking the

number 2 ball into pocket 1 and the number 5 ball into pocket 5, which are not

nearby pockets. Not only does this give an intuitive proof of the correctness of our

algorithm in identifying the best object ball and pocket combinations in the post-

collision search process, but the cue stop positions also provide a comparable selec-

tion of sequential shots as the algorithm in Fig. 4. The same ball con¯gurations

shown in Fig. 6 are arranged in Fig. 9 to test the algorithm in Fig. 7 in searching all

pockets. There are only eight successful sequential shots, as observed given the same

start cue positions and threshold values as in Fig. 6. The sink order of object balls is

3, 7, 6, 1, 8, 4, 2, and 5; the corresponding order of sinking pockets is 2, 5, 4, 1, 6, 5, 5,

Fig. 7. (Continued )
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1
2 

3 
4

5 6 
7 8 

1

6 5 

3 2 

4 

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Sequence shot sparse distribution using the all-pocket algorithm with low threshold values.
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(g) (h)

Fig. 8. (Continued )

1
2 

3 4 5 

6 7

8 

1 

6 5 

3 2 

4 

(a) (b)

(c) (d)

Fig. 9. Hit sequence of the all-pocket algorithm on a cluster con¯guration with low threshold values.
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and 3. Comparing the results of Figs. 6 and 9, the e®ectiveness of the all-pocket

search algorithm over nearest pockets algorithm in Fig. 4 is apparent with the same

threshold value. The shorter sequence of successful shots on object balls in Fig. 6 is

the same as the ¯rst four shots in Fig. 9. Their order is 3, 7, 6, 1, while the sinking

pocket order is 2, 5, 5, and 1 for Fig. 6. By selecting di®erent pockets to sink object

ball number 6, the subsequent cue placement patterns are di®erent to allow Fig. 9 to

extend the shots and be able to clear the table.

To explore the e®ect of di®erent optimization criteria on the outcome of the

continuous shots, a multi-objective criterion is used in the search for the optimal

post-collision cue positions in Fig. 10. This algorithm uses the same all-pocket search

as in Fig. 7. The multi-objective criterion combines the tolerance angle and the

inverse of the attack angle as the optimization goal. The varying parameters are the

uniformly distributed sample points along the post-collision path. For each candidate

post-collision cue position, the tolerance angle plus the inverse of the attack angle are

calculated in step 7.3.1.2. We aim both to optimize the tolerance angle and minimize

(e) (f)

(g) (h)

Fig. 9. (Continued)
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∈

Fig. 10. Multi-objective optimal shots planning algorithm considering all pockets.
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the attack angle; the attack angle is thus inversely calculated and summed with the

tolerance angle. Physically, this means users get to play with the maximum tolerance

angle and minimum attack angle. Because the extremes of both quantities cannot co-

exist, the optimization algorithm in Fig. 10 generates the optimal cue positions with

trade-o®s for both quantities. Although the optimization process uses the multi-

objective criterion to seek the ideal post-collision cue position, the stop criterion for

the sequential shots sought in step 4 of Fig. 10 is the tolerance angle, compared to a

threshold value for performance evaluation. This is reasonable, as the tolerance angle

for each sequential shot decides the physical di±culty of that speci¯c shot. A human

player tends to have a slight degree of deviation from an ideal strike line due to grab

jitter on the cue stick in the actual strike motion. The extent of deviation depends on

the pro¯ciency level. Filtering a threshold value on the tolerance angles during the

sequential shots can reasonably symbolize an actual game scenario for di®erent

pro¯ciency levels. A small threshold value represents a pro¯cient player.

The multi-objective algorithm is analyzed to have O(MNK) e±ciency, whereM is

the number of object balls, N is the number of post-collision search points, and K is

Fig. 10. (Continued)
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the number of pockets. The computation complexity order is in the third-degree

polynomial order, because the triple search operation of the nested loop on the post-

collision path seeks an optimal position for follow-up shots. The computation com-

plexity of this algorithm is the same as that of the all-pocket algorithm.

Figure 11 shows the simulation results of this algorithm on the same cluster balls

con¯guration as in Fig. 9, with the same low threshold value. The sink order of object

balls is 2, 3, 7, 6, 8, 5, 4, and 1 as observed in sub-¯gures (a)–(h). The corresponding

order of sinking pockets number 1, 2, 5, 6, 5, 3, 4, and 4. The sink order of object balls

is 3, 7, 6, 1, 8, 4, 2, and 5 for Fig. 9. The corresponding order of sinking pockets is 2, 5,

4, 1, 6, 5, 5, and 3. Comparing the results of Figs. 9 and 11, the e®ectiveness of the

multi-objective search algorithm in aligning the angle between cue, object and pocket

is clear. Most continuous shot attack angles are small, with attackable tolerance

angles with small threshold values. This allows the search for optimal shots to

continue until the table is cleared.

1 

2 
3 4

5 

6 7

8 

1

6 5 

3 2 

4 

(a) (b)

(c) (d)

Fig. 11. Simulated sequential shots of the multi-objective optimization algorithm on a cluster con-

¯guration.
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5. Experimental Results

5.1. Guidance system description and data °ow integration

The guidance system is modi¯ed from a previous work1 with an addition of a

visual display of the captured real-time pool table image, aiming direction, opti-

mal post collision path, cue position for next shot, and cue stick velocity esti-

mation, as in Fig. 12(a). The requirements for the system are the same as in

previous studies,1 in that the CCD camera ¯eld of view must cover the whole

billiard board table with a minimal amount of surrounding environment pixel

information enclosed. However, the cue stick does not need to be tagged as such in

the previous design.1 The graphical interface displays both the static pool table

images and the user's dynamic aiming action captured in real time using a four-

core AMD PC.

A back-end program processes both the visual display of the instructions for users

to place the cue stick on the pool table and the execution of the optimal game

(e) (f)

(g) (h)

Fig. 11. (Continued)
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Visual Guide 

(a)

Target object ball 
Ghost ball position 

Optimal cue ball for the 
following shot

Aiming guide 

Estimated velocity

(b)

Actual velocity

(c)

Fig. 12. Augmented reality-based shots reposition guidance system.
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strategies, given ball coordinate information grabbed by the CCD camera. Given the

analysis results from back-end simulations about the optimal aiming direction,

aiming ghost ball position, optimal cue position for the following shot, post-collision

path, and required velocity to drive the cue to its next best position shown in

Fig. 12(b), the user then aligns the cue stick with the guidance line, aims for the ghost

ball and exercises the shots for proper cue stick acceleration. The user then strikes

with proper force to sink the target object balls into the target pocket selected by the

optimal strategies and places the cue near the desired best position for the next shots,

as in Fig. 12(c). The post-collision cue position may be inconsistent with the esti-

mation shown on the visual display, depending on the user's skills. However, the

analyzed attack path display does enhance the usability in their strokes. Users can

compare the stroke results with the theory estimation and gain intuition for their

control. This is another new feature in this work.

Figure 13 describes the whole data °ow and process steps for system integration.

We ¯rst grab an image of the pool table with users playing or exercising. The steps

exercised for the integration process include the following: (1) ball and cue stick tip

tracking. (2) Transforming the image coordinates of all balls and cue stick tips to the

world coordinates on table. (3) Optimizing the shot planning algorithm, which

generates an aiming guide and estimated velocity guide for optimal sequential shots.

(4) Inverse transforming world coordinates of aiming and velocity guide vectors into

image coordinates. (5) Superimposing the scaled aiming aid and post-collision

strategy aid on the pool table image grabbed in step 1; repeat steps 1 to 5 to update

the guidance information as users keep sinking object balls according to the optimal

shot control algorithm. Details of cue ball tracking and pool table calibration can be

observed in a previous paper.14 The standard deviation error between real-world

and transformed coordinates for each grid point is on the order of 0.1 cm, as reported

in a previous study.14 The major di®erence of the current system from the previous

design is that the visual guide uses real-time captured pool table images for the

presentation background, rather than using a ¯xed pool table image and adding the

cue stick line in the background. The guidance system in Fig. 12 works without

graphical cue stick presentation, because the cue stick image is grabbed and dis-

played in the visual system in real time. Only guidance lines, ghost ball, next

optimal cue position and cue stick velocity controls for cue position placements are

added.

5.2. Cue friction calibration process

All balls on the table tend to slow to a stop position due to friction with the table

cloth. To combine the optimal shot planning algorithms in Sec. 4 for a precise

estimation of the force exerted on the cue ball, the balls' decelerations must be fully

investigated. A previous work1 developed a deceleration calibration procedure,

described in Sec. 6.2. We use the same procedure to collect data from about 20 dry-

run shots by users with di®erent skill levels. Figure 14 records and shows two
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corresponding characteristic data sets of the velocity to the travel distance. We

record the tracked velocity and corresponding travel distance of the hit ball for each

shot. Figure 14(a) displays the experiment data for users with high pro¯ciency, while

Fig. 14(b) shows that for low-pro¯ciency users. As the relationship of hand motions

exercising the cue stick is complicated, we use the cubical polynomial calibration

equation to generate the correlation of distance to velocity instead of a parabolic

equation.1 This guarantees a more precise mapping from travel distance to an initial

speed. For each pair of corresponding velocity and sliding distance, Vi and Si, their

interrelation is given as follows.

Fig. 13. System integration °ow diagram of reposition guidance system.
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3
775 ¼
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V2

�
�
Vn

2
666664

3
777775: ð33Þ

Given an initial velocity, Vi, the travel distance, Si, is recorded when the ball stops.

Equation (33) is further denoted as B � T ¼ A, where B stands for

S 3
1 S 2

1 S1 1

S 3
2 S 2

2 S2 1

�
�

S 3
n S 2

n Sn 1

2
66666664

3
77777775
;

T stands for

a

b
c

d

2
664
3
775 and A stands for

V1

V2

�
�
Vn

2
66664

3
77775. T , a correlation matrix, is then calculated

using a least-squares error transformation equation.1 Using this transformation

matrix, any value of distance (SÞ is transformed to the velocity value (V Þ using

[S3 S2 S 1� � T ¼ V . This value is substituted into Eq. (32) to estimate the

start speed and is scaled on the visual display of Fig. 13. The curves in Fig. 14 are the

results of plotting the transformed velocity against the increasing sliding distance.

These curves represent the motion characteristics of the players hitting the balls.

Players with di®erent skill levels have di®erent characters that must be calibrated

before each one plays on di®erent pool tables.

(a) (b)

Fig. 14. Velocity measurements and calibration results for players with di®erent pro¯ciency.
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5.3. Simulation results of shots planning algorithms

Given the variety of winning requirements for all real-world games, i.e., 8-ball or

9-ball, the games share one common feature: a player who can execute more

sequential shots is more likely to win the game. We use this index for performance

comparison between the simulation results of various cue placement algorithms. The

shot planning algorithm designs in Sec. 4 allow users with di®erent pro¯ciency levels

to simulate real game playing situations using di®erent threshold values. The con-

dition to continue playing the shots is regulated by a comparison between the tol-

erance angles of the optimal shots selected by di®erent algorithms with a threshold

value. Only shots with tolerance angle values over a certain threshold value can

continue searching for the next round. This comparison relation emulates the

capability of a player with certain pro¯ciency level to render a successful shot within

a certain tolerance angle. A low threshold value imitates a highly pro¯cient player

who can render low-tolerance angle shots (over the threshold values). A high

threshold value imitates a low-skill player who easily misses low-tolerance angle

shots. We then adjust the threshold values for each algorithm under di®erent ball

con¯gurations. There are three algorithms and two ball con¯gurations: the

(1) nearest pocket algorithm, (2) all-pocket algorithm and (3) multi-objective

algorithm; the two ball con¯gurations are sparse and cluster distributions, as in

Sec. 4. Figures 15 and 16 are the shot sequences of the nearest pocket algorithm with

a sparse distribution with low (0.00001) and high thresholds (1), respectively.

Figure 15 is drawn from Fig. 5(f). These ¯gures illustrate the e®ect that the threshold

value has on the shot sequences for the same initial start cue position. The number of

successful sequential shots is drastically reduced from eight to two in Fig. 16, due to

the lower tolerance angle and the high threshold value for the third shot aiming at

Fig. 15. All shots of the near pocket algorithm with a sparse distribution with a low threshold (0.00001).
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ball number 8. The algorithm stops the further search process, as it ¯gures that the

user cannot successfully sink ball number 8, as the user's skill can render shots higher

than the threshold value with ease (evaluated with tolerance angle). Any lower

tolerance angle causes users to miss shots. We made this worst-case assumption to

compare the performance of all relevant algorithms. Figures 17 and 18 are the shot

sequences of the all-pocket algorithm with a sparse distribution with low (0.00001)

and high thresholds (1), respectively. The same sequential shot reduction phenom-

enon is observed in Fig. 18, as the threshold value increases. The maximum number

of successful sequence shots that our simulation program can enable given a ¯xed

Fig. 17. All shots of the all-pocket algorithm with a sparse distribution with a low threshold (0.0001).

Fig. 16. All shots of the nearest pocket algorithm with a sparse distribution with a high threshold (1).
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start cue position varies and depends on the threshold values. Furthermore, di®erent

start cue positions have di®erent numbers of maximum successful sequence shots for

the same threshold value. A distribution pro¯le of the maximum number of suc-

cessful sequence shots can be evaluated for various cue positions on the pool table for

a ¯xed threshold value. Three optimal shot planning algorithms are exercised for

every uniformly distributed start cue position. Figure 19 displays the calculated

pro¯les for the sequential sink rate of the near pocket algorithm with low (a) and high

(b) thresholds in a sparse con¯guration. Figure 20 shows the calculated pro¯les for

the sequential sink rate of the all-pocket algorithm with low (a) and high (b)

thresholds in a sparse con¯guration. Figure 21 displays the calculated pro¯les for the

sequential sink rate of the multi-objective algorithm with low (a) and high (b)

thresholds in a sparse con¯guration. Table 2 summarizes sequential shot statistics as

x y 

Successful shots 

(a)

x 

y 

Successful shots 

(b)

Fig. 19. Sequential sink rate distribution pro¯le of the near pocket algorithm with low (a) and high (b)

thresholds in a sparse con¯guration.

Fig. 18. All shots of the all-pocket algorithm with a sparse distribution with a high threshold (1).
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functions of di®erent threshold values of the near pocket algorithm with a sparse

distribution. Table 3 summarizes the sequential shot statistics as functions of

di®erent threshold values of the all-pocket algorithm with a sparse distribution.

Table 4 summarizes the sequential shot statistics as functions of di®erent threshold

x 
y 

Successful shots 

(a)

x 
y 

Successful shots 
(b)

Fig. 20. Sequential sink rate distribution pro¯le of the all-pocket algorithm with low (a) and high (b)

thresholds in a sparse con¯guration.

Successful shots 

(a)

Successful shots 

(b)

Fig. 21. Sequential sink rate distribution pro¯le of the multi-objective all-pocket algorithm with low (a)

and high (b) thresholds in a sparse con¯guration.

Table 2. Sequential shot statistics as functions of di®erent threshold values of the near pocket algorithm

with a sparse distribution.

Threshold Number of minimum

equential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 8 3.304 72

0.5 0 6 1.15 0

1 0 4 0.61 0
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values of the near-pocket algorithm with a cluster distribution. Table 5 provides the

sequential shot statistics as functions of di®erent threshold values of the all-pocket

algorithm with a cluster distribution. Table 6 shows the sequential shot statistics as

functions of di®erent threshold values of the multi-objective algorithm with a cluster

distribution. Table 7 summarizes the sequential shot statistics as functions of

di®erent threshold values of the multi-objective algorithm with a sparse distribution.

Table 3. Sequential shot statistics as functions of di®erent threshold values of the all-pocket algorithm

with a sparse distribution.

Threshold Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 8 4.04 168

0.5 0 6 1.80 0

1 0 3 0.65 0

Table 4. Sequential shot statistics as functions of di®erent threshold values of the near pocket algorithm

with a cluster distribution.

Threshold Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 7 2.63 12
0.5 0 7 1.94 2

1 0 6 0.75 0

Table 5. Sequential shot statistics as functions of di®erent threshold values of the all-pocket algorithm

with a cluster distribution.

Threshold Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 8 5.8 297
0.5 0 8 3.4 112

1 0 5 0.9 0

Table 6. Sequential shot statistics as functions of di®erent threshold values of the multi-objective

algorithm with a cluster distribution.

Threshold Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 8 6.79 435

0.5 0 8 1.746 26

1 0 8 0.421 1
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Fig. 23. All shots of the near pocket algorithm with a cluster distribution with a high threshold (1).

Table 7. Sequential shot statistics as functions of di®erent threshold values of the multi-objective

algorithm with a sparse distribution.

Threshold Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

0.0001 0 8 6.72 429

0.5 0 8 1.94 60

1 0 8 0.65 15

Fig. 22. All shots of the near pocket algorithm with a cluster distribution with a low threshold (0.0001).
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The statistics compared for all tables include the minimum, maximum, average

sink rates and a high sequential shot count. We speci¯cally de¯ne a new comparison

index, the high sequential shots count. This index counts successful consecutive sink

shots greater than seven. This is used to compare the e±ciency of di®erent algor-

ithms in rendering high numbers of consecutive shots.

Tables 2 and 3 use di®erent algorithms but keep the same object ball distribution,

sparse distribution, and threshold values, from 0.0001 to 1. The statistics indicate

that the nearest pocket algorithm perform moderately inferior to the all-pocket

algorithm in all threshold value ranges in both the average and maximum sink rates.

Fig. 24. All shots of the all-pocket algorithm with a cluster distribution with a low threshold (0.0001).

Fig. 25. All shots of the all-pocket algorithm with a cluster distribution with a high threshold (1).
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Moreover, the high sequential shot count is much higher with the all-pocket algor-

ithm than the nearest algorithm.

Tables 4 and 5 use di®erent algorithms but keep the same object ball distribution,

cluster distribution, and threshold values, from 0.0001 to 1. The e±ciency of the all-

pocket algorithm over that of nearest algorithm can be observed immediately. Under

a harder ball con¯guration with greater distances from the pockets, the performance

of the nearest pocket algorithm falls far lower than that of the all-pocket algorithm.

The average sink rate falls to under half of that of the all-pocket algorithm in Table 5,

and the high sequential sink count is reduced to 12, compared to 297 for the all-

pocket algorithm. The clustered ball con¯guration can be genuinely hard to sink

consecutively, even with very low threshold values. The all-pocket algorithm over-

comes this di±culty by searching through all post-collision paths, targeting all

accessible pockets for optimal positions for the next consecutive shot. The post-

collision search space also covers all possible combinations of accessible pockets and

x 

y 

Successful shots 

(a)

x 

y 

Successful shots 

(b)

Fig. 27. Sequential sink rate distribution pro¯le of the all-pocket algorithm with low (a) and high

(b) thresholds in a cluster con¯guration.

x 
y 

Successful shots 

(a)

x y 

Successful shots 
(b)

Fig. 26. Sequential sink rate distribution pro¯le of the all-pocket algorithm with low (a) and high

(b) thresholds in a sparse con¯guration.
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object balls for maximum tolerance values. This feature automatically enhances the

capability of the all-pocket algorithm in tackling both easy and hard ball con¯gur-

ations. The dominance of the all-pocket algorithm over the nearest pocket algorithm

continues even for the medium threshold value of 0.5, as in Tables 4 and 5. This

phenomenon is even more interesting, as the 0.5 threshold value is a normal value

range regularly observed by high- to medium-e±ciency players. The all-pocket

algorithm value can be enhanced even more when combined with the visual guidance

system in this paper. Using our visual aid system can enhance both the aiming and

reposition accuracy. This is equivalent to a simulation with lower threshold values.

The poor performance of both algorithms at the high threshold value of 1 can

be attributed to early sequential shot termination due to high shot perturbation by

low-skill players who aim for the optimally selected shots. The algorithms cannot

control this, so it is beyond the scope of this paper. The all-pocket algorithm has

proven itself suitable for guiding users in both a priori shots and optimal post-

collision shot placement. Our visual guide system thus uses this algorithm to plan

shots and guide repositioning.

Tables 6 and 7 present the simulation results of the multi-objective algorithm.

The same threshold values used to test the other algorithms are adapted to evaluate

the performances on the cluster and sparse distributions. Table 6 shows that the

multi-objective algorithm has a higher sink rate than the all-pocket algorithm, with a

small threshold value of 0.0001 under the cluster distribution in Table 5, which is an

interesting phenomenon. The high sink rate for both the cluster and sparse con-

¯gurations in Tables 6 and 7 can be related to the higher °at zone areas with eight

consecutive shots on the left of Fig. 21. The high frequency of the high sink counts of

the multi-objective algorithm can be attributed to the higher number of co-linear

alignments of the cue, object and pockets. This is a direct result of the multi-

objective optimization process. To achieve this arrangement, the algorithm somehow

sacri¯ces the tolerance angle optimal values. As the algorithm uses the tolerance

Successful shots 

(a)

Successful shots 

(b)

Fig. 28. Sequential sink rate distribution pro¯le of the multi-objective algorithm with low (a) and high

(b) thresholds in a cluster con¯guration.
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angle as a stop condition, only low threshold values can allow small tolerance angle

shots to continue shooting. When the threshold value increases, many shots with

smaller tolerance angles cannot surpass the thresholds and must terminate early. The

middle threshold value (0.5–1) thus has a small average sink rate and high sequential

sink counts in Tables 6 and 7, compared to that in Tables 3 and 5. Because the

threshold is set with a unit of degree, a small threshold value is apparently not

practical. This phenomenon makes the multi-objective algorithm less practical than

the all-pocket algorithm in the middle threshold range, which normally occurs in

real-world gaming scenarios with or without our guidance system. We thus choose to

use the all-pocket algorithm to test our guidance system during shot planning and

cue placement control.

5.4. Comparing real game play statistics with/without using

guidance system

From the above simulation results obtained by testing various algorithms under

di®erent threshold values and ball con¯guration, the all-pocket algorithm has been

deemed suitable for integration into our novel reposition guidance system for real-

world game play training. We integrate this algorithm within the shot planning stage

of the guidance system design. Given the calibrated ball deceleration rate, we can

estimate the initial speeds to drive a cue to obtain the optimal positions for sub-

sequent shots, as calculated in Sec. 3. Section 3 only generates the required optimal

cue positions to sink the maximum number of object balls in subsequent shots.

Equation (32) is used to estimate these optimal speeds, given the calibrated decel-

erations from Sec. 5.2, and the optimal distance of the follow-up shots, taken from

the optimal shot planning algorithm in Sec. 3.

Given di®erent driving speeds (forces), players with di®erent skill levels are

arranged to test our guidance system. The start cue position is deliberately picked to

be uniformly distributed on the table. The maximum number of successful sequence

shots a user can render given a ¯xed start cue position varies and depends on user

skill levels. Di®erent start cue positions have di®erent numbers of maximum suc-

cessful sequence shots for the same users. A distribution pro¯le of the maximum

number of successful sequence shots can be evaluated for various cue positions on the

pool table. This is done for users with di®erent skill levels to determine their per-

formance. The optimal shot planning algorithm is exercised for every uniformly

distributed start cue position. Given the pre-calculated best position of sequential

shots, the estimated speed counting in the calibrated deceleration distance is dis-

played on the graphical interface to help users start playing the game. The number of

continuous successful shots is recorded at these uniform grid locations for users with

di®erent skill levels. Tables 8–11 further summarize these numbers as performance

comparison indices.

Tables 8 and 9 show the sequential shot statistics as functions of di®erent threshold

values of the all-pocket algorithm with sparse and cluster distributions with guidance,
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respectively. Tables 10 and 11 are the sequential shot statistics of players at di®erent

pro¯ciency levels with sparse and cluster object ball distributions without guidance,

respectively. Table 12 is the performance enhancement percentage between Tables 8

and 10 with/without the author's visual guiding system in a sparse con¯guration,

while Table 13 is the performance enhancement percentage between Tables 9 and 11

without/with author's visual shot planning guiding system in a cluster con¯guration.

Table 11. Sequential shots statistics of players at di®erent pro¯ciency levels of cluster object balls dis-

tribution without guidance.

Pro¯ciency

level

Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

High 0 7 1.58 1
Medium 0 4 0.742 0

Low 0 3 0.363 0

Table 8. Sequential shots statistics as function of di®erent threshold values of all pocket algorithm with

sparse distribution with guidance.

Pro¯ciency

level

Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

High 0 8 3.81 145

Medium 0 7 1.50 0

Low 0 3 0.58 0

Table 9. Sequential shots statistics as function of di®erent threshold values of all pocket algorithm with

cluster distribution under guidance.

Pro¯ciency

level

Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

High 0 8 4.4 221

Medium 0 8 2.7 101

Low 0 5 0.86 0

Table 10. Sequential shots statistics of players at di®erent pro¯ciency levels of sparse object balls dis-

tribution without guidance.

Pro¯ciency

level

Number of minimum

sequential shots count

Number of maximum

sequential shots count

Average sequential

shots count

High sequential

shots count

High 0 8 2.16 50
Medium 0 7 0.81 1

Low 0 2 0.261 0
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In Table 8, the maximum successive sink rate ranges from 3 to 8 for low- and high-

pro¯ciency players, and the average sequential shots count ranges from 0.58 to 3.81

for low- and high-pro¯ciency players. The high sequential shot count ranges from 0 to

145. All results in Table 8 are acquired using the sparse ball con¯guration. Table 10

shows the results of playing without the author's guidance system under the

same conditions as Table 8. The maximum successive sink rate ranges from 2 to 8 for

low- to high-pro¯ciency players, and the average sequential shots count ranges from

0.261 to 2.16 for low- to high-pro¯ciency players. Table 12 lists the performance

enhancement percentage using the maximum number of sequence shots and average

number of sequence shots under a sparse con¯guration. The statistics shows that

high-pro¯ciency player using the system plays 43.3% better than a high-pro¯ciency

player who does not use the system; a low-pro¯ciency player plays 55.17% better

using our guidance system. This is reasonable, as a low-skill player has poor control

in both aiming and reposition control. The performance enhancement can thus be

higher than that of the high-pro¯ciency players. The high-pro¯ciency players can

also bene¯t from using our system and algorithm, though with lesser improvements.

The high-pro¯ciency players also perform better in their high sequential shot count

index by 65.51%. The extent of the enhancement is higher than the other indices.

Table 13 lists the performance enhancement percentage in terms of maximum

number of sequence shots and average number of sequence shots under cluster

con¯guration. The statistics shows that high pro¯ciency player bene¯ts from using

our guidance system by 64% of average number of sequence shots compared to those

without using the guidance system. The low pro¯ciency player bene¯ts from using

our guidance system by 57.79% compared to those without using the guidance sys-

tem also by average number of sequence shots. The high pro¯ciency player performs

Table 13. Performance enhancement percentage between Tables 9 and 11
with/without author's visual guiding system in cluster con¯guration.

Pro¯ciency
level

Maximum # of
sequence shots (%)

Average # of
sequence shots

High sequential
shots count

High 12.5 64 99

Medium 50 72 100
Low 40 57.79 0

Table 12. Performance enhancement percentage between Tables 8 and 10

with/without author's visual guiding system in sparse con¯guration.

Pro¯ciency

level

Maximum # of

sequence shots (%)

Average # of

sequence shots

High sequential

shots count

High 0 43.3 65.51

Medium 0 46 NA

Low 50 55.17 0
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better in high sequential shots count index for 99 percent, while the medium player

performs about 100 percent better. This is attributed to the e®ectiveness of the all

pocket algorithm in helping both level of players conquering such hard con¯guration.

However, the low skill player has no improvement. This could be caused by the high

perturbation of their strikes in rendering the guided shots, again beyond the scope of

this paper.

The performance deviations between the ideal simulation based on the collision

model and those operated by users under system guidance can be characterized by

the successive sink rate. The performance deviation error between the ideal model

and the system depends on users with di®erent skill levels. Table 14 presents such

error as a reduction percentage from the sink rate of an ideal player exercising the all-

pocket algorithm on two di®erent table states. Two indices are compared: the

maximum successive and average sink rates. The ideal player is simulated with an

extremely low threshold value of 0.0001 (degree) exercising the all-pocket algorithm.

The maximum and average sink rates of such player are extracted from Tables 3

and 5 for the sparse and cluster table states. The performance deviation error is then

calculated using the di®erence percentage of the indices between the ideal and real

players with high to low skill pro¯ciencies. Tables 8 and 9 present the sequential shot

statistics of di®erent real players exercising the system guidance. Table 14 indicates

that the average error percentage is lowest for the high-skill player with both con-

¯gurations, while the error percentage for the cluster con¯guration is actually higher.

This phenomenon is quite reasonable, as the high-skill player can successfully render

most shots, according to the analysis model with minor mistakes. This proves that

our system provides a solid test ground for our collision model. The reliability of the

integrated system is fully veri¯ed and found consistent with the optimal theory. The

cluster table state generally has more di±culty succeeding, and bears higher error

rates for high-skill players.

6. Conclusion

A design for a billiards training system is proposed to integrate a de°ection model,

considering restitution e®ects during collision for tutoring and enhancing the fun of a

pool game. To accurately predict the actual rebound motion of two colliding balls, the

Table 14. Error percentage between collision model and system in di®erent table states with varying skill

level.

Pro¯ciency level Sparse con¯guration Cluster con¯guration

Maximum # of

sequence shots (%)

Average # of

sequence shots (%)

Maximum # of

sequence shots (%)

Average # of

sequence shots (%)

High 0 5.69 0 24.13

Medium 25 66.6 0 53.44

Low 62.5 85.64 37.5 85.17
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collision physics are analyzed to predict the accurate de°ection direction. Three novel

gaming strategies are simulated to investigate the e®ects of the target object ball and

pocket combinations and the multi-objective optimization criterion on gaming per-

formance. The ¯rst algorithm considers the nearest pocket for every selected target

object ball, examining optimal post-collision positions. The second algorithm considers

all pocket and target object ball combinations during both the pre- and post-collision

optimal shots selection processes. The third algorithm considers a multi-objective

optimization process for optimal cue repositioning control. The objective functions

considered include the tolerance angle and the inverse of the attack angle. The goal is

to ¯nd an optimal combination of both quantities, as we wish to maximize the toler-

ance angle and minimize the attack angle. The simulations are conducted based on a

collision model considering the restitution e®ects. Di®erent threshold values are added

to emulate the real-world pro¯ciency levels of di®erent players. Two di®erent object

ball distributions with di®erent di±culties are also selected by testing the di®erent

algorithms under di®erent threshold values. The di±culty of ball distributions is a

new term de¯ned in this work and evaluated as the sum of the distance from object

balls to their nearest pockets. The ¯rst ball con¯guration used to test the algorithms is

a sparse distribution, with every ball around the jaws of each pocket; the second

con¯guration is a more clustered distribution with each ball farther from each pocket.

Table 15. Reposition strategy performance comparison.

Shot type De¯nition Best used when Optimization index Computation

complexity

Nearest

pocket

Always search for

nearest pocket

during optimi-

zation process

Object balls are close

to the jaw of

pockets

Tolerance error

analysis value

using the nearest

pocket versus
object and cue

locations

O(MN) where M is

the number of

object balls and

N is the number
of post collision

search points

All pocket Calculate all pockets

for optimal post
collision paths

Better in cluster and

high di±culty
pool table states,

and about med-

ium high per-

formance in the
easy

con¯guration

Tolerance error

analysis value
using all the

pockets versus

object and cue

locations

O(MNK) where M is

the number of
object balls, N is

the number of

post collision

search points,
and K is the

number of

pockets
Multi-

objective

Calculate all pockets

for optimal post

collision paths

Best for very low

threshold or high

pro¯ciency

player

Combined tolerance

error and inverse

of attack angle

O(MNK ) whereM is

the number of

object balls, N is

the number of
post collision

search points,

and K is the

number of
pockets
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Table 15 summarizes the pros and cons of di®erent reposition strategies and compares

their performances. The table compares the three algorithms based on indices, including

their de¯nitions, usage occasion, optimization index, and computation complexity. The

nearest pocket algorithm searches for the nearest pocket during the optimization pro-

cess. This algorithm can outperform other algorithms while the object balls are near

pockets. Its complexity is in the polynomial order of the power of two. The all-pocket

algorithm adds one extra search to the pocket combinations. The all-pocket algorithm

outperforms the other two algorithms in the high-di±culty ball and cluster con¯gur-

ations, in the medium- to high-threshold value ranges. Its performance is medium

among the three algorithms in the easy con¯guration. Although the multi-objective

algorithm outperforms the other algorithms in the extremely low threshold value range,

it is not comparable to other algorithms for medium to high threshold values. This

indicates that the all-pocket algorithm is suitable for application in the general gaming

scenario, as the extremely low threshold value is rarely observed in real gaming scen-

arios for users who may or may not use the guidance system; it is thus recommended for

integration with the visual guide system. Table 15 also summarizes the complexity of

each algorithm, indicating that the complexity of both the all-pocket and multi-

objective algorithms approximately reach the polynomial order of the power of three.

We then opt to adopt the all-pocket algorithm in the integration process with the

visual guide system due to its optimal simulation performance. Our visual guide

system uses a vision system for the cue ball, object ball locations and cue stick

velocity tracking. Users can adjust the cue stick's aiming direction and hitting vel-

ocity on the pool table according to the visual guides displayed on a PC monitor. The

guidance information is repeatedly updated and superimposed onto the image stream

of the pool table. A least square error calibration process correlates the real and

virtual world pool ball coordinates to precisely calculate the guidance line and cue

stick speed. Adding cue placement control, including aiming direction, ghost ball,

and optimal cue position for the following shot, is analyzed and displayed on a GUI.

The all-pocket game strategy is selected to apply the maximum tolerance angle

search sequentially on the ¯rst and subsequent shots along the post-collision paths,

considering the restitution factor.

Experimental results of a maximum tolerance angle shot planning strategy using

our training facility, tested by users with di®erent skill levels, outperformed the

results without guidance for the same user set on several indices. A high-skill player

generally exhibits lesser enhancements, while a low-skill player exhibits greater

enhancements in the di®erent ball con¯gurations. This is intuitively reasonable, as

low-skill players have poor stroke control and ball placement judgment. They can

bene¯t more from the aiming and ball placement guides in our system than the easier

ball con¯gurations. The performance statistics from high-skill players using the gui-

dance system exhibit lower deviation error than the simulation results for di®erent

ball con¯gurations. This not only proves the reliability of our training device in

selecting proper shot sequences using the all-pocket shot planning algorithm, but it
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also proves the consistency between the experiments and the theory of shot planning

strategies when guiding users towards optimal performance.

Future research will include exploring the search space on the post-collision path.

A greedy search method is currently used on the path. A Monte Carlo search method

on the post-collision path sequence will be conducted. The e®ect of ordering the

attacked object balls in a Monte Carlo search will also impact the optimal per-

formance. These methodologies will be studied in future papers.
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