Chih-Hao FangPurdue University West Lafayette | Purdue · Department of Computer Science
Chih-Hao Fang
PhD Student
About
11
Publications
1,393
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
61
Citations
Additional affiliations
August 2015 - July 2016
January 2015 - July 2015
Education
August 2015 - August 2020
June 2010 - July 2013
Publications
Publications (11)
Understanding brain response to audiovisual stimuli is a key challenge in understanding neuronal processes. In this paper, we describe our effort aimed at reconstructing video frames from observed functional MRI images. We also demonstrate that our model can predict visual objects. Our method constructs an autoencoder model for a set of training vi...
Sepsis accounts for more than 50% of hospital deaths, and the associated cost ranks the highest among hospital admissions in the US. Improved understanding of disease states, progression, severity, and clinical markers has the potential to significantly improve patient outcomes and reduce cost. We develop a computational framework that identifies d...
Structural causal models (SCMs) provide a principled approach to identifying causation from observational and experimental data in disciplines ranging from economics to medicine. SCMs, however, require domain knowledge, which is typically represented as graphical models. A key challenge in this context is the absence of a methodological framework f...
First-order optimization techniques, such as stochastic gradient descent (SGD) and its variants, are widely used in machine learning applications due to their simplicity and low per-iteration costs. However, they often require larger numbers of iterations, with associated communication costs in distributed environments. In contrast, Newton-type met...
Sepsis accounts for more than 50% of hospital deaths, and the associated cost ranks the highest among hospital admissions in the US. Improved understanding of disease states, severity, and clinical markers has the potential to significantly improve patient outcomes and reduce cost. We develop a computational framework that identifies disease states...
In this chapter we discuss higher-order methods for optimization problems in machine learning applications. We also present underlying theoretical background as well as detailed experimental results for each of these higher order methods and also provide their in-depth comparison with respect to competing methods in the context of real-world datase...
Background:
The data deluge can leverage sophisticated ML techniques for functionally annotating the regulatory non-coding genome. The challenge lies in selecting the appropriate classifier for the specific functional annotation problem, within the bounds of the hardware constraints and the model's complexity. In our system AIKYATAN, we annotate d...
First-order optimization methods, such as stochastic gradient descent (SGD) and its variants, are widely used in machine learning applications due to their simplicity and low per-iteration costs. However, they often require larger numbers of iterations, with associated communication costs in distributed environments. In contrast, Newton-type method...
Background:
Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial...
Recent progress in next-generation sequencing technology has afforded several improvements such as ultra-high throughput at low cost, very high read quality, and substantially increased sequencing depth. State-of-the-art high-throughput sequencers, such as the Illumina MiSeq system, can generate ~15 Gbp sequencing data per run, with >80% bases abov...