Correspondence

Comments on “On the Combining of the Amplitude and Phase Modulation in the Same Signal”
Chenhao Qi and Lenan Wu

Abstract—In this correspondence, we comment on the proposed phase modulation scheme described in the above paper. We also suggest revising Table I to eliminate possible confusion.

Index Terms—Amplitude modulation, digital modulation, phase modulation.

For spectral efficiency improvement, a phase modulation scheme based on AM broadcasting is proposed [1], which transmits digital phase modulated data over the existing AM radio channel. In this correspondence, the generation of digitally modulated baseband signal, and its decomposition into a periodic signal and a data signal, are illustrated in detail, as shown in Fig. 1. The digital data stream \(d(t) \) modulates a reference carrier (clock) using the encoding rules of Table I, and results in the digitally modulated baseband signal of \(\text{③} \), which is then decomposed into \(\text{④} \) and \(\text{⑤} \). For clarification purposes we combine Figs. 2 and 3 of [1] in a single Figure. This results in a different but more comprehensive presentation of the encoding rules of Table I. In order to present the whole encoding process, each transitional point in Fig. 1 is aligned and marked with dashed line.

In Table I, we suggest following three changes:

a) The first rule that data transition from logic 0 to 1 will result in the change of logic state to the opposite, one high-clock cycle after the middle of the bit [1, Table I], is suggested to be revised as “half high-clock cycle after the middle of the bit”.

b) The second rule that data transition from logic 1 to 0 will result in the change of logic state to the opposite, one high-clock cycle before the middle of the bit [1, Table I], is suggested to be revised as “half high-clock cycle before the middle of the bit”.

c) The last rule in [1, Table I] is suggested to be revised as “the preservation of either logic state, from 0 to 0 or from 1 to 1, will result in the change of the logic state to the opposite, \(k \) high-clock cycles after the previous change”. In [1], \(k \) is defined as the number of reference clock cycles during each data clock period \(T_b \).

The above three changes are demonstrated by the third sentence in the first paragraph of Section III [1]. Therefore, according to our opinion, the proposed phase modulation scheme becomes more comprehensive and in order to eliminate any possible confusion, the changes proposed above are necessary.

REFERENCES