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An approach to switching between different patterns of light beams transmitted through the

woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the

nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern

transmitted through the photonic structure. The transmission profiles in the nematic phase also

show polarization sensibility due to refractive index dependence on the field polarization. The

experimental results are consistent with a numerical calculation by Finite Difference Time Domain

method. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905695]

Photonic crystals (PhCs), the structures with the refrac-

tive index periodically modulated on the wavelength scale,

are well known due to their peculiar chromatic dispersion

properties, e.g., the band-gaps in frequency domain.1,2 More

recently, it has been found that the spatial (angular) disper-

sion of propagating waves in PhCs is also modified, affecting

the spatial propagation properties of the monochromatic

light beams in such structures.3

The spatial propagation of light through three-dimensional

(3D) PhCs, like woodpiles, is generally complicated and diffi-

cult to control. The propagation is better understood for low

order propagation bands, where the spatial dispersion curves

(the iso-frequency contours) are rather simple and robust to pa-

rameter fluctuations. It is known that the iso-frequency con-

tours develop anomalous curvatures (concave segments) close

to the band edges which are at the basis of anomalous diffrac-

tion/refraction and consequently of flat lensing.4,5 Another spa-

tial propagation peculiarity is the angular (spatial) filtering,

which features in angular distribution of light transmitted

through the crystal. Spatial filtering, apart from conventional

arrangement of two confocal lens system with iris in focal

plane, can be also achieved by more sophisticated mechanisms

such as interference,6 indefinite media,7 resonant grating,8 and

also in propagation through PhCs.9,10 In the general categoriza-

tion of the spatial filters (high-pass, low-pass, and band-pass),

the angular filtering in our study is essentially a "stop-band"

(the inverse of band-pass) filter, which blocks a range of the

angular components while allows the rest ones to pass.

Spatial filtering in 3D PhCs operating in lower bands has

been experimentally shown only in the microwave regime,11

also in acoustics.12 For wavelengths in visible range

(k� 0.5 lm), anomalous diffraction13 and spatial filtering14

have been realized for high order bands of PhCs, where the

high density of modes results in complicated band diagram

picture. The beam shaping characteristics depend very sensi-

tively on small changes of parameters such as the average

refractive index, the refractive index contrast, and the fre-

quency.13,14 This sensitivity, a disadvantage to the design of

controllable photonic devices, can be turned into an advantage

for our purposes reported in the present article: for the switch-

ing of light propagation patterns through PhCs due to infil-

trated Liquid Crystals (LCs).

Some applications based on the infiltration of LCs into

PhCs or into PhCs waveguides have been proposed: LC con-

trolled optical modulators and attenuators;15 LC controlled

chromatic bandgap-shift by applying an optical or electric

field;16 LC memory effects;17 and also fluorescence confocal

polarizing microscopy.18 Our idea and our purpose is to

observe the influence of the LC infiltrated in the 3D PhCs on

the angular transmission characteristics of the beams. We

choose the woodpile crystals for our experiments, since the

relatively long and straight channels in a woodpile result in a

large birefringence of LC filled inside the channels. We note

that in other configurations, for instance, for inverted dia-

mond photonic crystals, the infiltrated LC alignment would

be more complex, and the observed effects would be rather

weak. Hence, we propose and experimentally demonstrate

that the variation of the refractive index due to LC birefrin-

gence and to the isotropic/nematic phase transition results in

notable control over the properties of the spatial filtering

obtained in woodpile PhC structures.

The idea of stop-band spatial filtering, proposed and

demonstrated in Refs. 9 and 11, relies on the properties of

the angular bandgaps of PhC to reflect back the waves inci-

dent at particular angles (resonant with periods of the struc-

ture). Another, more convenient configuration for spatial

filtering has been proposed for structures of relatively large

periods, designed in regimes of gapless conditions.10,14 In

the latter case, the waves incident at particular angles are

forward-deflected to the large diffraction angles. The central

angle of stop band in gapless spatial filtering, in the paraxial

approximation, is given by expression14
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2d2
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kdk
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 !
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Here, n is the average refractive index, dk and d? are the lon-

gitudinal (along z axis) and the transverse periods (along x or

y axis, referring to the notation in Fig. 1) of the modulation,

and k is the wavelength of the incident wave. In order to

obtain an observable and controllable filtering effect, we

designed and built the structures with angular stop-band at

small angles a� 0, which led to the particular geometry of

the woodpile structure (the particular ratio of longitudinal

and transverse periods). With the chosen parameters (the lon-

gitudinal period dk¼ 4 lm and the transverse period

d?¼ 0.85 lm), we expected to observe filtering at angles of

a few degrees.

The geometry of the 3D woodpile and the alignment of

the LCs in the nematic phase at the even (shown by green)

and the odd (shown by orange) layers in channels are as

schematically shown in Fig. 1. Generally, the woodpile

layers can be considered as arrays of approximately straight

tubes filled with LC, where the LC molecules tend to orient

along the tubes, i.e., parallel to the piles in the nematic phase

as illustrated in Figs. 1(c) and 1(d). The effective refractive

index of LCs depends on the angle h between the director of

LC and the vector of light polarization19

nef f hð Þ ¼ nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

e sin2 hð Þ þ n2
o cos2 hð Þ

q : (2)

When the light propagates inside the woodpile, the

x-polarized beam experiences the LC refractive index

noddeff¼ no in the tubes of odd layers (h¼ 90�) and

neveneff¼ ne in the tubes of even layers (h¼ 0�). The

y-polarized light experiences the exchanged LC refractive

index (i.e., noddeff¼ ne and neveneff¼ no) in the nematic

phase. While in the isotropic phase, the random orientation

of the molecules results in isotropic refractive index

noddef f ¼ nevenef f ¼ ni ¼ ðne þ 2noÞ=3, which is polarization

insensitive as illustrated in Figs. 1(e) and 1(f).

The woodpiles were fabricated by Direct Laser Writing

(DLW) in a negative photoresist, IP-Dip (Nanoscribe GmbH).

The tightly focused femtosecond laser beam (130 fs pulse du-

ration, 780 nm wavelength, and 100 MHz repetition rate)

focused through a 100� objective (NA 1.3) creates a solidi-

fied volume of ellipsoidal shape (0.25 lm width and 1.25 lm

height with aspect ratio of 0.2) via two photon absorption po-

lymerization. A sample translation writing speed is 100 lm/s

and the laser power is 5.8 mW in front of the objective. Fig. 2

shows the Scanning Electron Microscope (SEM) images of

the woodpile, which is composed of the gratings of polymer

piles stacking in the longitudinal direction with four layers

resulting in one period. The woodpile contains 17 periods in a

total height of 68 lm; hence, it shows 11% shrinkage on the

top layers. All measurements have been carried out in the cen-

tral part of the woodpile, excluding the influence from defec-

tive boundary.

A micropipette is used to infiltrate the LC molecules

(5CB, Sigma Aldrich) into the woodpiles with the help of a

3-axis translation stages. The strong capillary force results in

complete filling of the woodpile spacing, while surface

anchoring induces self-orientation of the LC molecules (Fig.

1). The multiple layers consist of alternate polymer wood-

piles (np¼ 1.54 at 632.8 nm) and LC tubes (ne¼ 1.709,

no¼ 1.53, ni¼ 1.588 at 632.8 nm), where ne and no stand for

refractive indices for the extraordinary and ordinary polar-

ization in LC in the nematic phase and ni is the index of LC

in the isotropic phase.

In experimental measurements, we focused a continuous

632.8 nm HeNe laser beam into the woodpile samples with a

50� long working distance objective and numerical aperture

0.55. The method of recording the far field transmission pat-

tern is schematically illustrated in Fig. 3(a). A heating stage

is applied to precisely control the sample temperature, in

order to switch the LC component between the nematic and

isotropic states. A half-wave plate was used to switch the

polarization of incident beam between the x and y directions.

The measured far-field transmission pattern is shown in

Fig. 3(b). The diffraction maxima appear at the angle of 49�

corresponding to the transverse periodicity of the structure.

For a quantitative characterization of the transmitted pattern,

we recorded only its central part (zero diffraction maximum)

by placing the screen (camera) at a distance of 30 cm behind

the sample.

The numerical calculations were performed by commer-

cial Finite Difference Time Domain (FDTD) software

(CrystalWave, Photon Design). We used for the input source

FIG. 1. (a) Schematic 3D woodpile. The insets illustrate the orientation of

the directors of the LC in the channels at indicated cross sections: in xz plane

(b), and in xy plane of the nematic phase ((c) and (d)) and of the isotropic

phase ((e) and (f)). Red arrow n̂ indicates the orientation of LC director.

FIG. 2. SEM images of the fabricated woodpile structure before filling the

air channels with LC.
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a monochromatic Gaussian beam, incident normally into the

structure. A spatial stop-band filtering pattern is obtained in

the far field domain of the transmitted beam for both the ne-

matic and isotropic states. In order to simplify the 3D calcu-

lations, the 3D woodpile-LC configuration was decomposed

into two separate 2D configurations.13 This is possible if the

3D refractive index distribution nðx; y; zÞ can be decomposed

into nðx; y; zÞ ¼ nxðx; zÞ þ nyðy; zÞ, which approximately is

the case of woodpile photonic crystals. Then, in the paraxial

approximation (which does not take into account the back-

reflection and assumes that the diffraction angles are not

too large to the propagation direction z), the field can be

factorized Aðx; y; zÞ ¼ Axðx; zÞ � Ayðy; zÞ. In this way, the 2D

numerical calculations were performed separately for both

field quadratures, highly reducing computational efforts.

Specifically, the beam propagation patterns were calculated

by 2D FDTD to obtain two 2D cross sections (xz and yz
plane) as shown in Figs. 1(a) and 1(b). After Fourier trans-

form, the far field distributions of two field quadrature direc-

tions were obtained. The full 2D cross section of the

transmitted pattern in far field is then recovered by using the

field factorization property.

Fig. 4 shows the measured far field spatial transmission

patterns within the zero diffraction spot. The distributions

show a clear presence of dark lines—deflected angular com-

ponents within the central maximum, which depend on the

polarization of the light and on the LC phase state. In the ne-

matic phase (22 �C), refractive index variations of 0.01

(np – no) and 0.169 (ne – np) differ strongly in each second

woodpile layer. For the x-polarized beam, the angle of the

horizontal filtering lines is measured to be 1.8�, and of the

vertical filtering lines 5� from light beam center (Fig. 4(a)).

For the y-polarized beam, the angles of horizontal and verti-

cal filtering lines are interchanged (Fig. 4(b)). In the isotropic

phase (40 �C), a low refractive index variation of 0.048

(ni – np) shows narrower and smaller contrast filtering lines.

The transmission pattern is observed for filtering angles at

1.2� and 2.8� in both directions (Fig. 4(d)). Such central sym-

metric pattern shows no change by rotating the polarization

of incident beam.

The experimentally recorded patterns correspond well

to those obtained by numerical FDTD calculations, as

shown in Fig. 4. The results for the x-polarized beam (Figs.

4(a) and 4(e)) show different filtering angles in the x and y
directions. The y-averaged 1D intensity distributions (Figs.

4(i)–4(l), along the x direction) show a good agreement

between the experimental results (blue), 5� in the x direc-

tion (Fig. 4(i)) and 1.8� in the y direction (Fig. 4(j)), and the

simulated ones (red), 4.5� (Fig. 4(i)) and 2� (Fig. 4(j)),

respectively. The patterns of the y-polarized beam (Figs.

4(b) and 4(f)) are simply rotated by 90� comparing to the

ones for the x-polarized beam. The 45�-polarization is an

average between the x- and y-polarizations. In the isotropic

phase, the filtering angles are obtained at 1.2� and 2.8� in

both directions, compared to two filtering lines at 3.5� and

5.2� in calculations. The angles are not sensitive to the

polarization direction in latter case. The slight discrepancy

between the experimental and numerical results could be

due to imperfections like shrinkage, and thermal expansion

of the fabricated structure. The real structure shows slightly

rounded edges at the junctions of the woodpiles, which

brings some discrepancy from the decomposition assump-

tion nðx; y; zÞ ¼ nxðx; zÞ þ nyðy; zÞ. Further possible reason

for this discrepancy is that the diffraction angles are rela-

tively large, around 50�, which are no more in accordance

with the paraxial condition.

FIG. 3. Schematic experimental set-up (a), typical distribution of transmis-

sion pattern (b), and the zoom of its central part (c).

FIG. 4. 2D far field distributions of the central part beam as obtained by

measurement ((a)–(d)) and FDTD calculations ((e)–(h)). The right column

((i)–(l)) compares the 1D intensity distributions along the x direction (inte-

grated along the y direction) obtained from experiments (blue-solid) and

from FDTD numerics (red-solid). The rows correspond to: the x-polarized

beam ((a), (e), and (i)); the y-polarized beam ((b), (f), and (j)); and 45�-
polarized beam ((c), (g), and (k)). The bottom row ((d), (h), and (l)) corre-

sponds to the isotropic phase of the LC (independent on polarization).
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In conclusion, the spatial filtering effect of a 3D wood-

pile filled with embedded liquid crystal has been demon-

strated. The switching effect of the spatial distribution for a

light beam is measured, analyzed, and compared with the nu-

merical study. The dependence of filtering patterns on field

polarization (which induces the refractive index variation

ranging from 0.01 to 0.17) appears due to the different align-

ments of the liquid crystal in channels at odd and even layers

of the woodpile. Moreover, the phase transition between the

nematic and isotropic states brings a remarkable change in

spatial distribution of the propagating light beam.

Finally, we estimate the depth and width of stop-band of

spatial filtering, based on analytical estimation of spatial fil-

tering.20 The amplitude of first harmonics of periodic index

modulation (taking into account the filling factors) was esti-

mated to be Dn0¼ 0.02. Therefore, the expected angular

ranges of 0.02 rad were in accordance with the observed

width of stop-band line of approximately 1�. The depth of

the filtered out line, also as roughly estimated from the previ-

ous studies,20 is Dn0 � l=k (l is the length of the crystal),

which for our crystal of such size was around unity, in ac-

cordance with our observations.
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