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Abstract
Background Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident 
muscle stem cells, commonly identified by  Pax7+, which expediently donate nuclei to the regenerating multinucleated 
myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem 
cells  (CD34+) permeating into the surrounding vascular system.
Objective The purpose of the study was to provide a quantitative estimate for the changes in  Pax7+ muscle stem cells (satel-
lite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating  CD34+ bone marrow 
stem cells. A subgroup analysis of age was also performed.
Methods Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 
2022.  Pax7+ cells in human skeletal muscle were the primary outcome. Circulating  CD34+ cells were the secondary outcome. 
The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were 
conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise.
Results The final search identified 20 studies for  Pax7+ cells comprising a total of 370 participants between the average 
age of 21 and 74 years and 26 studies for circulating  CD34+ bone marrow stem cells comprising 494 participants between 
the average age of 21 and 67 years. Only one study assessed  Pax7+ cells immediately after aerobic exercise and showed a 
32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect  on increas-
ing  Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001).  Pax7+ cells 
increased to ~ 50% above pre-exercise level 24–72 h after resistance exercise. For a subgroup analysis of age, a large effect 
(SMD = 0.81, p < 0.001) was observed on increasing  Pax7+ cells in exercised muscle among adults aged > 50 years, whereas 
adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise 
showed a medium overall effect in increasing circulating  CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to 
the pre-exercise baseline level  after exercise within 6 h.
Conclusions An immediate depletion of  Pax7+ cells in exercising skeletal muscle concurrent with a transient release of 
 CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted  Pax7+ cell expansion 
in the muscle can be observed during 24–72 h after resistance exercise. This result provides a scientific basis for exercise 
recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced  Pax7+ cell expansion in muscle 
remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm 
whether  Pax7+ cell increment can occur after aerobic exercise.
Clinical Trial Registration Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [iden-
tification code CRD42021265457].
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Key Points 

Pax7+ satellite cells donate nuclei to regenerating 
myofibers in response to acute damage.

Pax7+ cells in human muscle transiently depleted dur-
ing aerobic exercise followed by a quick replenishment 
within 3 h.

Pax7+ cell number in human muscle increases (~ 50%) 
during 24–72 h after resistance exercise.

Pax7+ cell expansion occurs after a transient increase 
in circulating  CD34+ bone marrow stem cells following 
exercise.

Exercise-induced  Pax7+ cell expansion in muscle 
remains normal after age 50 years.

1 Introduction

Satellite cells are myogenic stem cells located surrounding 
myofibers between the sarcolemma and basal lamina [1–4], 
which contribute to muscle growth and repair by a quick 
fusion of their nuclei into the cytoplasm of myofibers [1, 2, 
5]. Lower satellite cell availability prevents muscle hyper-
trophy against weight loading in mice [6], suggesting its 
role in muscle plasticity against exercise challenges [4, 7, 
8]. Paired box transcription factor 7 (Pax7) is a commonly 
used biomarker to identify satellite cells in muscle tissues 
in animal and human models [9–11]. While several studies 
have demonstrated increases in  Pax7+ cell content in exer-
cised human skeletal muscle [12–15], the effect size and 
time required for a significant response after an acute bout 
of exercise from the pooled data of human studies have not 
been quantitatively examined.

One systematic review has first reported  Pax7+ cell 
expansion after a single bout of exercise [16]. Based on 
four original studies listed in the systematic review, satellite 
cells in human skeletal muscle increased incrementally and 
peaked at 72 h post-exercise [16]. More studies are required 
to delineate the magnitude of changes and time required for 
a significant increase during post-exercise recovery. It is 
generally observed that the degree of muscle hypertrophy 
induced by exercise attenuates with age [17]. This has been 
thought to be associated with reduced satellite cell reserves 
in muscle tissues [4, 18]. A quantitative analysis is required 

to confirm the effect size of post-exercise  Pax7+ cell expan-
sion at a higher age. Furthermore, the results of  Pax7+ cell 
expansion after an acute bout of exercise between trained 
and untrained individuals remains inconclusive [7, 8, 19]. 
Differing exercise regimens may also influence  Pax7+ cell 
numbers of challenged human skeletal muscle [4].  Pax7+ 
cells do not appear to increase in human muscle following a 
6-week high-intensity aerobic training [20]. Subgroup analy-
ses are needed to confirm the effects of age, post-exercise 
time, training status, and exercise regimen on changes of 
 Pax7+ cells in human skeletal muscle following an acute 
bout of exercise.

Bone marrow-derived multipotent stem cells help to 
maintain adequate stem cell reserves in muscle tissue for 
myofiber regeneration following damage [21–23]. Trans-
plantation of  CD34+ bone marrow stem cells into damaged 
muscle tissues has been shown to increase satellite cells in 
murine muscles [23–25]. CD34 protein is a commonly used 
biomarker to identify multipotent bone marrow stem cells 
in circulation [26], and has been detected in some  Pax7+ 
cells of muscle tissues [27–32]. An acute bout of exercise 
increases  CD34+ cells surrounding myofibers in human 
skeletal muscles within 24 h [33, 34]. The purpose of this 
meta-analysis is to provide quantitative measures regarding 
the effect of a single-bout exercise on  Pax7+ cells in human 
skeletal muscle and to delineate the time course of exercise 
response in temporal relation with circulating  CD34+ cells 
during a 96-h recovery period. Subgroup analyses were also 
performed to confirm the effects of age, training status, and 
exercise regimen.

2  Methods

2.1  Study Protocol and Registration

The present work has been registered to the International 
Prospective Register for Systematic Reviews (PROSPERO, 
registration number: CRD42021265457).

2.2  Search Strategy

The literature search was performed for relevant studies 
(including a range of publications through to February 2022) 
across four databases: Web of Science, PubMed, Scopus, 
and BASE, according to the Preferred Reporting Items for 
Systematic reviews and Meta-Analyses (PRISMA) guideline 
[35]. The keywords included: “exercise,” “Pax7,” “CD34,” 
“human skeletal muscle,” “satellite cells,” “endothelial pro-
genitor cells,” and “progenitor cells”.



Exercise-Induced Satellite Cell Expansion in Human Muscle

2.3  Inclusion/Exclusion Criteria

Studies were selected based on the PICOS model [36] 
(Table 1). Intervention studies conducting a single bout of 
aerobic and/or resistance exercise were included. The pri-
mary outcome of the present meta-analysis was  Pax7+ cells 
in human skeletal muscle.  CD34+ cells in circulation were 
a secondary outcome. Studies were excluded if they had: (1) 
undefined follow-up time after exercise; (2) mixed interven-
tion (i.e., blood flow restriction combined with exercise); 
(3) unavailable total  Pax7+ cell counts; (4) the unavailable 
baseline data; and (5) no dispersion of dataset.

2.4  Data Extraction

The initial review records from all databases and the eligibil-
ity of studies were conducted by the primary investigator, 
then those results were confirmed by at least two separate 
investigators. The records were imported into Endnote (ver-
sion 20.1; Clarivate Analytic, Philadelphia, PA, USA) and 
were automated and manually screened. Once the included 
studies were finalized, the data were categorized by the char-
acteristics of participants (sample size, age, and sex), and 
the exercise modality. The outcome data were expressed as 
standardized mean difference (SMD). If the full-text article 
only presented in a figure format, WebPlotDigitizer (Web-
PlotDigitizer, Version 4.2, 2019; Ankit Rohatgi, TX, USA) 
was used to extract the data from the studies.

2.5  Data Analysis

Initially, a time analysis was conducted to distinguish the 
outcomes based on post-exercise skeletal muscle biopsy 
timepoints for < 24 h and ≥ 24 h and discovered a varying 
effect size with recovery time. Therefore, a subgroup analy-
sis was further adapted by distinguishing multiple time cat-
egories. The exercise regimen included aerobic exercise and 

resistance exercise for comparison. Aerobic exercise pre-
dominated by concentric contraction was included [37]. We 
excluded a downhill running study from the meta-analysis 
assessing the effect of aerobic exercise due to a potentially 
greater muscle damage induced by eccentric muscle contrac-
tion [38]. For aerobic exercise, we categorized the intensity 
into moderate and high. High intensity was defined by either 
the running speed/cycling work rate as ≥ 77% of heart rate 
(HR)max/peak or 60–90% of heart rate reserve or ≥ 80% of 
maximum oxygen consumption  (VO2max) or ≥ anaerobic 
threshold. Moderate intensity of aerobic exercise was deter-
mined as 64–76% of heart rate maximum/peak or 40–59% of 
heart rate reserve or 46–79% of  VO2max. The studies using 
peak work rate were converted into %HR for which 59.5% of 
peak work rate corresponds to approximately 77% heart rate 
maximum [39]. Intensity of resistance exercise was classi-
fied into low (< 50% 1RM), moderate (50–69% 1RM), and 
high (≥ 70% 1RM) [40, 41]. We classified the training status 
into untrained and trained individuals based on the terminol-
ogy used in previous work [42]. Untrained individuals were 
defined as subjects who participated in physical activity less 
than 3 h/week, while the trained subjects were defined as 
having habitual physical activity approximately 2 h/day for 
at least 3 days/week.

2.6  Quality Assessment

The quality assessment of the included studies comprised 
five domains according to the revised Cochrane Risk of Bias 
tool for exercise intervention trials: (1) randomization pro-
cess; (2) deviations from intended interventions; (3) miss-
ing outcome data; (4) measurement of the outcome; and (5) 
selection of the reported result. The overall risk of bias was 
defined as “low risk” if all domains were at low risk of bias, 
“some concerns” if containing at least one domain at some 
concerns status, but not at high risk of bias for any domain, 

Table 1  PICOS model used to 
perform the meta-analysis

BMI body mass index, CD34 cluster of differentiation 34 (commonly used to assess hematopoietic stem 
cells in blood), PAX7 paired box transcription factor 7 (commonly used to assess muscle stem cells in tis-
sues),  VO2max maximum oxygen consumption

Parameter Inclusion criteria

Population Healthy individuals
(BMI: 18–25 kg/m2)

Intervention 1. Aerobic exercise (acute bout of cycling or treadmill) with intensity ≥ 60% VO2max
2. Resistance exercise (acute bout) included all muscle contraction involved

Comparators Pre-exercise baseline measurements
Outcomes 1. Primary outcome:  Pax7+ cells in biopsied muscle measured by an immunohisto-

chemical analysis
2. Secondary outcome: circulating CD34+ cells including total  CD34+ cells, 

 CD34+/CD45dim,  CD34+/CD45+,  CD34+/Cd45dim/VEGRF2+, in the circulation 
measured by a flow-cytometric analysis

Study design Randomized and non-randomized trial
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and “high risk” if at least one study was judged in some 
concerns for multiple domains [43].

2.7  Statistical Analysis

This meta-analysis was performed using Review Manager 
(RevMan Version 5.4.1; The Cochrane Centre, Oxford, UK). 
We collected the baseline and post-exercise data of mean, 
standard error (SE), and sample size of individuals from 
exercise intervention studies. Forest plot was produced to 
display SMD, SE, and overall effect of Z score. If publica-
tions reported standard deviation (SD) only, SE was calcu-
lated using the following formula, where n represented the 
number of participants:

A random-effect model was used assuming an existence 
of inherent heterogeneity of the data among studies. To per-
form the SMD, we used the formula according to Cochrane 
[44]:

The effect size was categorized into: (1) small 
(SMD = 0.20–0.50); (2) medium (SMD = 0.51–0.80); and 
(3) large (SMD > 0.8) [45–47]. Standard deviation values 
were calculated by:

where r represents the correlation coefficient. The 95% con-
fidence interval including “0” referred to non-statistically 
significant [48]. A positive effect of exercise into  Pax7+ 
cells and  CD34+ cells were pointed out by a positive SMD. 
A negative SMD showed the negative effect of exercise 
towards  Pax7+ cells and   CD34+ cells. The overall effect size 
using the Z-score was considered as significant at p < 0.05.

To assess the heterogeneity, tau-squared (τ2), Chi-square 
Cochran’s Q (χ2) test, and I2 statistic were performed. The 
value of τ2 > 1 indicated variability between studies. The 
Q test measured the variation around a weighted mean, in 
which a p value < 0.10 was considered as significant hetero-
geneity [49]. The I2 statistic was used to assess the effect 
consistency across the studies, with the interpretation of 
I2 as follows: (1) I2 = 0–30% showing no important hetero-
geneity; (2) I2 = 30–49% showing moderate heterogeneity; 
(3) I2 = 50–74% showing substantial heterogeneity; and (4) 
I2 = 75–100% showing considerable heterogeneity [44, 50].

SE =
SD
√

n

.

SMD =
meanpost − meanbaseline

SDpaired
√

2x(1−r)

.

SDp =

√

(SDbaseline)
2 + (SDpost )

2 − 2 × r × SDbaseline × SDpost ,

3  Results

3.1  Literature Search

3.1.1  Selection Process

The number of identified articles from four databases and 
selection process are shown in Fig. 1. A total of 1719 inter-
vention studies were retrieved from the database search, and 
568 duplicated and ineligible articles were excluded. The 
screening phase in this work, including title and abstract 
screening, left 51 articles. The authors excluded five articles 
from the meta-analysis because of: (1) one mixed interven-
tion study with whole-body vibration [51]; (2) two studies 
without a mean or SD [52, 53]; (3) one study presenting a 
 Pax7+/MyoD+ sub-fraction with no total  Pax7+ data [4]; and 
(4) one study using aerobic running in the eccentric contrac-
tion mode [38]. These studies were included in the systemic 
review. This screening resulted in 46 eligible articles that 
were used for the current quantitative analysis, including 
20 studies (n = 370) comprising  Pax7+ cell assessments in 
human skeletal muscle and 26 studies (n = 494) of circulat-
ing  CD34+ cell assessments in response to an acute bout of 
exercise.

3.1.2  Quality Assessment in Individual Studies

Among the included studies, no study scored in the high-
risk bias, 12 studies scored in the moderate-risk bias [4, 12, 
13, 15, 54–61], and 34 studies scored in the low-risk bias 
[7, 14, 16, 59, 62–89]. Results of the quality assessment are 
shown in Table S1 of the Electronic Supplementary Mate-
rial (ESM).

3.2  Acute Response in Muscle  Pax7+ Cell Content 
After Exercise

3.2.1  Age and Training Status

Table 2 summarizes the sample size, age, exercise type, 
follow-up time, and  Pax7+ cell change from the pre-
exercise baseline (%) in human skeletal muscle. The total 
number of participants were 370 (male/female = 360/10) 
with an age range of 21–74 years. The subgroup analysis 
presents the acute exercise response of muscle  Pax7+ cell 
content compared with the pre-exercise baseline for two 
age levels: ≤ 50 years and > 50 years (Fig. S1 of the ESM). 
A total of eight studies consisting of 105 participants 
aged > 50 years reported changes of muscle  Pax7+ cell con-
tent from the pre-exercise baseline [7, 8, 19, 64, 73, 76, 90, 
91]. For the subgroup analysis, a large effect in the adults 
age > 50 years (SMD = 0.81, 95% CI 0.48–1.14, I2 = 60%, 
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overall effect: Z = 4.83, p < 0.001) and a medium effect in the 
younger adults of  Pax7+ cell increases (SMD = 0.64, 95% 
CI 0.43–0.84, I2 = 66%, overall effect: Z = 6.15, p < 0.001) 
were observed. Figure S2 of the ESM shows the influence 
of training status of the participants for the acute exercise 
response in muscle  Pax7+ cell content. There were 12 stud-
ies recruiting untrained participants [7, 8, 14, 64–67, 73, 
76, 90, 91] and eight studies recruiting trained participants 
[12, 13, 15, 19, 57, 63, 77, 90]. A large effect of exercise-
induced  Pax7+ cell expansion was observed in the untrained 
subgroup regardless of age (SMD 0.81, 95% CI 0.61–1.02, 
I2 = 68%, overall effect: Z = 7.79, p < 0.001), whereas the 
trained subgroup showed a small effect (SMD 0.32, 95% 
CI 0.02–0.62, I2 = 52%, overall effect: Z = 2.10, p < 0.05).

3.2.2  Exercise Regimen

Most eligible studies assessing acute response in the  Pax7+ 
cell number of human muscle tissues used resistance exer-
cise [7, 8, 12–15, 19, 57, 64–67, 73, 76, 77, 90–92]. Only 
one study reported acute response during and after concen-
tric-based aerobic exercise [63]. The post-exercise follow-up 

time was limited to 96 h. Because of variations in exercise 
protocols (isokinetic eccentric contraction or weightlifting) 
used among the 18 resistance exercise studies, the effect of 
exercise intensity could not be accurately classified.

When all eligible studies of aerobic exercise and resist-
ance exercise were included, data from 68 biopsied mus-
cle samples (Fig. S3 of the ESM) showed a medium over-
all effect of post-exercise  Pax7+ cell increases in skeletal 
muscle (SMD = 0.68, 95% CI 0.51–0.86, I2 = 66%, overall 
effect: Z = 7.74, p < 0.001). The subgroup analysis showed 
no effect in  Pax7+ cell content to an acute bout of aerobic 
exercise (SMD =  − 1.03, 95% CI − 2.76 to 0.70, I2 = 86%, 
overall effect: Z = 1.17, p = 0.24) (Fig. S3 of the ESM). A 
time analysis further showed an acute  Pax7+ cell depletion 
in muscle immediately after aerobic exercise followed by a 
quick return to baseline 3 h post-exercise (Fig. 2). No study 
assessing biopsied muscle immediately after resistance 
exercise was reported. When post-exercise recovery time 
was not considered, a medium effect of resistance exercise 
on  Pax7+ cell increases in skeletal muscles was observed 
(SMD = 0.73, 95% CI 0.56–0.89, I2 = 61%, overall effect: 
Z = 8.63, p < 0.001)(Fig.  3a). For the time analysis, the 

Fig. 1  Preferred Reporting 
Items for Systematic Reviews 
and Meta-analyses (PRISMA) 
flow diagram outlining the 
electronic search and selection 
process Records identified through 

database searches (n=1719)

Records removed before screening:
Duplicate records removed
(n = 568)
Records marked as ineligible by 
automation tools 
(n = 0)
Records removed for other reasons 
(n = 0)

Titles and abstracts screened
after duplicates removed
(n = 1151)

Records excluded
(n = 979)

Articles sought for retrieval
(n = 172)

Articles not retrieved
(n = 121)

Full-text screening to distinguish 
eligible articles for inclusion
(n = 51)

Articles excluded (n = 5):
1. Other intervention mixed with exercise 

(n = 1)
2. Baseline data (mean or standard 

deviation) unavailable (n = 2)
3. Total Pax7+ cells unavailable (n = 1)
4. Eccentric-based aerobic muscle 

contraction (n=1)

Studies included in review
(n = 46)

Identification of studies via databases and registers
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Table 2  Characteristics of the studies included in this review of  Pax7+ cells in skeletal muscle studies with single-bout resistance exercise (a) 
and aerobic exercise (b)

Study, year Biomarker Sample size/age Training status Type (intensity) Follow-up 
time post-
exercise

Marker change from 
pre-exercise baseline

(a) Resistance exercise
Bellamy et al., 2014 

[12]
Pax7+ Male (n = 23),

aged 24 y
Trained Resistance exercise

(acute, 80% of 1RM, 4 
sets, 8 reps)

24 h  + 34%
72 h  + 50%

Cermak et al., 2012 
[77]

Pax7+ Male (n = 9),
aged 23 y

Trained 15 sets, 20 reps at a 
speed 0.52 rad/s

24 h  + 19.8%

Dreyer et al., 2006 [7] Pax7+ Male (n = 10),
aged 21–35 y

Untrained Resistance exercise
(acute, 6 sets; 12–16 

reps at 60°/s)

24 h  + 157%

Pax7+ Male (n = 9), aged 
60 y

24 h  + 43%

Farup et al., 2014 [13] Pax7+ Male (n = 24), aged 
24 y

Trained Resistance exercise
(acute, 15 sets, 10 reps 

with range of motion 
were set at 70° and 
contraction velocity 
at 30°/s)

24 h  + 19%
48 h 0%

Hyldahl et al., 2014 
[14]

Pax7+ Male (n = 7), aged 
22 y

Untrained Resistance exercise 
dominated by eccen-
tric contraction

(acute, achieved up to 
40 kJ)

24 h  + 28%

Pax7+ Male (n = 7), aged 
23 y

Resistance exercise 
dominated by con-
centric contraction

(acute, achieved up to 
40 kJ)

 + 3%

McKay et al., 2010 
[100]

Pax7+ Male (n = 12),
aged 21 y

Untrained 30 sets of 10 maximal 
muscle lengthening 
contractions at 3.14 
rads/s

24 h  + 37.9%

McKay et al., 2012 
[76]

Pax7+ Male (n = 9),
aged 21 y

Untrained Resistance exercise
(acute, 75% of 1-RM, 

4 sets, 10 reps)

24 h  + 32%
48 h  + 44%

Male (n = 9),
aged 70 y

24 h  + 21%
48 h  + 5%

McKay et al., 2013 
[73]

Pax7+ Male (n = 9),
aged 21.3 y

Untrained Resistance exercise
(acute, 75% of 1 RM, 

4 sets, 10 reps)

3 h  + 6%
24 h  + 22%
48 h  + 34%

Male (n = 9),
aged 69.6 y

3 h  − 1%
24 h  + 15%
48 h  + 29%

Mackey et al., 2016 
[66]

Pax7+ Male (n = 14),
aged 21 y

Untrained Resistance exercise
(acute, 5 sets, 20 reps 

with range of motion 
from 90 to 10°)

2.5 h  − 2%
48 h  − 13%

Nederveen et al., 2015 
[4]

Pax7+MyoD+ Male (n = 7),
aged 67 y

Untrained Resistance exercise
(acute, 95% of 10-RM, 

4 sets, 10 reps for 
leg extension, 19 
reps for leg press)

24 h  + 269%
48 h  + 5%

Pax7+MyoD− 24 h  − 19%
48 h  − 18%

Nederveen et al., 2016 
[15]

Pax7+ Male (n = 23),
aged 24 y

Trained Resistance exercise
(acute, 80% of 1 RM, 

4 sets, 8 reps)

24 h  + 25%
72 h  + 31%
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Table 2  (continued)

Study, year Biomarker Sample size/age Training status Type (intensity) Follow-up 
time post-
exercise

Marker change from 
pre-exercise baseline

Nederveen et al., 2017 
[57]

Pax7+ Male (n = 14),
aged 25 y

Trained Resistance exercise
(acute, 70–85% of 1 

RM, 4 sets, 8 reps)

24 h  + 4%

72 h  + 32%

Nederveen et al., 2018 
[67]

Pax7+ Male (n = 20),
aged 21 y

Untrained Resistance exercise
(acute, 30 sets, 10 

reps at 180°/s, high 
CFPE)

6 h  + 48
24 h  + 74%
72  + 57%
96  + 4%

Resistance exercise
(acute, 30 sets, 10 

reps at 180°/s, low 
CFPE)

6 h  + 38%
24 h  + 62%
72  + 47%
96  + 32%

Nederveen et al., 2020 
[64]

Pax7+ Male (n = 24),
Aged 73 y

Untrained Resistance exercise
(acute, 65% of 1 RM, 

4 sets, 10 reps)

24 h  + 61%
48 h  + 30%

Reidy et al., 2017 [91] Pax7+ Male (n = 19),
aged 70 y

Untrained Resistance exercise
(acute, 60–70% of 

1RM, 8 sets, 10 
reps)

1 h  − 14%

Roberts et al., 2015 
[53]

Pax7+ Male (n = 10),
aged 22.1 y

Trained Resistance exercise
(acute, 8–12 RM) with 

ACT 

2 h  + 3%
24 h  + 20%
48 h  + 48%

Resistance exercise
(acute, 8–12 RM) with 

CWI

2 h  + 1%
24 h  + 12%
48 h  + 16%

Snijders et al., 2014a 
[92]

Pax7+ Male (n = 20),
aged 21 y

Untrained Resistance exercise
(acute, 75% of 1 RM, 

6 sets, 10 reps) with 
LPD

12 h  + 6%
24 h  + 17%
48  + 45%
72  + 57%

Resistance exercise
(acute, 75% of 1 RM, 

6 sets, 10 reps) with 
NPD

12 h  + 2%
24 h  + 16%
48  + 33%
72  + 42%

Snijders et al., 2014b 
[8]

Pax7+ Male (n = 10), aged 
22 y

Untrained Resistance exercise
(acute, 75% of 1 RM, 

6 sets, 10 reps)

12 h  + 6%
24 h  + 26%
48 h  + 43%
72 h  + 53%

Male (n = 10), aged 
73 y

12 h  + 2%
24 h  + 14%
48 h  + 22%
72 h  + 31%

Snijders et al., 2019 
[19]

Pax7+ Male (n = 14),
aged 74 y

Untrained Resistance exercise
(acute, 65% of 1-RM, 

4 sets, 10 reps)

24 h  + 30%
48 h  + 5%

Toth et al., 2011 [65] Pax7+ Male (n = 12) Untrained Resistance exercise
(acute, 300 unilateral 

isokinetic eccentric 
contractions in 
180°/s over a 55° 
range of motion)

1 h  + 12%
3 h  + 17%
24 h  + 60%
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effect size of resistance exercise peaked at 24 h and gradu-
ally returned to baseline in 96 h (Fig. 3b). The subgroup 
analysis showed a minimal effect within 12 h following 
resistance exercise (SMD = 0.22, 95% CI 0.01–0.42, I2 = 0%, 
overall effect: Z = 2.09, p < 0.05). A large effect of  Pax7+ cell 
increases after resistance exercise was contributed mostly 
by the muscle data assessed 24 h post-exercise or later 
(SMD = 0.89, 95% CI 0.64–1.14, I2 = 55%, overall effect: 
Z = 6.95, p < 0.001).

3.3  Acute Response in Circulating  CD34+ Bone 
Marrow Stem Cells After Exercise

CD34+ bone marrow-derived stem cells from circulation 
contributes to local  Pax7+ cell reserve and myogenesis in 
skeletal muscle [27–32]. In this study, we also assessed the 
temporal relationship between circulating blood  CD34+ cells 
and  Pax7+ cell expansion in skeletal muscle in response to 
an acute bout of exercise.

Table 2  (continued)

Study, year Biomarker Sample size/age Training status Type (intensity) Follow-up 
time post-
exercise

Marker change from 
pre-exercise baseline

Walker et al., 2012 
[19]

Pax7+ Male (n = 5),
aged 27 y

Trained Resistance exercise
(acute, 70% of 1-RM, 

8 sets, 10 reps)

6 h  + 18%

24 h  + 138%

Female (n = 5), aged 
27 y

6 h  + 16%

24 h  + 50%

Male (n = 6), aged 
70 y

6 h  + 1%

24 h  + 48%

Female (n = 5), aged 
70 y

6 h  + 102%

24 h  + 140%
(b) Aerobic exercise
Nederveen et al., 2015 

[4]
Pax7+MyoD+ Male (n = 7), aged 

67 y
Untrained Aerobic exercise

(acute, 60% VO2 peak)
24 h 106%

48 h 70%
Male (n = 8), aged 

67 y
Aerobic exercise
(acute, 90–95% VO2 

peak)

24 h 355%

48 h 51%
Pax7+/MyoD− Male (n = 7), aged 

67 y
Aerobic exercise
(acute, 60%  VO2 

peak)

24 h  − 6%

48 h  − 33%
Male (n = 8), aged 

67 y
Aerobic exercise
(acute, 90–95% VO2 

peak)

24 h  − 39%

48 h  − 12%
van De Vyver and 

Myburgh, 2012 [38]
Pax7+ Male (n = 6), aged 

22 y
Untrained Aerobic exercise

Resistance exercise
(acute, 85% VO2max 

downhill running)

24 h  + 41%

48 h  + 6%
Wu et al., 2019 [63] Pax7+ Male (n = 12), aged 

21 y
Trained Aerobic exercise

(acute, 70%  VO2max)
0 h  − 32%

3 h  − 3%

ACT  active recovery, CWI cold water immersion, h hours, LPD low-protein diet, NPD normal protein diet, RM repetition maximum, s seconds, y 
years, min minutes, VO2max maximum oxygen consumption maximum
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3.3.1  Age and Training Status

Table 3 summarizes sample size, age, exercise type, follow-
up time, and marker change from the pre-exercise baseline 
(%) for  CD34+ cells in blood. The age range of participants 
was 10–65 years (n = 494) [54–56, 58–62, 68, 70–72, 75, 
78–89, 93]. No significant effect for circulating  CD34+ 
cells was found after a single bout of exercise from 24 par-
ticipants aged 50–65 years (SMD = 0.30, 95% CI − 0.31 to 
0.91, I2 = 62%, overall effect: Z = 0.97, p = 0.33). A medium 
effect was found for the remaining 470 young participants 
(SMD = 0.53, 95% CI 0.40–0.66, I2 = 69%, overall effect: 
Z = 7.83, p < 0.001) (Fig. S4 of the ESM). The effect of 
training status is shown in Fig. S5 of the ESM, which 
included (male/female = 378/116) categorized as untrained 
participants in eight studies [59–62, 79, 82, 85, 88] and 
trained participants in 19 studies [54–56, 58, 62, 68–70, 
72, 75, 78, 80, 81, 83, 84, 86–89]. The subgroup analysis 
showed a medium effect for untrained (SMD = 0.57, 95% 
CI 0.38–0.77, I2 = 53%, overall effect: Z = 5.82, p < 0.001) 
and a small effect for trained participants (SMD = 0.49, 95% 
CI 0.32–0.67, I2 = 74%, overall effect: Z = 5.58, p < 0.001) 
compared with pre-exercise circulating  CD34+ cells.

3.3.2  Exercise Regimen

A total of 22 eligible studies for aerobic exercise [54–56, 
58, 59, 61, 62, 68, 69, 71, 72, 75, 78–83, 85, 87–89] and 
five eligible studies for resistance exercise [60, 70, 82, 84, 
86] assessing circulating  CD34+ cell counts were included 
in the quantitative analysis. The follow-up time after aero-
bic and resistance exercise was no more than 96 h. Without 

considering time after exercise, the overall effect of a single 
bout of aerobic exercise and resistance exercise based on 
125 measurements (Fig. S6 of the ESM) showed a small and 
medium effect of exercise on increasing circulating  CD34+ 
cells, respectively (aerobic exercise: SMD = 0.47, 95% CI 
0.32–0.63, I2 = 71%, overall effect: Z = 6.17, p < 0.001; 
resistance exercise: SMD = 0.67, 95% CI 0.42–0.92, 
I2 = 60%, overall effect: Z = 5.19, p < 0.001).

When post-exercise time was not considered, a small 
effect of aerobic exercise (SMD = 0.47, 95% CI 0.32–0.63, 
I2 = 71%, overall effect: Z = 6.17, p < 0.001) and a medium 
effect of resistance exercise for increasing circulating 
 CD34+ cells (SMD = 0.67, 95% CI 0.42–0.92, I2 = 60%, 
overall effect: Z = 5.19, p < 0.001) were observed. The time 
analysis has further shown immediate increases of circulat-
ing  CD34+ cells above baseline after aerobic exercise fol-
lowed by a quick decline within 2 h post-exercise (Fig. 4a). 
A medium effect in circulating  CD34+ cell increases within 
2 h after aerobic exercise was observed (SMD = 0.60, 95% 
CI 0.41–0.79, I2 = 73%, overall effect: Z = 6.28, p < 0.001) 
(Fig. 4b), whereas no significant effect was observed ≥ 2 h 
post-exercise (SMD = 0.18, 95% CI − 0.04 to 0.40, I2 = 52%, 
overall effect: Z = 1.60, p = 0.11). Both moderate-intensity 
aerobic exercise (46–79%  VO2max with average duration 
range of 10–240 min) [SMD = 0.48, 95% CI 0.24–0.72, 
I2 = 74%, overall effect: Z = 3.90, p < 0.001] and high-inten-
sity aerobic exercise (≥ 80% VO2max with average dura-
tion range of 6–207 min) [SMD = 0.47, 95% CI 0.28–0.67, 
I2 = 68%, overall effect: Z = 4.74, p < 0.001] showed a small 
effect on post-exercise increases in circulating  CD34+ cells 
(Fig. 4b).

Fig. 2  Time course analysis for 
 Pax7+ cells in skeletal muscle 
after an acute bout of aerobic 
exercise with moderate inten-
sity, 70% maximum oxygen 
consumption (VO2max)
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Fig. 3  Forest plot of stand-
ardized mean difference for 
 Pax7+ cell number in human 
skeletal muscle at follow-up 
measurement < 24 h, 24 h, 48 h, 
72 h, and 96 h after resist-
ance exercise (a), time course 
analysis for the change of  Pax7+ 
cells in skeletal muscle after an 
acute bout of resistance exercise 
(b). CI confidence interval, df 
degree of freedom, I2 incon-
sistency between studies, SE 
standard error
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Table 3  Summary and characteristics of the studies included in this review of circulating  CD34+ cells studies with single-bout resistance exer-
cise (a) and aerobic exercise (b)

Study, year Biomarker Sample size Training status Type
(intensity)

Follow-up 
time post-
exercise

Marker 
change from 
baseline

(a) Resistance exercise
Krüger et al., 2015 

[82]
CD34+CD45+ Male (n = 12),

aged 25–26 y
Untrained Resistance exercise

(acute, 75% 1RM)
0 h  + 70%
3 h  + 81%
24 h  + 51%
48 h  − 8%

CD34+CD45−KDR+ 0 h 100%
3 h 198%
24 h 394%
48 h 35%

Lee et al., 2015 [70] CD34+ Male (n = 6),
aged 28 y

Trained Resistance exercise
(acute, 10 sets; 6 

reps MVC)

0 h  − 3%
2 h  − 4%
24 h  + 19%

CD34+ 48 h  + 16%
72 h  + 14%
96 h  + 7%

Montgomery et al., 
2019 [86]

CD34+CD45dim Male (n = 9),
aged 21 y

Trained Resistance exercise
(acute, 1 set 30 reps, 

followed by 3 sets 
of 15 reps 20% 
1RM)

0 h  − 4%
0.5 h  − 6%

CD34+VEGRF2+ 0 h 116%
0.5 h 112%

CD34+CD45dimVEGRF2 0 h 96%
0.5 h 140%

Ribeiro et al., 2017 
[60]

CD45dim/VEGFR2+/CD34+ Female (n = 13),
aged 20.7 y

Untrained 60% 1-RM, 3 sets, 
12 reps

0 h 58%
6 h 31%
24 h 16%

Female (n = 12),
aged 21 y

70% 1-RM, 3 sets, 
12 reps

0 h 133%
6 h 69%
24 h  − 35%

Female (n = 13),
aged 20.9 y

80% 1-RM, 3 sets, 
12 reps

0 h 135%
6 h 222%
24 h 10%

Ross et al., 2013 
[84]

CD34+ Male (n = 13),
aged 22 y

Trained Resistance exercise
(acute, 15 repetitions 

of six exercises-leg 
press, seated chest 
press, leg curl, lat 
pulldown, knee 
extension, and 
triceps pushdown)

0 h  + 85%
2 h  + 65%
24 h  − 2%

(b) Aerobic exercise
Agha et al., 2018 

[78]
CD34+ Male/female 

(n = 8/7), aged = 28 
y

Trained Aerobic exercise
(ventilatory thresh-

old + 15%)

0 h  + 76%

1 h -8%
2 h  + 8%
3 h  + 24%

Aerobic exercise
(ventilatory thresh-

old − 5%)

0 h  + 12%

1 h 0%



 L. Dewi et al.

Table 3  (continued)

Study, year Biomarker Sample size Training status Type
(intensity)

Follow-up 
time post-
exercise

Marker 
change from 
baseline

2 h  − 20%
3 h  − 8%

Male/female 
(n = 10/2), 
aged = 30 y

Aerobic exercise
(lactate thresh-

old + 10%)

0 h  + 91%

1 h  + 3%
Baker et al., 2017 

[54]
CD34+ Male (n = 11),

aged 23.5 y
Trained Aerobic exercise

(acute, 70%  WRpeak)
0 min  + 97%

10 min  + 1%
30 min  + 23%
60 min  + 9%

Bonsignore et al., 
2002 [56]

CD34+ Male (n = 16),
aged 41.8 y

Trained Half-marathon
(acute)

0 h  − 25%

 < 24 h  − 58%
Marathon
(acute)

0 h  + 20%

 < 24 h  − 49%
Bonsignore et al., 

2010 [55]
CD34+ Male (n = 17),

aged 43.6 y
Trained Aerobic exercise

(acute, 101%  HRmax)
0 h  + 90%

Aerobic exercise
(acute, marathon)

0 h  − 37%

18 h  − 17%
24 h  + 265%

Chang et al., 2015 
[61]

VEGFR2+/CD11b−/
CD34+/AC133+

Male (n = 5),
aged 29.8 y

Untrained Aerobic exercise
(acute, 

HR > 140 bpm)

0 h 10%

24 h 265%
Craenenbroeck 

et al., 2008 [71]
CD34+ Male/female 

(n = 6/5),
aged 23.9 y

Not reported Aerobic exercise
(acute, 116% 

 VO2max)

0 h  + 39%

Male/female 
(n = 9/6),

aged 36.2 y

Aerobic exercise
(acute, 119% 

 VO2max)

0 h  + 10%

Harris et al., 2017 
[79]

CD34+ Female (n = 15),
aged 63 y

Untrained Aerobic exercise
(acute, moderate 

continues, 80% of 
lactate threshold)

0.5 h  − 19%

Female (n = 15),
aged 63 y

Aerobic exercise
(acute, moderate 

interval, 90% 
of  VO2max with 
10:20 s)

0.5 h  − 4%

Female (n = 15),
aged 63 y

Aerobic exercise
(acute, heavy inter-

val, 90% of  VO2max 
with 30:60 s)

0.5 h  − 15%

Kroepfl et al., 2012 
[81]

CD34+ Male (n = 10)
aged 25.3 y

Trained Aerobic exercise
(acute, 40-W starting 

load, increasing 
20 W/min) until 
exhaustion)

10 min  + 87%

30 min  + 8%
60 min  + 1%
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Table 3  (continued)

Study, year Biomarker Sample size Training status Type
(intensity)

Follow-up 
time post-
exercise

Marker 
change from 
baseline

120 min  − 10%
Krüger et al., 2014 

[82]
CD34+/CD45+ Male (n = 12),

aged 25–26 y
Untrained Aerobic exercise

(acute, CET, 80% 
 VO2max)

0 h  + 96%

3 h  + 53%
24 h  + 34%

Male (n = 12),
aged 25–26 y

Aerobic exercise
(acute, ECC,80% 

 VO2max with the 
run down 12%)

0 h  + 77%

3 h  + 33%
24 h  + 60%
48 h  + 5%

CD34+CD45−KDR+ Male (n = 12),
aged 25–26 y

Aerobic exercise
(acute, CET, 80% 

 VO2max)

0 h 72%

3 h 16%
24 h  − 42%

Male (n = 12),
aged 25–26 y

Aerobic exercise
(acute, ECC, 80% 

 VO2max with the 
run down 12%)

0 h 164%

3 h  − 14%
24 h 5%
48 h  − 14%

Kröpfl et al., 2020 
[89]

CD34+ Male (n = 21),
aged 29–30 y

Trained Aerobic exercise
(acute, 85% of 

speed/power)

0 h  + 17%

Laufs et al., 2005 
[83]

CD34+CD133+ Male (n = 25),
aged 24.8 y

Trained Aerobic exercise
(acute, 82%  VO2max)

0 h  + 54%

Aerobic exercise
(acute, 68%  VO2max, 

30 min)

0 h  + 43%

Aerobic exercise
(acute, 68%  VO2max, 

10 min)

0 h  + 6%

CD34+VEGRF2+ Aerobic exercise
(acute, 82%  VO2max)

0 h 120%

Aerobic exercise
(acute, 68%  VO2max, 

30 min)

0 h 163%

Aerobic exercise
(acute, 68%  VO2max, 

10 min)

0 h 6%

CD34+CD117+ Aerobic exercise
(acute, 82%  VO2max)

0 h 34%

Aerobic exercise
(acute, 68%  VO2max, 

30 min)

0 h 20%

Aerobic exercise
(acute, 68%  VO2max, 

10 min)

0 h 5%
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Table 3  (continued)

Study, year Biomarker Sample size Training status Type
(intensity)

Follow-up 
time post-
exercise

Marker 
change from 
baseline

Möbius-Winkler 
et al., 2009 [75]

CD34+ Male (n = 18),
aged 32.4 y

Trained Aerobic exercise
(acute, 70% indi-

vidual anabolic 
threshold)

0 min  + 178%

30 min  + 99%
1 h  + 72%
2 h  + 94%
24 h  + 3%

Morici et al., 2005 
[80]

CD34+ Male/ female 
(n = 13/7)

aged 16–18 y

Trained Rowing with average 
workload 322 W

0 min  + 114%

Niemiro et al., 2017 
[59]

CD34+ Male (n = 7),
aged 25.3 y

Untrained Aerobic exercise
(acute, 70%  VO2max)

15 min  + 58%

1 h  + 5%
2 h  + 23%

O’Carroll et al., 
2019 [58]

CD34+CD45dimVEGRF2+ Male/female 
(n = 8/4),

aged 29 y

Trained Aerobic exercise
(acute, 70%  VO2max)

0 h  + 35%

2 h  − 19%
24 h  − 6%

CD34+CD45dim 0 h 16%
2 h  − 191%
24 h 3%

Ross et al., 2018 
[93]

CD34+CD45dim Male (n = 8),
aged 23 y

Trained Aerobic exercise
(acute, 70%  VO2max)

0 h  + 55%

Male (n = 9),
aged 65 y

0 h  − 2%

CD34+CD45dimVEGRF2+ Male (n = 8),
aged 23 y

0 h 104%

Male (n = 9),
aged 65 y

0 h 62%

Shill et al., 2018 
[68]

CD34+ Male/female 
(n = 10/10),

aged 23.6 y

Trained Aerobic exercise
(acute, 65%  VO2max)

0 min  + 4%

30 min  − 18%
1 h  − 14%
1.5 h  − 23%
2 h  − 25%

Aerobic exercise
(acute, 90–100% 

 VO2max)

0 min 0%

30 min  − 1%
1 h  + 7%
1.5 h  + 12%
2 h  − 1%

Stelzer et al., 2014 
[131]

CD34+ Male/female 
(n = 3/4),

aged 39.6 y

Trained Ultra-endurance 
cycling race

0 min  − 11%

Thijssen et al., 2006 
[62]

CD34+ Male (n = 8),
aged 19–28 y

Untrained Aerobic exercise
(acute, 65% HRR)

0 h  + 100%

Male (n = 8),
aged 19–28 y

Trained  + 32%
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Resistance exercise showed immediate increases in cir-
culating  CD34+ cells and returned to baseline levels after 
6 h (Fig. 5a). A large effect of  CD34+ cell increases was 
observed within 6 h after resistance exercise (SMD = 0.93, 
95% CI 0.60–1.27, I2 = 60%, overall effect: Z = 5.45, 
p < 0.001), whereas no significant effect was observed 
beyond 6 h (SMD = 0.29, 95% CI − 0.01 to 0.59, I2 = 33%, 
overall effect: Z = 1.87, p = 0.06) (Fig. 5b).

4  Discussion

To our knowledge, the present study provides the first quan-
titative meta-analysis to confirm the effect of an acute sin-
gle-bout exercise on  Pax7+ cells in human skeletal muscles. 
Time required for significant changes in  Pax7+ cells during 
and after exercise is also delineated with circulating levels 
of  CD34+ cells [32, 94, 95]. Here, we summarized the find-
ings as follows: (1)  Pax7+ cell replenishment and further 
expansion occur following a transient  Pax7+ cell depletion 
in human skeletal muscle during exercise; (2)  Pax7+ cell 
expansion in exercised human skeletal muscles peaks at 
24 h and remains somewhat elevated up to 72 h after resist-
ance exercise; (3) post-exercise  Pax7+ cell expansion occurs 
slowly after a transient increase in circulating  CD34+ bone 
marrow stem cells during exercise; and (4)  Pax7+ cell expan-
sion induced by exercise remains normal for adults aged 
50–74 years, despite a lower  Pax7+ cell reserve in muscle 
compared with younger adults.

4.1  Pax7+ Cells in Human Skeletal Muscle Increases 
After Exercise in Higher Age Adults and Training 
Status

Lower  Pax7+ cell reserves in aging skeletal muscle are gen-
erally considered as a cause of age-dependent declines in 
muscle repair and regenerative capacity [96–98]. However, 
the current meta-analysis showed a slightly greater effect 
size of  Pax7+ cell increases after exercise in adults aged 
50–74 years compared with younger adults (SMD = 0.81; 
p < 0.001 vs SMD = 0.64; p < 0.001). This unexpected result 
appears to be contributed in part by moderately lower base-
line values of  Pax7+ cells in older than younger adults [18, 
99]. The mean baseline value for older adults was 6.3  Pax7+ 
cells/100 myofibers [4, 7, 19, 64, 73, 76, 90, 92] compared 
with an average of 9.9  Pax7+ cells/100 myofibers in seden-
tary young adults [7, 8, 14, 15, 19, 57, 63, 66, 67, 73, 76, 
77, 92, 100]. The larger effect size in older adults is mainly 
contributed by three studies [4, 64, 90]. Despite significant 
increases in  Pax7+ cell content after exercise for adults aged 
50–74 years, the time required for this exercise response 
seems to be longer in those with a higher age according to 
four studies [7, 8, 19, 73]. The primary difference between 
these four studies and the other studies was from a delayed 
response in participants aged > 70 years. Anabolic hormones 
such as insulin and sex hormones are known to decline dur-
ing late life [101–107], which may be responsible for this 
observation. Both sex hormones [108] and insulin [109] are 
essential for stem cell reproduction and tissue repair.

Table 3  (continued)

Study, year Biomarker Sample size Training status Type
(intensity)

Follow-up 
time post-
exercise

Marker 
change from 
baseline

Male (n = 4),
aged 67–76 y

Untrained  + 71%

Male (n = 4),
aged 67–76 y

Trained  + 48%

Wardyn et al., 2008 
[88]

CD34+ Male/female 
(n = 10/8),

aged 19–35 y

Untrained Aerobic exercise
(acute, 90–112% 

 VO2max)

30 min 0%

Male/female 
(n = 9/10),

aged 19–35 y

Trained Aerobic exercise
(acute, 114–148% 

 VO2max)

30 min  − 3%

Yang et al., 2007 
[85]

CD34+/KDR+ Male (n = 16),
Aged 25.1 y

Untrained Aerobic exercise
(acute, 5.5 km/h, 

14% grade, 10.2 
METS)

30 min 74%

Zaldivar et al., 2007 
[72]

CD34+ Male (n = 14),
aged 10.3 y

Trained Aerobic exercise
(acute, 50% WR)

0 h  + 63%

Male (n = 13),
aged 16.6 y

0 h  + 141%

min minutes, MVC maximal voluntary contraction, CET concentric endurance test, ECC eccentric endurance test, h hour, HRmax heart rate maxi-
mum, HRR heart rate reserve, s seconds, VO2max maximal oxygen consumption, WR peak work rate peak, y years
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Fig. 4  Time course analysis 
of circulating  CD34+ cells 
following aerobic exercise (a), 
forest plot of standardized mean 
difference for  CD34+ cells in 
circulation at follow-up meas-
urement < 2 h and ≥ 2 h after an 
acute bout of aerobic exercise 
(b). CI confidence interval, df 
degree of freedom, I2 incon-
sistency between studies, SE 
standard error
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The effect size of exercise on  Pax7+ cell expansion of 
human skeletal muscle is more pronounced in untrained 
than trained individuals (untrained: SMD = 0.81; p < 0.001 
vs trained: SMD = 0.32; p < 0.05) (Fig. S2). This result 

suggests a greater level of inflammation occurs in untrained 
skeletal muscle during challenge. The causal relationship 
between  Pax7+ cell expansion and inflammation is supported 
by an increase in  Pax7+ cells after treatments of a mixture of 
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Fig. 5  Time course analysis on circulating  CD34+ cells following 
resistance exercise (a), forest plot of standardized mean difference for 
 CD34+ cells in circulation at follow-up measurement ≤ 6 h and > 6 h 

after resistance exercise (b). CI confidence interval, df degree of free-
dom, I2 inconsistency between studies, SE standard error
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inflammatory mediators in an in vitro study [110]. The range 
of  Pax7+ cells of trained individuals was 3–33 cells per 100 
myofibers [15, 19, 57, 63, 77] compared with 4–13 cells 
per 100 myofibers of the untrained individuals [4, 7, 8, 14, 
38, 66, 67, 73, 76, 90, 92, 100]. There was only one excep-
tion that showed minimal changes (< 10%) in  Pax7+ cell 
increases 24 h following exercise with the low baseline value 
(11.5 cells per 100 myofibers) in active participants [57].

4.2  Aerobic Exercise‑Induced Stem Cell Expansion 
in Human Muscle Remains Uncertain

The literature assessing the effect of aerobic exercise on 
 Pax7+ cell content is limited [4, 38, 63]. An acute bout of 
aerobic exercise was observed to transiently deplete  Pax7+ 
cells (− 32%) in human skeletal muscle followed by a rapid 
repletion in 3 h after a 60-min aerobic exercise at 70% 
VO2max [63]. This brief reduction led to no overall effect 
in the current meta-analysis when the time of post-exercise 
recovery was not considered. One study showed an elevated 
 Pax7+/MyoD+ fraction 24 h following high-intensity aerobic 
exercise at 90–95% VO2max (+ 343%) and resistance exercise 
(+ 265%) concurrent with declines of  Pax7+/MyoD− frac-
tion [4]. Moderate exercise at 55–60% VO2max has no appar-
ent effect on such changes. This study was excluded for the 
meta-analysis because the total  Pax7+ cell content was not 
provided.

Both aerobic and resistance exercises cause cell death 
[111, 112] and senescent cell clearance [34, 113] in muscle 
tissues, particularly at high intensity.  Pax7+ cells residing in 
surrounding myofibers are required for instantaneous dona-
tion of nuclei to maintain the size and youth of the muscle 
tissues [114, 115]. In this meta-analysis, resistance exercise 
shows more prominent response in post-exercise  Pax7+ cell 
increases compared with aerobic exercise. Despite no overall 
increases in muscle  Pax7+ cells  after aerobic exercise, a 
significant increase in  Pax7+ cells (+ 41%) occurs when an 
aerobic exercise was conducted using eccentric muscle con-
traction [38]. Eccentric-based resistance exercise produces 
more muscle damage than concentric-based aerobic exercise 
[116]. In addition, aerobic exercise imposes a much greater 
challenge to pulmonary ventilation than resistance exercise, 
which inevitably causes lung damage and airway inflamma-
tion [117–119]. At rest, lungs are the main consumers of 
bone marrow-derived stem cells [120] for regenerating the 
short-lived airway epithelial cells [121]. Pulmonary illness is 
known to cause muscle loss [122, 123]. These findings point 
to a possibility that a competition for bone marrow-derived 
stem cells between lungs and muscles may explain the lower 
replenishment of  Pax7+ cells in muscle after aerobic exercise 
compared with resistance exercise.

4.3  Pax7+ Cell Expansion in Human Muscle Peaks 
at 24 Hours and Vanishes by 96 Hours After 
Resistance Exercise

The present meta-analysis shows a large effect (SMD = 0.89, 
p < 0.001) of  Pax7+ cell expansion in response to resistance 
exercise, assessed 24 h after the workout. This significant 
effect can last for 72 h (SMD = 1.03, p < 0.001), which is 
consistent with a recent systematic review summarized from 
four original studies [16]. In this meta-analysis, we included 
18 original resistance exercise studies that provided quan-
titative perspective of  Pax7+ cell expansion in human skel-
etal muscle, further suggesting that this response peaks at 
24 h post-exercise. Resistance exercise induces a protracted 
 Pax7+ cell expansion in human skeletal muscle up to 157% 
in 24 h (SMD = 0.89, p < 0.001), 45% in 48 h (SMD = 0.99, 
p < 0.001), and 57% in 72 h (SMD = 1.03, p < 0.001) post-
exercise. This effect vanished by day 4 (SMD =  − 0.14, 
p = 0.53).  Pax7+ cells are essential for myogenesis [8, 12, 
15, 57, 67, 92] following senescent cell clearance [34, 
113], resulting in exercise-induced muscle rejuvenation [4, 
124, 125]. However, a sustained  Pax7+ cell expansion also 
implies a longer period of inflammation. Inflammation is 
featured by pain, heat, redness, swelling, and loss of func-
tion which provide an explanation of delayed-onset muscle 
soreness after resistance exercise.

4.4  Exercise Induces a Transient Increase 
in Circulating  CD34+ Cells

CD34+ bone marrow-derived stem cells are multipotent and 
can further differentiate into both endothelial progenitor 
cells and satellite cells in muscle tissues [32, 94, 95, 126]. 
The results of this study reveal a transient release of  CD34+ 
cells into circulation occurs prior to  Pax7+ cell expansion in 
human skeletal muscle. The response of increasing  CD34+ 
cells lasts no more than 2 h [55]. The temporal relationship 
of immediate increases of circulating  CD34+ cells followed 
by a delayed  Pax7+ cell expansion in muscle tissues suggests 
a replenishment of stem cell reserves in challenged muscle 
tissues from bone marrow. This result matches well to the 
observation of a transient depletion of  Pax7+ cells in skeletal 
muscle followed by a quick return to the pre-exercise level 
in 3 h [63], reflecting a quick migration of circulating bone 
marrow-derived hematopoietic stem cells into the challenged 
muscle tissues [55]. Both aerobic exercise [58, 68, 78, 79, 
81, 88] and resistance exercise [82, 84] increase circulating 
 CD34+ cells to a similar extent. However, the rise-and-fall 
pattern of circulating  CD34+ cells appear to be delayed in 
an intensity-dependent manner during resistance exercise 
[60]. Taken together, a crosstalk between muscle and bone 
according to the magnitude of tissue inflammation might 
determine the duration of post-exercise release of circulating 
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 CD34+ cells and muscle  Pax7+ cell expansion. Circulating 
levels of  CD34+ cells is also influenced by the rate of bone 
marrow output and the rate of peripheral tissue consump-
tion. As aforementioned, lungs are the major consumer of 
bone marrow stem cells [120, 127]. We cannot preclude the 
possibility that the quicker return to baseline of circulating 
 CD34+ cells after aerobic exercise is associated with greater 
stem cell demands from the challenged lungs compared with 
resistance exercise. In this meta-analysis, the insignificant 
result of exercise-induced circulating level of  CD34+ cells at 
higher age remains unclear [62, 69, 79]. It may be associated 
with greater inflammation and stem cell demand of lungs 
after exercise. Further analysis could include the CC16/SP-D 
ratio, a valid and sensitive marker for lung epithelium dam-
age, assessed together with circulating levels of  CD34+ cells 
after exercise.

4.5  DNA Editing

The accumulated findings to date may be instrumental to 
indicate a new direction for improving muscle performance 
associated with genetic variation and aging. Techniques for 
enrichment and engraftment of autologous  CD34+ bone 
marrow stem cells following CRISPR-Cas9 DNA editing 
are currently available for humans [128, 129]. Recruitment 
of  CD34+ bone marrow stem cells to replenish peripheral 
stem cells in skeletal muscle requires tissue inflammation 
induced by exercise [130]. For those patients who have lose 
their capacity to exercise, contracting skeletal muscle via 
electrical stimulation can be an alternative way to induce 
adequate inflammatory response for homing and proliferat-
ing DNA-edited bone marrow stem cells. Exercise training 
combined with transplantation of DNA-edited  CD34+ bone 
marrow stem cells opens a vast range of future possibilities 
to engineer muscle phenotypes for both medical and non-
medical purposes. This approach gives us a hope to acceler-
ate evolution of humans into a species with better fitness.

5  Conclusions

Pax7+ cells are myogenic stem cells contributing to mus-
cle repair by a quick fusion of nuclei into the cytoplasm of 
myofibers and plays a key role in muscle plasticity against 
acute exercise challenges.  Pax7+ cells in muscle tissue are 
transiently depleted during exercise followed by a quick 
replenishment within 3 h, and further elevated (~ 50%) 
during 24–72 h after exercise. Exercise-induced  Pax7+ 
cell expansion in human skeletal muscle remains normal 
at higher age, despite lower reserves after age 50 years. 
Transient increases in circulating  CD34+ bone marrow 
stem cells during exercise are associated with post-exer-
cise proliferation of  Pax7+ cells in exercised muscle. The 

immediate increases in circulating  CD34+ cells after both 
aerobic and resistance exercise suggest that inflammatory 
mediators originating from inflammation of damaged muscle 
may be responsible for triggering the release of bone mar-
row-derived stem cells and seeding to damaged muscle for 
repopulating muscle stem cells. More studies are required to 
conclude the effect of acute aerobic exercise on  Pax7+ cell 
content in human skeletal muscle.
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