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Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the
spatial patterns of air temperature is important for urban planning and management. However, insuffi-
cient weather stations limit accurate spatial representation of temperature within a heterogeneous city.
This study used a random forest machine learning approach to estimate daily maximum and minimum
air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles,
USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from
Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar
radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of
impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin

for the two cities, and designed eight schemes with different input LST variables. The schemes were eval-
uated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-
validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 �C and 1.2 �C for Tmax and
Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 �C and 1.2 �C for Tmax and Tmin in Seoul,
respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature.
Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors
(e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differ-
ences between built-up and vegetated areas in the two cities.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Air temperature measured at 2 m above the ground in urban
landscapes is closely related to various urban problems such as
the urban heat island effect (Krüger and Emmanuel, 2013; Li
et al., 2004), air pollution (Aw and Kleeman, 2003; Katsouyanni
et al., 1993), and human mortality (Liu et al., 2011; Basu and
Samet, 2002). In particular, monitoring and prediction of urban
maximum and minimum air temperatures (Tmax and Tmin, respec-
tively) are crucial in populated areas as they are directly related to
fatal disasters such as heat waves and tropical nights (Gabriel and
Endlicher, 2011; Romero-Lankao et al., 2012). With large popula-
tions and complex infrastructure, tiny temperature changes within
a city may significantly affect both human and natural environ-
ments (Hondula et al., 2012; Schuster et al., 2014). Therefore, it
is important to understand and monitor the spatio-temporal pat-
terns of urban air temperature.

Air temperature is generally measured at weather stations with
high temporal resolution and accuracy. In a city, natural and artifi-
cial materials are mixed at various spatial scales and respond dif-
ferently to incoming solar radiation, which in turn affects air
temperature (Hart and Sailor, 2009). However, the number of
weather stations in urban areas is limited and thus the spatial dis-
tribution of air temperature determined through spatial interpola-
tion of in situ measurements may be insufficient to provide
detailed temperature variation at local scale (Courault and
Monestiez, 1999). In addition, approximately three-quarters of
the world’s largest cities are located very close to coastlines, which
complicates accurate spatial interpolation of station-based tem-
perature data (Vogt et al., 1997).

Satellite data provide global land surface information, such as
land surface temperature (LST), vegetation indices, elevation, and
land cover, which enable estimation of urban air temperature
based on the assumption that such land surface information is
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highly related to urban air temperature. Many studies have focused
on the use of remote sensing-derived LST to estimate air tempera-
ture with various approaches such as the Temperature-Vegetation
indeX (TVX) method, energy balance models, and statistical and
machine learning approaches.

The TVX method assumes that the surface temperature of an
infinitely thick, fully vegetated canopy is close to its surrounding
air temperature. This technique focuses on the negative correlation
between Normalized Difference Vegetation Index (NDVI) and LST
(Nemani and Running, 1989), so that air temperature can be
obtained by using the maximum NDVI of the study area under
investigation (Prihodko and Goward, 1997; Zhu et al., 2013;
Stisen et al., 2007). Energy balance models are based on thermody-
namics, which calculate the radiation balance from latent, sensible,
and soil heat fluxes, considering that the atmosphere and the sur-
face exchange energy and mass (Sun et al., 2005; Zhang et al.,
2015). Many statistical analyses, including simple and multiple lin-
ear regressions, have been employed to estimate air temperature
using LST (Vogt et al., 1997), or with auxiliary variables such as
NDVI, solar radiation, and elevation (Shi et al., 2016; Chen et al.,
2015; Xu et al., 2012). Recent studies have used machine learning
approaches such as random forest (RF), Cubist, support vector
machine (SVM), and neural networks to estimate air temperature
from remote sensing data (Zhang et al., 2016; Moser et al., 2015;
Ho et al., 2014). Machine learning has proven to be flexible in areas
with complicated and heterogeneous landscapes for estimating air
temperature from LST and additional variables (Noi et al., 2017; Ho
et al., 2014).

Two Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors onboard Terra and Aqua satellites provide four LST data-
sets (two daytime and two nighttime) per day. Studies have inves-
tigated air temperature estimation using various combinations of
these four MODIS LST datasets (Noi et al., 2017; Zhang et al.,
2016). They commonly found that estimation accuracy varied by
both model and the data used in the combination.

LST datasets have been widely used in urban application studies
(Weng, 2009; Zhang et al., 2017; Zhang and Li, 2018; Song andWu,
2018). However, it is difficult to estimate air temperature solely
using remote sensing within urban areas, which typically have a
smaller dynamic temperature range than a larger region that
includes a mixture of rural and urban areas with a multitude of
land cover types. A strong linear relationship between LST and
air temperature within a city might not be valid (Voogt and Oke,
2003). Micro-scale advection from neighboring areas with complex
surface materials and different land use deteriorates the signifi-
cance of the relationship between LST and air temperature in urban
landscapes (Stoll and Brazel, 1992). Since the TVX method is suit-
able for areas with high vegetation coverage, it is not appropriate
for estimating air temperature in urban regions that typically have
low vegetation cover. Consequently, the linear relationship
between LST and NDVI is not always valid andmany factors includ-
ing seasonality, soil moisture, land cover, and vegetation phenol-
ogy affect the relationship (Sandholt et al., 2002; Vancutsem
et al., 2010). Quantitative energy balance modeling in an urban
area is difficult because of heterogeneous surface materials and
complex urban landscapes with varying amount of incoming fluxes
(Harman, 2003; Grimmond et al., 2010). Therefore, in order to esti-
mate urban air temperature using satellite images, it is necessary
to apply more advanced methods, including multiple regression
models using various time series LSTs, machine learning
approaches, or other sophisticated algorithms (Ho et al., 2014;
Bechtel et al., 2014, 2017; Agathangelidis et al., 2016;
Keramitsoglou et al., 2016).

Ho et al. (2014) used two machine learning techniques—SVM
and RF—as well as ordinary least squares regression to map the
urban Tmax of Vancouver, Canada, from Landsat satellite data,
resulting in a root mean square error (RMSE) of 2.31 �C. However,
Landsat satellite imagery has limitations for monitoring urban air
temperature due to its low temporal resolution with a 16-day revi-
sit. Bechtel et al. (2014) applied multiple regression methods to
estimate air temperature in Hamburg, Germany using LST time ser-
ies data with 15-min temporal resolution from the geostationary
Spinning Enhanced Visible Infra-Red Imager instrument onboard
the Meteosat Second Generation satellite (MSG-SEVIRI). To esti-
mate urban air temperature at a particular time, LSTs collected at
earlier times were integrated (RMSE = 1.5–1.8 �C). Moreover,
Bechtel et al. (2017) modified the method suggested by Bechtel
et al. (2014) to improve the air temperature estimation by consid-
ering global radiation of specific time together with dense time
series of LSTs for 29 urban and rural stations in Germany (RMSE
<2.0 �C for most stations). Agathangelidis et al. (2016) estimated
air temperature in Athens, Greece from MSG-SEVIRI images, by
applying multi-temporal approaches, using polynomial regression
and artificial neural networks. Second order polynomial regression
combining concurrent LST and air temperature observations with
LST from the previous 1–8 h resulted in RMSEs of 1.0–1.2 �C, with
artificial neural networks giving a slightly better result. Using more
LST data generally yielded higher model performance because air
temperature is influenced by ground temperature from the previ-
ous hours (Bechtel et al., 2014, 2017; Agathangelidis et al., 2016).
Keramitsoglou et al. (2016) developed an operational real-time
nowcasting module for monitoring air temperature at interpolated
1 km resolution with MSG-SEVIRI images. They retrieved vertical
profiles of air temperature based on a physical algorithm using
MSG-SEVIRI LST and evaluated model performance using air tem-
perature observations measured in 15 cities in Europe and North
Africa (RMSE = 2.3 �C). Since the time when daily Tmax and Tmin

occur does not typically correspond to satellite data acquisition
time, it is very challenging to estimate them from satellite-
derived LST data. This present study therefore investigated how
multiple LSTs measured at different times can be effectively com-
bined to estimate the Tmax and Tmin in two urban regions with dif-
ferent climate conditions.

The objectives of this research were to: (1) examine the rela-
tionship between multi-temporal LSTs and daily Tmax and Tmin in
urban regions with different climate conditions; (2) develop
machine learning-based models to estimate urban Tmax and Tmin

using selected LSTs and other satellite-derived data; and (3) inves-
tigate the spatial distribution of the daily Tmax and Tmin during
summer time in urban landscapes. Moderate Resolution Imaging
Spectroradiometer (MODIS) LST time series data were used to esti-
mate daily Tmax and Tmin in two mega cities—Los Angeles, USA and
Seoul, South Korea. NDVI, elevation, solar radiation, latitude, longi-
tude, aspect and percentage of impervious area were used as aux-
iliary data. Random forest, a widely used machine learning
approach, was used to estimate daily Tmax and Tmin.
2. Study area

Two urban megacities with different climates, Los Angeles and
Seoul, were selected for this study (Fig. 1). Los Angeles, the
second-most-populated city in the USA (34�030N and 118�150W),
is composed of both flat and hilly regions. The eastern end of the
Santa Monica Mountains, stretching from downtown Los Angeles
to the Pacific Ocean, separates the Los Angeles Basin from the
San Fernando Valley. The city covers an area of 1290 km2 and is
bounded by the San Gabriel Mountains to the east. The population
of Los Angeles in 2016 was estimated to be about 4 million. Los
Angeles has a Mediterranean climate, according to Koeppen-
Geiger climate classification system, with dry summers and moist
winters. Precipitation is concentrated in late fall, winter, and



Fig. 1. Study areas and the location of weather stations for Los Angeles (Left) and Seoul (Right). The black line indicates the city boundary. Stations are numbered in order of
decreasing elevation (the larger number, the lower elevation). Land cover is aggregated from MODIS MCD12Q1 land cover.
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spring, with much less rain in the summer (�0.04 in. during July
and August). The average Tmax and Tmin are 29.1 �C and 17.8 �C in
August, which is the warmest month in Los Angeles.

The other study area is Seoul (37�330N and 126�580E), which is
situated in the northwest of South Korea. Seoul is geographically
divided into northern and southern parts by the Han River and is
bordered by four distinct mountains. The center of the city is
located 60 km inland from the west coast of South Korea. Seoul
has an area of 605 km2 with very high population density (i.e., the
estimated population in 2016 was about 10 million). Seoul has a
humid subtropical climate according to the Koeppen-Geiger cli-
mate classification system. Summers in Seoul are especially hot
and humid because of East Asian monsoons, and have the relatively
high amount of summer precipitation (�15.54 in. during July
and August). The average Tmax and Tmin are 29.6 �C and 22.4 �C,
respectively, in August, which is the warmest month in the city.

3. Data and methods

3.1. Satellite data

MODIS Terra and Aqua data were used in this study. MODIS
data have been widely utilized to observe atmosphere, ocean and
land processes in the Earth. MODIS products—LST and NDVI
(h08v05 for Los Angeles and h28v05 for Seoul)—from 2006 to
2016 in hot summer days (July and August) were downloaded from
reverb echo (http://reverb.echo.nasa.gov). Daily LST data
(MYD11A1 for Aqua and MOD11A1 for Terra), which have 1 km
spatial resolution, were used. The MODIS LST data were produced
using a generalized split-window algorithm (Wan and Dozier,
1996; Li et al., 2013b). Terra MODIS provides LST data observed
at 10:30 am solar local (daytime) and 10:30 pm (nighttime). Aqua
MODIS also provides two LST collections at local solar times of
1:30 pm (daytime) and 1:30 am (nighttime). NDVI data were
obtained from a 16-day composition of MOD13A2 with 1 km spa-
tial resolution.

The elevation of the two cities was retrieved from Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) with
30 m spatial resolution (https://earthexplorer.usgs.gov). Land cover
type data were available from Fine Resolution Observation and
Monitoring of Global Land Cover (FROM-GLC), which is a 30 m spa-
tial resolution global land-cover map produced using Landsat The-
matic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
data (http://data.ess.tsinghua.edu.cn). A global land cover map
(FROM-GLC-Hierarchy) with 250 m spatial resolution created from
FROM-GLC (Yu et al., 2014), was obtained to calculate the percent-
age of impervious surfaces in this study. MODIS land cover data
(MCD12Q1) was also used for classifying built-up and vegetated
area within the two cities.

3.2. Satellite-derived variables

From the Terra and Aqua satellites, daytime and nighttime LSTs
were obtained (LSTTD, LSTTN, LSTAD, LSTAN; see Table 1 for designa-
tions). In consideration of the lag time of heat transport from
ground level land surface temperature to 2 m air temperature
(Jin and Mullens, 2014), land surface temperatures taken the day
before (LSTTBD, LSTTBN, LSTABD, LSTABN) were also used. Thus, a total
of eight LSTs were taken as variables for daily air temperature esti-
mations in this study (Table 1).

The auxiliary variables to be used in conjunction with the LSTs
were selected based on previous studies of air temperature estima-
tion (Table 1); NDVI, elevation, solar radiation, latitude, and longi-
tude have frequently been used in the literature (Xu et al., 2012;
Ho et al., 2014; Janatian et al., 2017; Yan et al., 2009). We also used
aspect and the percentage of impervious area as additional input
variables. Area solar radiation was calculated using the ArcGIS
Solar Analyst tool (Esri) to get daily solar radiation. Incoming solar
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Table 1
Description of variables used in this study.

Variable type Acronym
(unit)

Description

Land surface
temperature (LST)

LSTAN (�C) Aqua LST taken on the day
(1:30 am; night)

LSTTD (�C) Terra LST taken on the day
(10:30 am; day)

LSTAD (�C) Aqua LST taken on the day
(1:30 pm; day)

LSTTN (�C) Terra LST taken on the day
(10:30 pm; night)

LSTABN (�C) Aqua LST taken the day before
(1:30 am; night)

LSTTBD (�C) Terra LST taken the day before
(10:30 am; day)

LSTABD (�C) Aqua LST taken the day before
(1:30 pm; day)

LSTTBN (�C) Terra LST taken the day before
(10:30 pm; night)

Auxiliary variable (a) Sol (wh/m2) Daily incoming solar radiation
NDVI Normalized Difference

Vegetation Index
Lat (�) Latitude
Lon (�) Longitude
Elev (m) Elevation
Asp Transformed Aspect
Imp (%) Percentage of impervious

areas

Air temperature Tmax (�C) Maximum air temperature
Tmin (�C) Minimum air temperature
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radiation of each pixel is computed by inputting elevation and day
of year (DOY) into ArcGIS. Latitude and longitude values were
extracted from the information contained in the MODIS tiles.
Aspect has been shown to affect air temperature (McCutchan and
Fox, 1986). To facilitate incorporation in analysis, the transformed
aspect by Beers et al. (1966) was used as an input variable in this
study (Eq. (1)).

Transformed aspect ¼ Cosð45� � AspectÞ þ 1 ð1Þ
The extent of impervious areas was used to represent the

urbanization of the region (Piyoosh and Ghosh, 2017; Hao et al.,
2016; Arnold and Gibbons, 1996). We calculated the percentage
of impervious surface areas within each 1 � 1 km2 pixel using
the FROM-GLC land cover data that has a 250 m spatial resolution.
Daily solar radiation (Sol) was assumed to have the same temporal
pattern by year. NDVIs of a 16-day composite were assumed to
have the same daily values during the 16-day cycle. Elevation
(Elev), aspect (Asp), longitude (Lon), latitude (Lat), and percentage
of impervious areas (Imp) were used as static variables. In this
study, these seven auxiliary variables were together called ‘‘a”.

3.3. In situ meteorological data

Daily Tmax and Tmin during July and August from 2006 to 2016
were obtained from weather stations in Los Angeles (i.e., National
Climatic Data Center (NCDC) stations) and Seoul (i.e., Automatic
Weather Stations (AWSs) operated by Korea Meteorological
Administration) and used as reference data. Since Los Angeles
has a relatively small number of stations, additional stations
located near the city boundary were also included in this study.
A total of 18 NCDC station around Los Angeles and 23 AWS stations
in Seoul were obtained for the analysis.

3.4. Methods for estimating air temperatures

Fig. 2 shows the summarized process flow of our proposed
methodology. We compared each of eight LSTs (LSTTD, LSTTN, LSTAD,
LSTAN, LSTTBD, LSTTBN, LSTABD and LSTABN) with in situ Tmax and Tmin

for the two cities to design schemes that used different combina-
tions of LSTs. Based on the correlation results between each LST
and the in situ data, a total of eight test schemes (S1 to S8) were
developed to estimate daily Tmax and Tmin. The first scheme (S1)
has the LST that resulted in the highest correlation with in situ
measurements; the second scheme (S2) uses the two LSTs that
yielded the first and second highest correlation with in situ data,
with subsequent schemes adding in LSTs in successive correlation
order. In this way, the last scheme (S8) uses all eight LSTs. The
seven auxiliary variables (a) were added for each scheme (refer
to Table 3 in Results and Discussion for scheme summary).

The machine learning approach random forest (RF), was used to
estimate the air temperatures. RF has been widely used for classi-
fication and regression in remote sensing applications (Amani
et al., 2017; Kim et al., 2015; Lu et al., 2014; Naidoo et al., 2012;
Park et al., 2016; Rhee et al., 2014; Richardson et al., 2017;
Rodriguez-Galiano et al., 2012; Sonobe et al., 2017). The RF
approach has recently begun to be used for the estimation of air
temperature (Zhang et al., 2016; Ho et al., 2014). RF is an algorithm
based on classification and regression trees (CART; Breiman, 2001),
which uses a recursive binary split approach to reach final nodes in
a tree structure. RF generates a large set of CARTs (typically 500–
1000 trees) based on randomly selected subsets through boot-
strapping from both training samples for a tree and predictor vari-
ables at each node of the tree. This bootstrapping-based
randomization approach overcomes existing problems in the CART
method, including sensitivity to the training samples and overfit-
ting (Belgiu and Drăgut�, 2016; Kim et al., 2014; Lee et al., 2017;
Im et al., 2016; Yoo et al., 2012). To reach a final decision, RF aggre-
gates the outputs from many trees through averaging or weighted
averaging for regression. In the RF models for the eight schemes
(S1 to S8), LSTs and seven auxiliary variables (a) were used as inde-
pendent variables, and in situ daily Tmax or Tmin was used as a
dependent variable. The RF was implemented using R statistical
software through the ‘randomForest’ add-on package with default
model parameter settings, except for the number of trees (ntree).
In this study, we used 1000 trees, which is a widely selected ntree
value in remote sensing applications such as estimating air tem-
perature (Xu et al., 2014; Li et al., 2013a; Park et al., 2016).

Since different numbers of LSTs were used for the models, the
number of available samples differed by model mainly due to
clouds. In order to appropriately evaluate the models, the same
samples were used to calibrate and validate the models. Thus,
the same samples were determined for all eight models and used
for calibration and validation. Ten (10)-fold cross-validation was
conducted to evaluate the performance of the eight schemes for
each air temperature. The samples were separated into ten subsets
and each subset was used to validate the model that was devel-
oped using the other nine subsets. This procedure was repeated
in all ten subsets for every scheme. The coefficient of determina-
tion (R2) and root mean square error (RMSE) calculated using 10-
fold cross-validation results were used to compare the perfor-
mance of the schemes. Normalized RMSE (i.e., RMSE divided by
the range of observations; nRMSE) was also used when different
models with different samples were compared in terms of perfor-
mance. The scheme that resulted in the highest accuracy was iden-
tified and used to investigate the spatial distribution of Tmax and
Tmin for Los Angeles and Seoul. All available samples were used
to map the spatial distribution using the best scheme, since the lar-
ger the number of samples, the more robust the developed model
is (Stisen et al., 2007).

RF measures relative variable importance using out-of-bag sam-
ples when a variable is randomly permuted (Breiman, 2001). For
each tree, the mean squared error (MSE) of the out-of-bag portion
of samples is recorded. Then, the same process is conducted when



Fig. 2. Flowchart of this study. Procedures are divided into two main parts: scheme design (left) and modeling and assessment (right).
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each predictor variable is perturbed. The differences between the
twoMSEs for all trees are averaged and normalized by the standard
deviation of the differences (i.e., increased percentage of mean
squared error (%incMSE)). The higher the %incMSE of a variable,
the greater the contribution of the variable is. We averaged vari-
able importance through ten iterations of the best schemes for Tmax

and Tmin estimation in the two cities to ensure the reliability of the
results.

4. Results and discussion

4.1. Comparison of air temperatures and LSTs

Fig. 3 shows the variations of MODIS-derived LSTs and Tmax and
Tmin measured at weather stations for the two cities. Los Angeles
has relatively high LSTs in the daytime (Fig. 3b, c), compared to
Seoul (Fig. 3h, i). This may be due to more incoming solar radiation
and less vegetation cover in dry Los Angeles than Seoul (Table 2).
Generally, NDVI and daytime LST show an inverse relationship in
the summer. In humid Seoul, wet soils in summer have higher heat
capacity than the dryer soils of Los Angeles due to the proportional
relationship between soil moisture and heat capacity (Oke, 2002).
Therefore, the daytime LSTs of Los Angeles could increase more in a
short time than those of Seoul. In the daytime, when sunlight
reaches the surface, LSTs (LSTTD, LSTAD) show a large temperature
variation between the stations, compared to the nighttime LSTs
(LSTTN, LSTAN) for both cities. Daytime LSTs were shown to be more
unstable than nighttime LSTs due to incoming solar energy (Yang
et al., 2017; Zeng et al., 2015). It should be noted that the difference
between daytime LSTs and nighttime LSTs is much higher in Los
Angeles than Seoul. This suggests a surface heat-trapping phe-
nomenon in Seoul, which may result from the higher heat capacity
of the relatively humid soil (Price, 1980).

In Los Angeles, Tmax is significantly lower than the daytime LSTs.
In Seoul, however, Tmax is similar to the daytime LSTs. One possible
reason may be the different summer climate types between the
two cities; with cloudy summers, LST and air temperature are clo-
ser in Seoul (Gallo et al., 2011; Good, 2016). At both cities, Tmin is
similar to LSTAN—which is the lowest daily LST variable—and the
temperature variation among stations is insignificant. With no
incoming solar radiance at night, the surface heat output exceeds
input so the surface cools enough to avoid significant temperature
variation among stations. By the same principle, temperature vari-
ation of LSTAN is more moderate than that of LSTTN. A sufficiently
cooled surface (i.e., LSTAN) shows little spatial variation among
the stations at night.

The Tmax variation among the stations (Fig. 3a) shows a ten-
dency similar to the daytime LSTs (Fig. 3b, c), and the Tmin variation
(Fig. 3d) tends to be similar to that of nighttime LSTs (Fig. 3e, f) in
Los Angeles. However, in Seoul, both Tmax and Tmin (Fig. 3g, j) have
similar variations among the stations as the nighttime LSTs
(Fig. 3k, l). Seoul is more densely populated than Los Angeles. More
anthropogenic heat sources and air pollutants cause the air to be
warm enough throughout the entire city (Shahmohamadi et al.,
2011). These factors could influence the reduced variation of both
Tmax and Tmin among the stations in Seoul compared to Los Angeles
(Fig. 3a, d, g, j). These results played an important role in estimat-
ing air temperatures in this study.

The correlation between each LST and Tmax and Tmin for both
cities was examined (Fig. 4). For Tmax in Los Angeles, LSTTN shows
the highest correlation (r = 0.56). The daytime LSTs, LSTAD and
LSTTD, have a slightly lower r value with Tmax (both r = 0.53). The
Tmin of Los Angeles shows a significantly higher correlation of
LSTAN (r = 0.7), followed by the other nighttime LSTs, LSTTN, LSTABN,
and LSTTBN. The daytime LSTs showed much lower correlation than
LST at night (r = 0.1–0.15).

In Seoul, Tmax has the highest correlation with LSTAN (r = 0.66),
followed by LSTABN (r = 0.58). The r value between LSTAD and Tmax

is the lowest among the LSTs. The decrease in Tmax variation in
Seoul (Fig. 3g) seems to be the primary cause. In the case of Tmin

in Seoul, LSTABN showed the highest correlation (r = 0.75), followed
by LSTAN (r = 0.66). It is difficult to identify precisely why LSTABN
has a higher correlation with Tmin than LSTAN has, but there could
be a time-lag-effect at Seoul caused by surfaces with high thermal
capacity retaining heat and continuing to warm the air for a long
time. This result illustrates the significance of LST variables of



Fig. 3. Boxplots of four LSTs (LSTTD, LSTTN, LSTAD, LSTAN) and observed Tmax and Tmin for Los Angeles and Seoul for each station. Refer to Fig. 1 for station numbers (18 stations
in Los Angeles and 23 stations in Seoul).
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Table 2
Pixel values of the mean (standard deviation) calculated from the NDVI and daily
incoming solar radiation (Sol) averaged in study periods (July-August 2006–2016)
within city boundary.

City NDVI/builta NDVI/vegb Sol (wh/m2)

Los Angeles 0.29 (0.10) 0.44 (0.11) 5541 (94)
Seoul 0.43 (0.13) 0.65 (0.14) 5325 (57)

a,b ‘Built’ and ‘veg’ indicate the built-up and vegetated areas classified within the
city boundary.
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the previous day, which have not been used for estimating air tem-
perature in previous studies. In addition, the specific time—1:30
am for LSTAN and LSTABN—shows more correlation with both Tmax

and Tmin in Seoul than LST for the other times, which suggests it
can be applied to future studies, such as forecasting short-term
temperature using satellite images.

4.2. Scheme performance

The eight schemes (S1 to S8) that use correlation analysis to
estimate Tmax and Tmin at two different cities are listed in Table 3.
Due to cloud-contaminated pixels, the sample size decreases as
Fig. 4. Correlation coefficients (r values) between the eight LSTs and
more LST variables are added. When all eight LSTs are used (S8),
the number of samples is 3123 in Los Angeles and only 163 in
Seoul, which is particularly impacted by the high cloud cover rate
that is common during the humid summer. In order to appropri-
ately compare the results, the same samples corresponding to S8
were used for all schemes.

Table 4 summarizes the 10-fold cross-validation results. In Los
Angeles, S5 shows the highest performance for estimating Tmax,
and S8 shows the highest performance for Tmin. Comparing S1
(using only one LST) with the best performing schemes, S5 yielded
a higher increase in performance for estimating Tmax (DR2 = +0.147
and DRMSE = �0.63 �C) than S8 for Tmin (DR2 = +0.05 and DRMSE
= �0.16 �C). The higher improvement for estimating Tmax seems to
relate to the much larger dynamic range of Tmax than Tmin. In Seoul,
S3 produced the best results for estimating both Tmax and Tmin. The
use of multiple LSTs improved Tmax and Tmin estimation. However,
there is a limit to improving performance by using more LSTs.
Model performance reached a peaked then decreased with addi-
tional LSTs in the case of estimating Tmax in both Los Angeles (S6
to S8) and Seoul (S4 to S8), and Tmin in Seoul (S4 to S8). The added
LSTs that decreased the model accuracy might have redundant or
contradictory information.
Tmax and Tmin in (a) and (b) Los Angeles and (c) and (d) Seoul.



Table 3
List of eight schemes (S1-S8) with sample size for estimating Tmax and Tmin of (a)–(b)
Los Angeles and (c)–(d) Seoul. The first scheme (S1) has the LST that had the highest
correlation with in situ measurements; the second scheme (S2) uses the two LSTs that
yielded the first and second highest correlation with in situ data, with subsequent
schemes adding LSTs in increasing correlation order to the last scheme (S8), which
uses all eight LSTs. The seven auxiliary variables (a) were added for each scheme.

Scheme Input variables Sample size
(N)

(a) Tmax in Los Angeles
S1 LSTTN + a 7655
S2 LSTTN + LSTAD + a 6542
S3 LSTTN + LSTAD + LSTTD + a 6004
S4 LSTTN + LSTAD + LSTTD + LSTABD + a 5405
S5 LSTTN + LSTAD + LSTTD + LSTABD + LSTAN + a 4250
S6 LSTTN + LSTAD + LSTTD + LSTABD + LSTAN + LSTTBD + a 3968
S7 LSTTN + LSTAD + LSTTD + LSTABD + LSTAN + LSTTBD +

LSTTBN + a
3646

S8 LSTTN + LSTAD + LSTTD + LSTABD + LSTAN + LSTTBD +
LSTTBN + LSTABN + a

3123

(b) Tmin in Los Angeles
S1 LSTAN + a 6087
S2 LSTAN + LSTTN + a 5699
S3 LSTAN + LSTTN + LSTABN + a 4373
S4 LSTAN + LSTTN + LSTABN + LSTTBN + a 4159
S5 LSTAN + LSTTN + LSTABN + LSTTBN + LSTTBD + a 3815
S6 LSTAN + LSTTN + LSTABN + LSTTBN + LSTTBD + LSTTD + a 3436
S7 LSTAN + LSTTN + LSTABN + LSTTBN + LSTTBD + LSTTD +

LSTABD + a
3294

S8 LSTAN + LSTTN + LSTABN + LSTTBN + LSTTBD + LSTTD +
LSTABD + LSTAD + a

3123

(c) Tmax Seoul
S1 LSTAN + a 3545
S2 LSTAN + LSTABN + a 1427
S3 LSTAN + LSTABN + LSTTD + a 717
S4 LSTAN + LSTABN + LSTTD + LSTTN + a 649
S5 LSTAN + LSTABN + LSTTD + LSTTN + LSTABD + a 335
S6 LSTAN + LSTABN + LSTTD + LSTTN + LSTABD + LSTTBN + a 302
S7 LSTAN + LSTABN + LSTTD + LSTTN + LSTABD + LSTTBN +

LSTTBD + a
216

S8 LSTAN + LSTABN + LSTTD + LSTTN + LSTABD + LSTTBN +
LSTTBD + LSTAD + a

163

(d) Tmin in Seoul
S1 LSTABN + a 3476
S2 LSTABN + LSTAN + a 1427
S3 LSTABN + LSTAN + LSTTN + a 1193
S4 LSTABN + LSTAN + LSTTN + LSTTBN + a 950
S5 LSTABN + LSTAN + LSTTN + LSTTBN + LSTTD + a 533
S6 LSTABN + LSTAN + LSTTN + LSTTBN + LSTTD + LSTABD + a 302
S7 LSTABN + LSTAN + LSTTN + LSTTBN + LSTTD + LSTABD +

LSTTBD + a
216

S8 LSTABN + LSTAN + LSTTN + LSTTBN + LSTTD + LSTABD +
LSTTBD + LSTAD + a

163

‘a’ includes NDVI, elevation, solar radiation, latitude, longitude, aspect, impervious
area (%).

Table 4
Ten (10)-fold cross-validation results (R2 and RMSE) for eight schemes for two cities.
The same samples (corresponding to S8) were used: 3123 for Los Angeles and 163 for
Seoul. Best models are highlighted in bold.

Tmax in Los Angeles
(N = 3123)

Tmin in Los Angeles
(N = 3123)

Scheme R2 RMSE (�C) R2 RMSE (�C)

S1 0.695 2.32 0.727 1.35
S2 0.743 2.13 0.761 1.23
S3 0.825 1.77 0.765 1.22
S4 0.829 1.75 0.765 1.22
S5 0.842 1.69 0.767 1.22
S6 0.839 1.70 0.774 1.20
S7 0.837 1.71 0.775 1.20
S8 0.837 1.71 0.777 1.19

Tmax in Seoul (N = 163) Tmin in Seoul (N = 163)

Scheme R2 RMSE (�C) R2 RMSE (�C)

S1 0.615 1.12 0.690 1.21
S2 0.642 1.07 0.734 1.12
S3 0.679 1.03 0.737 1.12
S4 0.663 1.05 0.736 1.12
S5 0.647 1.07 0.723 1.14
S6 0.659 1.05 0.725 1.15
S7 0.651 1.06 0.728 1.15
S8 0.646 1.07 0.730 1.14
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Based on evaluation of the different schemes, we selected S5
and S8 to further investigate the spatial distribution of Tmax and
Tmin, respectively, for Los Angeles, and S3 for mapping both Tmax

and Tmin in Seoul. A final RF model was run using all samples. In
Los Angeles, R2 values for estimating Tmax (Fig. 5a) and Tmin

(Fig. 5b) are 0.850 and 0.777, respectively. In Seoul, R2 for estimat-
ing Tmax (Fig. 5c) and Tmin (Fig. 5d) are 0.728 and 0.767, respec-
tively. Tmax and Tmin estimation of Los Angeles have 1.7 �C and
1.2 �C cross-validation RMSE, respectively. In Seoul, the cross-
validation RMSE values were 1.1 �C and 1.2 �C for Tmax and Tmin

estimation, respectively. Among the four models, the model esti-
mating Tmax at Los Angeles resulted in the highest correlation with
in situ data, but RMSE was also the highest. However, with a lower
nRMSE (5.9%) than those of the other air temperature estimations
(7–8%), this large RMSE was attributed to the much wider Tmax

range in Los Angeles—i.e., from 19 �C to 48 �C—than the other
cases. Nevertheless, all four best performing air temperature
models produced R2 over 0.7 and RMSE values less than 1.7 �C
(nRMSE < 8.4%). These performances are comparable with or better
than those from the literature (RMSE of 2.31 �C for Vancouver (Ho
et al., 2014), RMSE of 1.5–1.8 �C for Hamburg (Bechtel et al., 2014),
RMSE of 1–2 �C for Athens (Agathangelidis et al., 2016) and RMSE
of 2.3 �C for 15 cities in Europe and North Africa (Keramitsoglou
et al., 2016).

LSTs exhibit relatively high variable importance scores in the
final RF Tmax and Tmin models (i.e., the best performing schemes;
Fig. 6). However, it is better to interpret the variable importance
together with the multicollinearity between the LSTs which could
influence the process of calculating the variable importance
(Murray and Conner, 2009). The extent of collinearity among LSTs
can be measured using the variance inflation factor (VIF)
(Marquaridt, 1970), which quantifies the rate of inflation in the
variance of regression coefficients calculated by ordinary least
square regression between each variable and the others.

In Los Angeles, the most correlated LST with Tmax is LSTTN
(Fig. 4a). The variable importance of LSTAN, however, is higher than
those of the other four LSTs (Fig. 6a). This might be due to low VIF
(2.71) of LSTAN (Table 5a). For Tmin estimation in Los Angeles, the
LSTAN, which has the highest correlation value with Tmin (Fig. 4b),
and the lowest VIF among LSTs has a distinctively high variable
importance (Fig. 6b). In Seoul, the VIF of LSTs are relatively lower
than that of Los Angeles, and the order of correlation of each LST
(Fig. 4c, d) is consistent with that of the importance scores
(Fig. 6c, d).

Among the seven auxiliary variables, it should be noted that
solar radiation was identified as a contributing variable in estimat-
ing not only Tmax but also Tmin for both Los Angeles and Seoul. Since
daily solar radiation varies both spatially and temporally (Burgess,
2009), solar radiation might have higher importance than the other
auxiliary variables, which were assumed to be static over time.
However, variable importance is influenced by many factors, such
as model structure (Knudby et al., 2010; Strobl et al., 2007), so
interpreting the variable importance demands more attention.

4.3. Analysis of spatial distribution of air temperatures

Average Tmax and Tmin maps for July and August 2006 to
2016 were produced for the two cities. Figs. 7 and 8 show air



Fig. 5. Density scatter plots between estimated and observed air temperatures from 10-fold cross-validation results based on the best schemes. The color ramp from blue to
red corresponds to increasing point density. Black solid lines show the regression line and red dashed lines represent the line of identity (y = x); nRMSE is the normalized root
mean square error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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temperature maps averaged across days with more than 90% non-
cloud-contaminated pixels within the city boundaries. The scatter
plots show high correlation, which suggests well-simulated spatial
distribution of the air temperature in the selected maps. The spa-
tial distributions of Tmax and Tmin in Los Angeles are noticeably dif-
ferent. In the case of the Tmax (Fig. 7a, b), the coastal areas are
cooled by a strong sea breeze in the daytime (Simpson, 1994). This
causes those regions to have relatively low Tmax (including stations
13, 15, and 11). However, regions above 34�N latitude—the San
Fernando Valley (including stations 6, 3, and 7)—have very high
Tmax above 30 �C. One possible reason is the geographic character-
istics of the San Fernando Valley, bounded by the Santa Susana
Mountains to the north, the Santa Monica Mountains to the south,
and the Simi Hills to the west. The hills and mountains could block
the daytime sea breezes from the southwest. Thus, more heat is
trapped within the San Fernando Valley—the average observed
Tmax is 34.3 �C at stations 3, 6, and 7); it is known to be even hotter
than downtown Los Angeles—the observed Tmax is 29.1 �C at
station 12—in the daytime.
Considering the Tmin distribution in Los Angeles (Fig. 7c, d), the
difference in temperatures between the built-up areas and other
regions (e.g., vegetated areas) appears quite clearly. At night, the
cold wind coming from the mountain (Smith, 1979) causes the sur-
rounding areas to have much lower Tmin. From the mountain area
to the city center, the Tmin increases (stations 6, 13, 11, and 3),
reaching much higher Tmin at the center of city (stations 7 and
12), like downtown Los Angeles—except for station 15, located at
the international airport near the coast. Due to high energy use
at night and the large impervious area at the airport (Edwards,
2005), the region might shows higher Tmin than the surrounding
areas. In summary, for Los Angeles, the cooling effect of the sea
breeze is weakened, and more heat is concentrated within the city
at night.

In the case of Seoul, built-up areas and surrounding mountains
show apparent temperature differences both in Tmax and Tmin

(Fig. 8a, c). However, the spatial pattern of temperatures within
the city is different between the Tmax and Tmin. The eastern part
of the urban area (�127�E longitude) has a relatively higher Tmax



Fig. 6. Relative variable importance (i.e., increase in percentage of mean square error (%incMSE) using out-of-bag samples when a variable was permuted) calculated from the
final RF models (i.e., best performing schemes).

Table 5
Variance inflation factors (VIF) among eight LSTs in two cities. Higher VIF of a variable
means it has higher multi-collinearity with the other variables in estimating the
target variable.

Variance inflation factors (VIF)

(a) Los Angeles (b) Seoul

LSTTN 3.62 1.99
LSTAD 5.24 1.86
LSTTD 4.28 2.49
LSTAN 2.71 2.04
LSTTBN 3.40 2.01
LSTABD 5.20 2.13
LSTTBD 4.50 1.95
LSTABN 2.97 2.83
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than the western area (Fig. 8a). The sea breeze blowing from the
West Sea of the Korean Peninsula is strong in the daytime, and
the western part of Seoul is cooled by the breeze. But the influence
of this breeze decreases as it enters the eastern inland (Pokhrel and
Lee, 2011). In Seoul, most of the built-up areas have higher Tmin
compared to the surrounding areas (stations 9, 1, 3, and 4)
(Fig. 8c, d). This is due to the impervious surfaces holding heat
longer in the afternoon compared to other areas, such as moun-
tains; the sea breeze effect disappears at night.

It should be noted that the difference in temperature between
built-up and vegetated areas is more apparent in the Tmin rather
than the Tmax in both cities (Fig. 7b, d, 8b, d). This is consistent with
previous studies, showing that urbanization is more likely to affect
the Tmin than the Tmax, along with studies showing that the urban
heat island phenomenon can be identified more at night than dur-
ing the day in a city (Kalnay and Cai, 2003; Hua et al., 2008; Hamdi
and Vyver, 2011). Considering that the Tmax distribution of the two
cities is greatly influenced by both sea breezes and cooling moun-
tain winds at night, we suggest the use of wind-related variables
for future urban temperature estimation studies.

4.4. Novelty and limitation

Most existing studies estimating air temperature by combining
the MODIS multi-time series LSTs use only four (two daytime and



Fig. 7. (a) Map of spatial distribution of average Tmax and (b) the corresponding scatterplot between the average observed air temperature and average estimated air
temperature in Los Angeles. (c) and (d) for Tmin.
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two nighttime) LSTs collected on the target date (Noi et al., 2017;
Zhang et al., 2016). This study took four LSTs of the target day
and four LSTs from the prior day, using a total of eight MODIS LSTs
for daily air temperature estimation. The LSTs of the previous day
were important variables for both Tmax and Tmin estimation in
urban landscapes with different environments. In particular,
LSTABN was identified as the most important and second most
important variable among eight LSTs for Tmax and Tmin estimations,
respectively, in Seoul. Therefore, we expect LSTs of the previous
day (especially night time LSTs) will be used in future urban air
temperature studies. In addition, unlike many of the previous stud-
ies that estimated urban air temperature focusing on a single urban
study area (Ho et al., 2014; Bechtel et al., 2014; Agathangelidis
et al., 2016) or continental scale studies with one station for each
city (Keramitsoglou et al., 2016), we investigated two mega cities
with quite different climatic and environmental characteristics
(i.e., dry Los Angeles and humid Seoul) on a local scale. This sug-
gests that the proposed methodology can be successfully applied
to a wide range of urban landscapes with limited in situ air temper-
ature measurements.

The research findings from this study can be applied to forecast
future air temperature using only LSTs collected the day before. RF
models using the LSTs of the day before (LSTABN, LSTTBD, LSTABD and
LSTTBN) with auxiliary variables were tested for both cities
(Table 6). Although the overall performance is slightly lower than
the previous eight schemes, it is very promising to forecast daily
Tmax and Tmin using satellite-derived LSTs. In particular, in the case
of the Tmin in Seoul, the performance is very good (R2 = 0.767,
RMSE = 1.19 �C), which can be used to forecast tropical nighttime
lows.



Fig. 8. (a) Map of spatial distribution of average Tmax and (b) the corresponding scatterplot between the average observed air temperature and average estimated air
temperature in Seoul. (c) and (d) for Tmin.

Table 6
The 10-fold cross-validation results of the models using just LSTs collected the day before with auxiliary variables (LSTABN + LSTTBD + LSTABD + LSTTBN + a) for forecasting Tmax and
Tmin. The numbers of samples are 4595 for Los Angeles and 635 for Seoul.

Air temperature R2 RMSE (�C) nRMSE (%)

Los Angeles Tmax 0.691 2.43 8.55
Tmin 0.567 1.64 8.89

Seoul Tmax 0.649 1.40 11.90
Tmin 0.767 1.19 8.01
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This study has some limitations. When various LSTs are com-
bined, there are many no-data regions due to cloud contamination,
especially in humid areas such as Seoul. This is a really challenging
problem when using satellite-derived LSTs for forecasting Tmax and
Tmin. One solution could be usingmulti-temporal solar radiations as
surrogate variables for contaminated LSTs (Bechtel et al., 2017).
Although Los Angeles and Seoul have different climate
characteristics, they are located in coastal areas in mid-latitude,
which implies that it is necessary to investigate other areas which
have completely different geographic characteristics. In addition,
there are slight variations of local solar time by pixel and collection
date when MODIS data are collected (Duan et al., 2014). Thus, the
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normalization of LSTAN, LSTTD, LSTAD and LSTTN datasets for consis-
tent local solar time might improve the performance of the pro-
posed models. Because this study was focused on using satellite-
based products, other variables such as wind velocity and relative
humidity should be examined in future research.

5. Conclusion

In this study, we estimated Tmax and Tmin in two mega cities, Los
Angeles and Seoul, with different climate and environmental char-
acteristics. Eight MODIS Terra and Aqua LSTs (4 times a day and 4
times the day before), and seven auxiliary variables were used for
temperature estimation based on random forest machine learning.
Eight schemes with various combinations of LSTs were evaluated
and the best performing schemes were used to examine the spatial
distribution of Tmax and Tmin for Los Angeles and Seoul. Though
urban areas have complex landscapes, this study produced very
promising results with R2 higher than 0.7 and RMSE less than
1.7 �C for estimating both Tmax and Tmin in the cities. The spatial
distribution of Tmax and Tmin for Los Angeles and Seoul showed dis-
tinct patterns caused by various factors such as sea breeze, sur-
rounding mountains, and urban density.

This study revealed that there were specific LSTs that showed
higher correlation with each Tmax and Tmin in urban landscapes
with different environments. We also found that using LSTs col-
lected the day before, which were not considered in previous stud-
ies, was crucial for urban air temperature estimation. It should be
also noted that the use of more LSTs does not guarantee better per-
formance in estimating air temperature. Several valuable findings
from this study deserve a further study focusing on forecasting
(�24 h in advance) daily maximum (heat waves) and minimum
(tropical nighttime lows) air temperatures.
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