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ABSTRACT Given that severe weather conditions are becoming more frequent, it is important to 

understand the influence of weather on an individual’s daily activity-travel pattern. While some 

previously rare events are becoming more common, such as heavy rain, unpredicted snow, higher 

temperatures, it is still largely unknown how individuals will change and adapt their travel patterns in 

future climate conditions. Because of this concern, the number of research studies on weather and travel 

behaviour has increased in recent decades. Most of these empirical studies, however, have not used a 

cost-benefit analysis (CBA) framework, which serves as the main tool for policy evaluation and project 

selection by stakeholders. This study summarises the existing findings regarding relationships between 

weather variability and travel behaviour, and critically assesses the methodological issues in these 

studies. Several further research directions are suggested to bridge the gap between empirical evidence 

and current practices in CBA. 

 

Key words: weather; travel behaviour; large-scale transport model; transport policy; cost-benefit 

analysis. 
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Introduction 1 

As a result of global warming and climate change, it is expected that severe weather events will become more 2 

frequent. Maximum and minimum temperatures will become more extreme, while precipitation patterns will tend 3 

to shift towards more intensive individual storms; (Collins et al., 2013). Travellers’ reactions, and ways in which 4 

they may adapt to a warmer and more extreme future climate are becoming popular topics in the travel behaviour 5 

area. Weather and climate are considered to influence travel behaviour, and have been investigated in various 6 

studies that suggest an impact of non-trivial magnitude (see reviews, Koetse & Rietveld, 2009; Böcker, Dijst, & 7 

Prillwitz, 2013; Dijst, Böcker, & Kwan, 2013). Many studies have focused on the disruptions caused by extreme 8 

weather conditions (for example, Lam, Shao, & Sumalee, 2008; Fu, Lam, & Meng, 2014; Zanni & Ryley, 2015) 9 

while less attention has been paid to everyday weather conditions (for example, Sabir, 2011; Böcker, Dijst, & 10 

Faber, 2014). The impact of everyday weather on transport systems may be substantial, although not particularly 11 

noticeable because the variation of everyday weather influences the individual’s travel patterns throughout the 12 

year. Extreme weather may have a strong negative impact on transport systems in a sub-region, and its impact is 13 

often long-term (Van Leeuwen, Koetse, Koomen, & Rietveld, 2009). Since extreme weather events will become 14 

more frequent in the future, travel behaviour adaptation to these extreme events is expected, resulting in more 15 

substantial travel behaviour changes in future extreme weather conditions, compared to travel behaviour changes 16 

in response to the variations in current weather conditions. 17 

Studies focusing on weather impacts on travel behaviour differ from each other in a variety of 18 

perspectives. Some use different representations of weather and investigate weather impacts on users of different 19 

travel modes. The impact of weather has been found to be stronger on active and open-air transport modes, 20 

particularly cycling, than in-vehicle modes (Sabir, 2011). The most commonly investigated weather dimensions 21 

(meteorological variables) are temperature, precipitation, wind speed and snowfall (in Nordic countries and 22 
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Canada). The impacts of humidity, fog, sunshine and cloud are less often investigated (for a detailed summary of 1 

study locations and weather dimensions, please see Table 1). Despite the inclusion of various weather dimensions, 2 

its effects are often not well distinguished. In that sense, an increase of temperature in summer is often assumed 3 

to have the same effect on travel behaviour as an increase of temperature in winter. Moreover, studies tend to 4 

focus mainly on western temperate and cold countries but empirical evidence from the global south is lacking 5 

(Böcker, Dijst, & Prillwitz, 2013). 6 

Table 1 summarises a non-exhaustive set of empirical findings with respect to the focus on travel 7 

behaviour dimensions, weather dimensions, the study location, the data source, and the methodology issues. 8 

(Table 1) 9 

In general, these studies have used data collected from two sources: passively generated data and survey 10 

data. Studies using passively generated data usually focus on aggregated level indicators, such as bicycle flow, 11 

for example, the number of cyclists crossing a section of a specific cycle lane during a certain period (Brandenberg, 12 

Matzarakis, & Arnberger, 2007; Nosal & Miranda-Moreno, 2014). These indicators reflect the level of a given 13 

transport service under different weather conditions. Other studies have utilised traditional survey data that 14 

include detailed individual characteristics. An on-site survey can also collect information on weather perception 15 

(e.g., Thorsson, Honjo, Lindberg, Eliasson, & Lim, 2007; Sihvola, 2009). These types of data can help researchers 16 

to further understand how weather affects travel decision making processes. However, most travel surveys collect 17 

only one-day travel behaviour of a given respondent, while passively generated data (for example, GPS 18 

trajectories on travel routes) normally record multi-day travels of a given individual. Future studies combining 19 

survey data with passively generated data have the potential to better unravel the complex relationships between 20 

weather and travel behaviour. 21 
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Studies carried out in different countries, for example, those in tropical areas versus temperate areas, or 1 

developing countries versus developed countries, may also yield distinct results since inhabitants in different 2 

regions may have different weather adaptation strategies, resulting in different perceptions of 3 

“normal”/“cold”/“warm”. Variations in culture, land use and transportation networks may also affect the impact 4 

of weather in different regions. So far, most studies (Table 1) have focused on a single travel behaviour dimension, 5 

such as mode choice or trip distance, while only a few have developed models involving several travel behaviour 6 

dimensions (e.g. Böcker, Dijst, Faber, & Helbich, 2015; Liu, Susilo, & Kalström, 2015a). Since travel is a derived 7 

demand of activity participation, studies that jointly model activity time use and activity participation with travel 8 

mode choice and trip distance seem to better describe weather impacts. For instance, a decreased walk share with 9 

the increase of temperature (Sabir, 2011) could be the result of changing activity location; for example, more long 10 

distance trips result in a lower walk share. 11 

Although much effort has been put into quantifying the impact of weather on travel behaviour, the 12 

resulting information is rarely transferred or integrated into the existing transport planning process. Given the 13 

significant weather impacts on travel behaviour, it is likely that future travel demand could vary in a warmer 14 

climate scenario (Böcker et al., 2013), and thus lead to variations in, for example, traffic flow, bicycle usage, and 15 

transit ridership, resulting in changes in various transport externalities, such as road congestion, emissions, safety, 16 

etc. Figure 1 presents the dynamic interactions between weather and travel behaviour. 17 

(Figure 1) 18 

As shown in Figure 1, different weather dimensions, such as temperature, precipitation, and wind speed, 19 

can affect individuals’ travel decisions resulting in changes to travel mode, trip frequency, destination, etc. 20 

Changes in travel behaviour could then lead to changes in transport system usage, such as more or less traffic and 21 

more or less transit ridership in adverse weather conditions. Most studies have investigated weather impacts on 22 
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traffic flow and transit ridership through a direct approach such as regression analysis using data from single or 1 

several intersections or stations (e.g. Akin, Sisiopiku, & Skabardonis, 2011; Guo, Wilson, & Rahbee, 2007). Few 2 

studies have investigated weather impacts on traffic networks by integrating findings from travel behaviour 3 

models into transport demand-supply models. Therefore, the induced externalities such as emissions, which may 4 

again influence the future climate, are difficult to quantify. 5 

This paper aims to provide a systematic summary and discussion of weather-related issues in travel 6 

behaviour analysis, transport models and transport appraisal. It focuses on the discussion and critical evaluation 7 

of existing studies investigating the relationship between weather and travel behaviour, and relationships between 8 

weather and transport system usage. This paper also assesses the potential of including weather impacts on 9 

transport externalities through a cost-benefit analysis (CBA) framework. Understanding these issues would be 10 

helpful in bridging the gap between existing knowledge of travel behaviour regarding plausible weather 11 

variability impacts and the absence of weather-related factors in transport appraisal and its related policy measures. 12 

The next section comprises a review of studies investigating the relationship between weather and travel 13 

behaviour. This is followed by a discussion of studies investigating the relationship between weather and transport 14 

system usage. Then, the potential consequences of ignoring the impacts of weather in transport appraisal are 15 

presented. Finally, this paper concludes by summarising the findings from the previous sections. 16 

Weather impacts on travel behaviour dimensions 17 

Among various travel behaviour dimensions, mode choice is the measure focused on by most studies (e.g. Sabir, 18 

2011; Saneinejad, Roorda, & Kennedy, 2012). It is not surprising that leisure travel is more elastic than 19 

commuting in response to changes in weather conditions (Liu, Susilo, & Karlström, 2015b). Cycling has been 20 

found to be the most elastic towards these changes in weather. Studies in the Netherlands, Canada and Sweden 21 

have showed that bicycle usage positively correlates with temperature until the temperature reaches 25 °C (Sabir, 22 
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2011; Saneinejad, Roorda, & Kennedy, 2012; Liu, et al., 2015a). Snow is the major factor that negatively impacts 1 

on bicycle usage (Cools, Moons, & Creemers, 2010). Precipitation and wind speed are two other major weather 2 

factors that negatively affect both commute and non-commute cycling (Aaheim & Hauge, 2005; Heinen, Maat, 3 

& Wee, 2011; Flynn, Dana, Sears, & Aultman-Hall, 2012). Their impacts are non-linear; that is, there is a sharp 4 

decline of cycling demand at the slightest hint of rain followed by much steadier reductions (Phung & Rose, 5 

2008). Saneinejad et al. (2012) showed an increasing probability of travellers choosing to walk on rainy days. 6 

Most studies focusing on mode choice did not find significant impacts of wind speed and relative humidity on 7 

walking, although Sabir (2011) found an increasing walk share in heavy wind. The usage of private cars is higher 8 

in low temperature conditions (Saneinejad et al., 2012; Liu et al., 2015), and people tended to switch from walking 9 

and cycling to cars and public transport during rainy days (Sabir, 2011). 10 

A few studies have investigated the weather impacts on travel scheduling and travel distance/travel time 11 

by mode. Walking and car travel distances are shorter in warmer temperatures, while cycle travel distances 12 

become longer (Bergström, & Magnusson, 2003); snow corresponds to an increase in walking distance at the 13 

expense of car distance (Sabir, 2011). Snow also encourages trip chaining with all types of purposes, including 14 

commute, errands and discretionary (Liu, Susilo, & Karlström, 2015d). Weather has been found to significantly 15 

influence drivers’ behaviours, including a 6-7 km/h speed reduction and an increase in drivers’ perceived accident 16 

risk (Kilpeläinen & Summala, 2007). Drivers are also likely to change route in adverse weather conditions 17 

(Sumalee, Uchida, & Lam, 2011). 18 

Most of these studies have investigated the roles of multiple weather dimensions on one or a few travel 19 

behaviour dimensions. However, various issues may arise when this approach is adopted. 20 
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Matching weather to travel survey data 1 

Most studies used objective meteorological indicators to represent weather dimensions, such as temperature, wind 2 

speed or relative humidity. These were assigned to each trip by matching the meteorological indicators from the 3 

weather station closest to the trip departure point and selecting the weather variable present at the departure time 4 

(examples are: Sabir, 2011; Saneinejad, Roorda, & Kennedy, 2012; Liu, Susilo & Karlström, 2014). It was 5 

assumed that each traveller would base his or her travel decision on the weather conditions that prevailed at the 6 

departure place and time. Different interpolation methods were used to match weather data from sparsely 7 

distributed weather stations to trip origins/destinations. Chen and Mahmassani (2015) interpolated weather over 8 

the study area based on the observed meteorological indicators at the stations. Jaroszweski and McNamara (2014) 9 

used a weather radar approach, though their focus was on traffic accidents. Nevertheless, these techniques tried 10 

to assign the most “accurate” weather information to each spot by assuming a certain spatial distribution of the 11 

meteorological indicators. 12 

Another issue is whether to match the weather information to the departure time and location, or arrival 13 

time and location, or a certain point of time during the trip. Chen and Clifton (2011) argued that travellers would 14 

assess the weather conditions based on the conditions prior to travel. Chen and Mahmassani (2015) assumed that 15 

travellers would anticipate the weather conditions and they therefore matched weather according to the destination 16 

location and time, although they also admitted that “more research is needed to examine how weather is 17 

incorporated in travel decision processes” (Chen and Mahmassani, 2015 p. 58). Based on a stated preference 18 

survey, Cools and Creemers (2013) showed that “planned” travel decisions are often changed at the last minute 19 

in response to an adverse weather presented. Sihvola (2009) interviewed the drivers and found a substantial 20 

number of drivers changing their travel plans (that is, their route or departure time). However, more empirical 21 

evidence is needed from revealed preference studies. 22 
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Weather dimensions separately or in combination 1 

Since weather dimensions are recorded in terms of observed meteorological variables (for example, temperature, 2 

wind speed), it is logical to assess the effect of each individual meteorological variable on travel behaviour (see 3 

review, Böcker, Dijst, & Prillwitz, 2013a). Studies tend to use a linear function of weather dimensions (variables), 4 

which assumes that each meteorological variable has a single and independent effect on the travel behaviour 5 

indicator of interest. To capture the bell-shape effect of certain meteorological variables, mostly temperature and 6 

precipitation, the continuous measures are often segmented into different intervals, and different parameters are 7 

estimated for each interval. For example, Sabir (2011) found a bell-shape effect of temperature on bicycle usage 8 

which increased along with the temperature up to 25 ˚C and decreased when the temperature rose above 25 ˚C. 9 

Different classifications of the variable levels may also affect the interpretation of the model results and their 10 

application to demand forecasting. For instance, studies in the Netherlands (Sabir, 2011; Böcker et al., 2015) 11 

classified “temperature ≥ 25°C” as an interval, while Saneinejad et al. (2012) in Toronto classified “temperature 12 

25-30°C, 31-35°C and ≥ 35°C” as three intervals. 13 

More importantly, different meteorological variables often naturally correlate, indicating that the effects 14 

of meteorological variables are interrelated. Phung and Rose (2008) found a combined negative effect of wind 15 

and light rain on bicycle flow. A few weather studies in travel behaviour have used data mining techniques. 16 

Clifton, Chen, and Cutter (2011) used a two-step clustering technique to classify various types of weather 17 

conditions based on observed meteorological variables. However, it is worth mentioning that data mining 18 

techniques including clustering, factor analysis, Bayesian inference etc. have long been used to identify weather 19 

types in climatology (see review, Tian, Zheng, Yang, Ji, & Wang, 2014). Recent advances in thermal comfort 20 

studies have shown that various weather parameters have a joint effect on individuals’ perception of the thermal 21 

environment (see review, Chen & Ng, 2012). Thermal comfort indexes have been used to explain variations in 22 
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demand for activity space usage long before their application to travel behaviour studies (e.g. Nikolopoulou, 1 

Baker, & Steemers, 2001; Lin, 2009). Creemer et al. (2015) pioneered weather-related travel behaviour studies 2 

by introducing different thermal comfort constructs and comparing their performance in travel behaviour models. 3 

They concluded that physiologically equivalent temperature, among various thermal comfort indexes, is the most 4 

suited to represent weather in travel behaviour models. Liu, Susilo, and Karlström (2015d) used the universal 5 

thermal climate index (UTCI) instead of temperature, wind speed and relative humidity, to represent thermal 6 

comfort when investigating trip chaining behaviour. However, in most travel behaviour studies related to weather, 7 

thermal comfort measures have not replaced observed meteorological variables.  8 

Another issue is that most of these studies did not separate the effects of weather and of climate. In studies 9 

directly using meteorological variables or using thermal comfort measures, one cannot separate these two effects. 10 

For instance, 10°C in summer in a country of cold climate may have a completely different effect from 10°C in 11 

winter in the same country. The former may be interpreted as “cold in summer” while the latter may be interpreted 12 

as “warm in winter”. Sabir (2011) used dummy variables to represent that trips took place in different seasons 13 

(seasonal dummies), together with the temperature variables in a travel behaviour model, and found significant 14 

effects of the seasonal dummies. However, this approach hinders the interpretation of the effect of temperature 15 

variables because their parameters should then be interpreted as the effects of changing temperature values in 16 

different temperature intervals after controlling for the season, which does not seem to be reasonable. Liu et al. 17 

(2015d) proposed an alternative approach; that is, to allow the parameters of different temperature intervals to 18 

interact with the parameters of seasonal dummies. Liu et al. (2014; 2015b) proposed another approach to separate 19 

the effect of climate and the effect of weather. They used the mean of historical meteorological variables or 20 

thermal comfort measures in a given month and given location of each trip as a variable to represent climate 21 

effect. They used the standardised deviation against this variable to represent the weather effect. This assumes 22 
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that travellers recognise the historical meteorological variables and will respond to changes in them. In general, 1 

there is still no consensus on how the effect of climate should be represented. Furthermore, variations in climate 2 

are often seasonal, and correspond with other non-weather-related factors that exhibit a seasonal pattern. For 3 

instance, the estimated effect of “summer” compared to that of “winter” may also capture the effects of summer 4 

holidays. It is not possible and not meaningful to separate the effect of climate and the effect of non-weather-5 

related events because they always co-occur. 6 

Fundamentally, weather is perceived by travellers and this perception affects travellers’ travel decision 7 

making. Studies on weather perception have tended to originate from the discipline of psychology  (e.g. 8 

Thorsson, Lindqvist, & Lindqvist, 2004; Thorsson, Honjo, Lindberg, Eliasson, & Lim, 2007; Thorsson, Lindberg, 9 

Björklund, Holmer, & Rayner, 2011; Connolly, 2013) although a few have come from the field of travel behaviour 10 

and mobility (Böcker, Dijst, & Faber, 2014; Liu, Susilo, & Karlström, 2015c). Weather perception naturally 11 

defines a reference point of “good/bad” weather. Therefore, prospect theory (Kahneman & Tversky, 1979) and 12 

latent variable models (Everitt, 1984) are likely to also be applied to model weather perception. 13 

Weather perception, as one element, has been shown to strongly influence an individual’s mood and 14 

happiness. For instance, sunshine can directly increase the level of happiness by impacting on mood (Cunningham, 15 

1979). However, this can be because a sunny day is associated with higher possibilities of outdoor leisure 16 

activities which provide more happiness (Keller et al., 2005). Indeed, weather, well-being and travel patterns are 17 

interrelated. Psychologists tend to explore the role of weather on well-being while treating travel patterns as 18 

mediating effects (see reviews, Kööts, et al., 2011), but travel behaviour analysts tend to explore the role of 19 

weather on travel patterns while treating well-being as control variables. However, to the authors’ knowledge, 20 

only a few travel behaviour studies have included questions regarding the subjective perception of weather (e.g. 21 

“does today’s weather make you feel cold?”) and investigated its relationship to travel patterns. Liu et al. (2015c) 22 
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included one weather perception question “how did the weather make you feel on the given day?” and found that 1 

an extreme value of this question (very satisfied/very unsatisfied) was associated with changes in leisure activity 2 

participation, with a larger magnitude for “very unsatisfied” with the weather. Böcker, Dijst, Faber, and Helbich 3 

(2015) included a measure of perceived temperature and showed that weather-exposed cyclists experienced 4 

thermal conditions as significantly colder than the more weather-protected users of motorised transport modes. 5 

Eliasson et al. (2007) included a 5-Likert scale question “What is your perception of the weather today?” and 6 

found a clear correlation between the response to the question and the number of attendances at an urban outdoor 7 

environment. Thorsson et al. (2007) included a series of 5-Likert scale subjective weather questions “How do you 8 

experience the current weather today, calm or windy, cold or warm, good or bad for outdoor activity?” and 9 

showed clear climatic and cultural differences in weather perception between Japan and Sweden. 10 

Travel behaviour dimensions separately or in combination 11 

It has been shown that most studies have focused on only one or two travel behaviour dimensions, mostly mode 12 

choice, number of trips and trip distance (see Table 1). However, the effect of a given weather dimension on one 13 

travel behaviour dimension may have an indirect influence on another travel behaviour dimension, and vice versa. 14 

For instance, travellers may choose a closer destination on rainy days which indirectly increases the likelihood of 15 

walking. Ignoring the indirect effect could potentially lead to a biased interpretation of estimated weather effects 16 

(Liu, Susilo & Karlström, 2015b). Most existing weather-travel behaviour studies used multinomial Logit model 17 

for mode choice, negative binomial model/ordered Probit model for trip frequency and Tobit model for trip 18 

distance (see Table 1). However, multivariate econometric models that are able to capture the indirect effect and 19 

model several joint travel behaviour dimensions (such as joint mode choice and departure time choice (Habib, 20 

Day, & Miller, 2009) and joint car choice and car distance travelled (Fang, 2008)), have the potential to offer 21 

more insights into joint activity-travel behaviour changes under different weather conditions. 22 
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Moreover, most previous studies analysed travel behaviour changes trip by trip separately and not within 1 

a daily aggregated travel pattern. In studies analysing daily aggregated travel patterns, either daily aggregated 2 

weather information was assigned to each individual, or the average of weather information (measured at each 3 

trip departure/arrival time) was matched to all trips made by a given individual. The advantage of analysing daily 4 

aggregated travel patterns, rather than focusing on each individual trip, is that travellers’ daily space-time 5 

constraints can better be incorporated into the analysis than by analysing trip level travel patterns (Liu, Susilo & 6 

Karlström 2015b). For instance, if a traveller has had a long working day, he/she may be too tired to respond to 7 

opportunities offered by “good”/“better weather than usual” and will use a car rather than cycling. Helbich, 8 

Böcker, and Dijst (2014) also argued that daily aggregated weather should be used because transport mode choice 9 

is frequently decided in a longer-term context rather than instantaneously. Moreover, travellers’ daily time use 10 

may also be affected by weather conditions. Connolly (2008) found that men spent an extra half an hour working 11 

on rainy days compared to sunny days. However, daily aggregated weather information may not capture the actual 12 

weather conditions experienced by the traveller, given that weather conditions may vary dramatically within a 13 

day. This clearly introduces errors in the analysis. Furthermore, some of the weather effects may not only have 14 

an instantaneous effect but may also affect trips when the given weather condition ends. For instance, snow may 15 

accumulate on the ground, thus hindering cyclists even when the snowfall is over. In this case, daily aggregated 16 

snow depth may capture the effect. 17 

Weather impacts on transport system usage dimensions 18 

In studies focusing on traffic volume, pedestrian rate, bicycle counts and transit ridership, weather information is 19 

either measured at the study locations (e.g. Edwards, 1999; Akin, Sisiopiku, & Skabardonis, 2011), or taken from 20 

a nearby weather station (e.g. Keay & Simmonds, 2005; Kim, Mahmassani, & Dong, 2010). Since the study 21 

location is pre-known (fixed) and individual information is not available, it is a common practice to regress a 22 
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relationship between the recorded weather conditions at the study location at that point of time and the travel 1 

indicator (flow or count). 2 

Studies summarised in Table 1 have shown that the number of walking trips is positively associated with 3 

temperature and negatively correlated with snowfall (Aultman-Hall, Lane, & Lambert, 2009; Montigny, Ling, & 4 

Zacharias, 2012). The impact of weather on road traffic has been extensively studied among all travel modes. 5 

Snowfall corresponds to a significant reduction in traffic volume of up to 70% (Hanbali, & Kuemmel, 1993; 6 

American, Maze, Agarwal, & Burchett, 2006; Cools, 2009). Precipitation plays a minor role in weekday traffic 7 

volume (<5% in most studies) and a moderate role in weekend traffic (Chung, Ohtani, Warita, Kuwahara, & 8 

Morita, 2005; Kim, Mahmassani, & Dong, 2010). Road capacity also drops during rainy days (Brilon, Geistefeldt, 9 

& Regler, 2005). Meanwhile, adverse weather conditions, mainly precipitation, also correspond with a mild speed 10 

reduction, ranging from 2%-12% in different studies (Kyte, Khatib, Shannon, & Kitchener, 2001; Oh, Shim, & 11 

Cho, 2002; Maze, Agarwal, & Burchett, 2006). These empirical findings all suggest that different traffic speed-12 

flow-density relationships should be used for traffic assignment models in normal and adverse weather conditions. 13 

This is particularly important for simulations of peak-hour traffic, as road capacity drop is expected in adverse 14 

weather conditions whereas the demand for commute car trips may not drop. 15 

Bicycle flow is more elastic than traffic volume towards adverse weather conditions. Thomas, Jaarsma, 16 

and Tutert (2013) found that almost 80% of the fluctuation in daily bicycle flow can be explained by changes in 17 

weather conditions. Rainfall and temperature have a relatively strong effect on the propensity to cycle to work, 18 

with a similar magnitude to that of the effect of hilliness (Parkin, Wardman, & Page, 2008). Wind speed has a 19 

moderate effect on bicycle flow (Tin, Woodward, Robinson, & Ameratunga, 2012). Relative humidity and cloud 20 

level also have significant effects on hourly bicycle flow but with relatively small marginal effects (Gallop, Tse, 21 

& Zhao, 2012). These effects differ significantly between weekdays and weekends, indicating the different roles 22 
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of weather in utilitarian cycling and leisure cycling. A moderate pedestrian volume reduction is also found on 1 

rainy days (Montigny et al., 2012). Transit ridership decreases during rainfall and in snowy conditions (Hofmann 2 

& Mahony, 2005; Guo, Wilson, & Rahbee, 2007); this effect is much stronger on weekends (Singhal, Kamga, & 3 

Yazici, 2014). Singhal, Kamga, and Yazici (2014) also found significant differences between weather impacts on 4 

hourly ridership and weather impacts on daily ridership, indicating time-dependent weather impacts. 5 

Understanding weather impacts on transport system usage using transport models 6 

The studies discussed above have adopted direct regression models to investigate the role of weather on transport 7 

systems usage. However, changes in traffic volume/bicycle flow/transit ridership under adverse weather 8 

conditions are the result of travellers’ complex travel decision making, such as cancelling the trip, changing travel 9 

mode, changing destination, changing route, rescheduling the trip, etc. A traditional transport four-step model 10 

normally includes trip generation, mode choice, destination choice and route choice (often the shortest path). 11 

Therefore, using the transport model to assess the impacts of weather on traffic volume/bicycle flow/transit 12 

ridership has the advantage of considering some travel behaviour changes (although four-step models are 13 

criticised as not being behavioural models, since they are based on trip based models not activity based) rather 14 

than the empirical relationship between weather and traffic volume/bicycle flow/transit ridership. However, few 15 

transport models currently include weather as an input. 16 

Most large-scale transport models build upon the well-known nested-Logit model structure (Ben-Akiva, 17 

1974) due to its ability to accommodate a large number of alternatives. Examples of these large-scale demand 18 

models include: TRB in USA (TRB, 2007), Sampers in Sweden (Algers, Mattsson, Rydergren, & Östlund 2009) 19 

and DNM in Denmark (Larson & Filges, 1997). These large-scale nested-Logit models often involve thousands 20 

of alternatives regarding destination choice, mode choice, departure time choice and trip frequency choice, etc. 21 

The models are often estimated via sampling of alternatives (Ben-Akiva & Lerman, 1985). However, it is difficult 22 
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in practice to include weather dimensions as attributes in these models because a weather dimension at a given 1 

time often has the same value for traffic zones close to each other, since weather data is often available only at 2 

regional level. This means that the parameter of a given weather dimension must differ between alternatives (since 3 

only the differences in choice attribute values matter). Consider the simplest example when only one weather 4 

dimension, for example, temperature, is included. Then for a nested-Logit model with a large choice set (for 5 

instance destination choice), the generic parameter of that weather attribute may be difficult to estimate since a 6 

large portion of alternatives (zones) may have the same value of temperature. Alternatively, weather measures 7 

can interact with other generic parameters such as the travel time parameter. Such an approach can capture the 8 

heterogenous weather impacts on travel time sensitivity. 9 

Since the transport models are calibrated by travel survey data in which good weather and adverse 10 

weather conditions are sampled, the predicted or simulated travel choices are interpreted neither as travel choices 11 

in good weather nor as travel choices in bad weather, but a kind of average of travel choices in good and bad 12 

weather, depending on the proportions of samples under good/bad weather. The corresponding aggregated 13 

measures from the models, such as mode share and origin-destination demand, are also not aggregated measures 14 

in good/bad weather. 15 

Although most transport models tend to focus on peak-hour traffic or commute trips which are less 16 

affected by weather (Liu et al., 2015b), many of these models also have detailed model components for leisure 17 

trips (for instance, Sampers in Sweden). However, to what extent the model components of leisure trip demand 18 

are biased due to the absence of weather variables is largely unknown, so are the policy evaluations related to 19 

those modelled leisure trips. 20 

Another important question concerns whether route choice should be modelled as a behavioural model. 21 

Although some empirical evidence (e.g. Zhang & Chen, 2009; Sabir, 2011) has revealed potential route choice 22 
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changes due to adverse weather, current practice mainly adopts non-behavioural roles in route choice (e.g. the 1 

shortest path according to generalised route cost) for the traffic assignment package. Above all, a holistic 2 

framework is needed to incorporate the influence of weather in large-scale transport models, from both demand 3 

and supply perspectives. 4 

Considering weather in cost-benefit analyses and transport appraisal 5 

Cost-benefit analysis has long been used to guide project selection and policy evaluation. As climate change is 6 

becoming a serious concern, it is important for transport policies and investments to cope with the climate change. 7 

As discussed above, the absence of weather variables in large-scale transport models hinders the incorporation of 8 

weather in transport appraisal and policy evaluation; almost no CBA considers the influence of weather on social 9 

benefits and cost estimates. Figure 2 illustrates the potential issues of considering weather in different components 10 

of CBAs. 11 

 12 

(Figure 2) 13 

 14 

In Figure 2, two other components: general parameters (e.g. future discount rates and marginal costs of 15 

public funds) and investment costs (e.g. increased construction costs in adverse weather conditions) are not 16 

discussed as they are beyond the scope of this paper. However, it is worth noting that weather may significantly 17 

affect these parameters, e.g. Brekke and Johansson-Stenman (2008) discussed the choice of future discount rates 18 

in climate change policies. As presented in Figure 2, beside the components of “large-scale transport model” and 19 

“data for estimation” which are discussed extensively above, the other two components (scenario assumption and 20 

effect models) also receive attention. 21 
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As CBA often involves predictions of future scenarios, appropriate assumptions of future climate and 1 

future weather are needed. However, given the fact that future climate and weather are also strongly affected by 2 

human activity, the relationship between weather/climate and human activity (including transportation) is 3 

reciprocal. One approach is to adopt existing knowledge from climate prediction models. However, considerable 4 

uncertainty exists in both the climate prediction and the transport models. The predicted outcome from such a 5 

climate-transport model would need to be interpreted with caution. Nevertheless, scenario analyses are required 6 

to represent several possible projected futures. 7 

The results of CBAs are often sensitive to the specification of effect models (including value of time, 8 

emissions, social cost of accidents, value of noise, etc.). Effect models utilise the output of large-scale transport 9 

models and convert this output into monetary values for CBA comparison. Various effect models are believed to 10 

be affected by weather: including value of time (VOT), emission factors, traffic safety and other wider economic 11 

benefits/losses (e.g. health benefits of more cycling in good weather, and losses from road network disruption 12 

due to adverse weather). The impact of weather and climate on VOT is largely unknown, given that most existing 13 

studies evaluated VOT through stated preference data with no assumptions of weather conditions. However, 14 

precipitation can potentially affect VOT through its indirect impact on comfort and waiting times. Studies 15 

regarding VOT have incorporated comfort level and waiting times to further differentiate VOT, mainly for the 16 

public transport mode (Börjesson & Eliasson 2014; Østli, Harkjerr, & Killi, 2015) and bicycle mode (Björklund 17 

& Carlén 2012; Börjesson & Eliasson 2012). The theoretical derivation of VOT, which stems from the time 18 

allocation problem (Becker, 1965), suggests that more comfort and less waiting time lowers VOT. Therefore, it 19 

seems plausible that VOT tends to be higher in adverse weather conditions, although empirical evidence is still 20 

lacking. Recent advances in scheduling models also incorporate travel time variability (see review: Carrion & 21 
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Levinson, 2012). It is plausible that weather may significantly affect travel time variability (e.g. travel time may 1 

become more uncertain in adverse weather conditions). 2 

Weather variables have been shown to affect the emission factors (emission per km drive). By utilizing 3 

vehicle field testing data, Boulter and McCrae (2007) showed that various types of emission factors are affected 4 

by weather variables. Hot exhaust emission normally decreases with increasing temperature for both petrol and 5 

diesel cars; more so for diesel cars. Adverse weather conditions, such as precipitation and snow, trigger the use 6 

of in-vehicle air conditioning, wipers and window defrosters, thus increasing hot exhaust emissions from the 7 

auxiliary system. Cold start emissions are well-known to be larger in lower temperatures (Andree & Joumard, 8 

2005), while evaporative emissions increase with increasing temperature (Hausberger et al., 2005). Liu, Susilo, 9 

and Karlström (2016) showed that passenger transport CO2 emissions can be underestimated up to 10% in Sweden 10 

in a warmer future climate (mean monthly temperature +1~5°C), when weather impacts on emission factors and 11 

travel patterns are both considered. Consider a scenario where emissions are underestimated in a CBA; a project 12 

with actual high emissions may get a higher rank than it should be since a considerable share of emissions (which 13 

should low the rank of this project) are underestimated. This would increase the probability that projects with 14 

considerable adverse environmental effects are selected. 15 

The impact of weather on traffic safety has been studied extensively (see review: Theofilatos & Yannis, 16 

2014). According to Theofilatos and Yannis (2014), it is clear that precipitation increases accident frequency but 17 

has no clear effect on the severity of the accident. Therefore, with the same level of traffic, more traffic accidents 18 

are expected on rainy days than on sunny days. However, there is no consensus on the effects of other weather 19 

parameters. Since the large-scale transport models do not consider weather, the simulated level of traffic from 20 

those models does not represent the level of traffic in good or bad weather. The estimated loss in traffic safety 21 
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based on the large-scale transport models may differ significantly from the true value depending on the scenario 1 

assumptions (for example, the proportion of rainy days next year). 2 

Although weather is absent in policy evaluations based on CBA, local policies from individual studies 3 

(mostly targeting cycling mode), often take weather into account. For instance, Thomas et al. (2013) pointed out 4 

that the effect of policy interventions on cycling demand is difficult to measure, not least because of difficulties 5 

in controlling for changing context variables, such as weather conditions. Ahmed, Rose, and Jakob (2013) 6 

mentioned that investments in developing end of trip facilities would be beneficial if the aim is to increase 7 

commuter cycling, particularly for female cyclists who were found to be more deterred by unfavourable weather 8 

conditions than males. Gebhart and Noland (2014) argued that the design of bike-share systems can benefit from 9 

understanding users’ cycling behaviours under various weather conditions. Helbich et al. (2014) suggested that 10 

adjacent, more compact urban morphologies have the potential to alleviate undesirable weather exposures and 11 

could enhance environmentally friendly and more sustainable transport modes. Presumably, bicycle demand 12 

clearly exhibits a variation pattern with weather, which makes bicycle planning more likely to incorporate weather 13 

elements. 14 

Discussion and conclusion 15 

There is no doubt that weather significantly influences transport systems in terms of both demand and supply. As 16 

transport policies aim at building up an economically, socially and environmentally sustainable transport systems, 17 

understanding the influence of weather on individual travel is necessary for promoting active transport modes, 18 

such as walking and cycling. With increasing contributions from the fields of travel behaviour, transportation 19 

engineering, psychology, economics and meteorology, a general picture has emerged of how weather affects our 20 

transport system. Given the fact that future weather will become more extreme, understanding how weather 21 

influences travel behaviour is vital for planners and policy makers to achieve a sustainable transport system in a 22 
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warmer and more extreme future climate. This paper has summarised and assessed these contributions from the 1 

individual behaviour and policy analysis points of view. From an individual behaviour point of view, despite 2 

extensive empirical evidence concerning the correlations between weather variables and travel patterns, there is 3 

still a lack of theoretical understanding on how weather is perceived by travellers and affects their travel decisions, 4 

together with other traditional determinants such as travel time and cost. From a policy analysis point of view, 5 

despite increasing evidence on the impacts of weather on traffic volume, bicycle flow and transit ridership, large-6 

scale transport models, which serve as the main tool of national policy evaluations, rarely consider weather. 7 

From an individual behaviour point of view, researchers seek to improve the accuracy of estimated weather 8 

effects. Spatially, various mapping techniques have been used to connect weather data from sparse weather 9 

stations to each individual trip (Jaroszweski & McNamara, 2014; Chen & Mahmassani, 2015). Spatial dependent 10 

models were used to take into account the spatial heterogeneity of weather effects (Helbichet et al., 2014). 11 

Temporally, continuously measured meteorological variables have become increasingly available to measure the 12 

actual weather at the departure/arrival locations (Chen & Clifton, 2011; Singhal et al., 2014). The impacts of 13 

weather on day-to-day variations in travel patterns have been analysed to consider not only instantaneous weather 14 

effects but also weather effects on dynamic day-to-day travel patterns (Liu et al., 2015c). However, there is still 15 

no consensus on how weather is incorporated into travel decision processes, as travellers may adapt their travel 16 

patterns according to the weather forecast, weather prevailing at departure, or weather at the destination, 17 

depending on the nature of the trip (Cools and Creemers, 2013). More fundamentally, several psychologists 18 

(Thorsson et al., 2011; Thorsson et al., 2013) have pointed out that weather should be evaluated as a perception 19 

because essentially it is a perceived feeling rather than an objective measure. However, so far, relevant empirical 20 

evidence is only available on activity participation (for example, pedestrian density in open squares) (e.g. 21 

Thorsson et al., 2007; Lin, 2009). More relevant empirical evidence on travel behaviour is needed. 22 
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From a policy analysis point of view, there is a gap between empirical evidence of traffic flow/travel 1 

behaviour studies and current practices of CBA that do not consider the effects of weather. This paper has 2 

summarised several potential issues that can be improved regarding including weather in large-scale transport 3 

models. First, it is difficult to estimate generic weather parameters in large-scale demand models. Second, traffic 4 

assignment packages could use different traffic speed-flow-density relationships according to weather conditions. 5 

Third, there are uncertainties surrounding scenario assumptions regarding future weather and climate (Collins et 6 

al., 2013), making these difficult to represent in transport models. 7 

These uncertainties could lead to an over/underestimation of CBA results through complex mechanisms. 8 

Ignoring weather impacts in the CBA process could have several policy implications. Given the fact that the 9 

future climate will be warmer, and future weather will be more extreme, the cost of certain transport projects may 10 

be underestimated, while the benefits may be overestimated. Liu, Susilo and Karlström (2016) showed that, if 11 

weather elements are ignored, transport models’ assessments of future passenger transport CO2 emissions may 12 

be considerably underestimated. External costs of CO2 emissions, underestimated by CBAs, would lead to 13 

projects with considerable environmental impacts being selected. 14 

Several potential research directions may be identified. First, evidence is needed on stated and revealed 15 

preferences regarding how individuals incorporate weather information when making travel decisions. The 16 

decision making mechanism may differ according to various attributes such as trip purpose, suggesting different 17 

criteria for different trip purposes and socio-demographics. Deterministic mapping and probabilistic mapping (for 18 

example, latent class modelling) can both be potential alternatives. Second, understanding the spatial and 19 

temporal variations of the impacts of weather is vital for policy evaluation. Given that local weather and 20 

infrastructure may form a particular micro-meteorological environment which is perceived by individuals living 21 

close to the particular area, spatial variation is expected between urban and rural areas, and coastal and inner land 22 
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areas. Weather should also be evaluated in a day-to-day travel pattern dynamic context, as weather is known to 1 

strongly affect leisure activity which exhibits a clear dynamic nature. Third, weather perception enables the 2 

“empirical weather-travel pattern relationship” to be enriched by behavioural theory; for example, prospect theory. 3 

Therefore, further studies in this direction can help to explain the spatial and temporal variations of the “empirical 4 

weather-travel pattern relationship”. Fourth, more studies are needed to enable transportation engineers and 5 

economists to consider weather impacts and uncertainty in terms of CBA, given the existence of considerable 6 

empirical evidence of the impacts of weather. Correspondingly, more studies are required in data collection, 7 

scenario assumption, transport models and effect models, and a general framework is needed to guide those 8 

improvements. 9 

Finally, it is worth mentioning that weather may affect travel from a much wider perspective. For instance, 10 

various modern technologies, such as autonomous cars, can change the picture of current transport systems, but 11 

autonomous cars must also be able to cope with adverse weather. The travel equity issue also tends to be 12 

influenced by weather, as active transport users are weather-exposed; ageing or disabled travellers may find 13 

themselves less able to cope with adverse weather conditions than young and healthy travellers. Better weather 14 

information provision and infrastructures prepared for adverse weather can better protect pedestrians and cyclists 15 

and reduce accident rates in adverse weather conditions, thus providing wider social and economic benefits. 16 

 17 
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Figure 1 The dynamic relationship between weather and transport system 
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Large scale transport model

Scenario assumption

1. What will be the furture climate? (e.g. 

summer temperature increases 1 °C)

2. What will be the furture weather? (e.g. 

rainy days are 10% more)

Data for estimation

1. Sample respondents to represent weather 

conditions? 

2. Collect weather information at trip level, 

rather than mapping from other sources?

Demand modelling

1. Explicitly include weather variables in 

large scale demand models?

2. parameters estimated separately for good/

bad weather conditions? 

Network assginment

1. Consider different fundamental diagrams 

for different weather conditions? 

2. Modelling route choice as a behavioural 

model and taking into account weather?

Effect models

    …...

Value of time (VOT)

1. Estimate VOT while treating weather as a 

factor affecting comfort and waiting time?

Emissions

1. Weather affects emission factor?

2. Incorporating weather in travel time 

variability?

Traffic safety

1. Weather affects safety factor?

 

Figure 2 How can weather be incorporated in different components in CBA 
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Table 1 Empirical studies assessed, sorted by travel mode groups, indicators and weather dimensions 

 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Weather impacts on walk mode/pedestrian 

Sabir (2011) The Netherlands 

Mode choice, route choice, trip 

distance, destination choice, 

daily trip frequency 

Hourly temperature: (-) 

Wind speed: ( ) 

Precipitation: (-) 

Precipitation duration: ( ) 

Snow: (+) 

Visibility: ( ) 

Matching closest station 

data according to time of 

the day 

Multinomial Logit model, Tobit 

model, Negative binomial model 

Böcker et al. 

(2015) 

Greater 

Rotterdam, The 

Netherlands 

Mode choice with emotion 

Hourly air temperature: (+) 

Precipitation: (+) 

wind speed: (+) 

clearness index: ( ) 

Matching closest station 

data according to time of 

the day 

Structural Equation model 

Saneinejad et al. 

(2012) 
Toronto, Canada Mode choice 

Hourly temperature: ( ) 

Precipitation: (+) 

Wind speed: ( ) 

Matching a close station 

data according to time of 

the day 

Multinomial Logit model 

Liu et al. (2015a) Sweden Mode choice 

Daily temperature, normalized: ( ) 

Precipitation: ( ) 

Snow: (+) 

Matching closest station 

data according to day 
Multinomial Logit model 

Clifton et al. 

(2011) 
Sydney, Austrilia 

Mode choice and trip 

generation rates 

Classified weather type via cluster analysis:  

Summer cool with light rain(+) 

Autumn very rainy (+) 

Matching closest station 

data according to day 
Linear regression 

Böcker et al. 

(2013) 

Randstad, 

Holland 

Mode choice and travel 

distance Projected 2050 climate: ( ) 
Weather matching to each 

trip (details not mentioned) 

Multinomial Logit model and 

Tobit model 

Montigny et al. 

(2012) 

Nine cities in 

Europe 
Walk rate (walk count) 

Hourly temperature: (+)  

Ground with sunshine: () 

Precipitation: (-) 

Measured locally and 

verified by nearby station 

data 

Poisson regression 

Aultman-Hall et 

al. (2009) 

Downtown 

Montpelier, 

Canada 

Automated hourly pedestrian 

counts 

Hourly temperature: (bell-shape ∩) 

relative humidity: (-)  

precipitation: (-) 

wind speed: ( ) 

Matching station data from 

3 mi away from counting 

site according to time of the 

day 

Descriptive on Factor of mean 

index 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Nikolopoulou and 

Lykoudis (2006) 
Athens, Greece Square attendance 

Hourly air temperature: - in summer and + 

in winter) 

Sun radiation: (- in summer and + in winter)  

Wind speed: ( )  

Relative humidity: ( ) 

Matching a close station 

data according to time of 

the day 

Linear regression 

Lin (2009) Taiwan Square attendance 
Sunshine hours: (+) 

Physiologically equivalent temperature: (+) 
Measured at the spot Linear regression 

Thorsson et al. 

(2007) 

Sweden and 

Japan 
Square attendance 

Air temperature (mixed) 

Various thermal index (mixed) 
Record at the study spot Linear regression 

Nikolopoulou and 

Baker (2001) 
Cambridge, UK Square attendance Hourly temperature: (+) 

Matching a close station 

data according to time of 

the day 

Descriptive analysis 

Weather impacts on bicycle/cyclist counts 

Sabir (2011) The Netherlands 

Mode choice, route choice, trip 

distance, destination choice, 

daily trip frequency 

Hourly temperature: (+ bell shape) 

Wind speed: (-) 

Precipitation: (-) 

Precipitation duration: (-) 

Snow: (-) 

Visibility: (-) 

Matching closest station 

data according to time of 

the day 

Multinomial Logit model, Tobit 

model, Negative binomial model 

Böcker et al. 

(2015) 

Greater 

Rotterdam, The 

Netherlands 

Mode choice with emotion 

Hourly air temperature: (+) 

Precipitation: (-) 

Wind speed: ( ) 

Clearness index: ( ) 

Matching closest station 

data according to time of 

the day 

Structural Equation model 

Saneinejad et al. 

(2012) 
Toronto, Canada Mode choice 

Hourly temperature: (+) 

Precipitation: (-) 

Wind speed: (-) 

Matching a close station 

data according to time of 

the day 

Multinomial Logit model 

Liu et al. (2015a) Sweden Mode choice 

Daily temperature, normalized: (+) 

Precipitation: (-) 

Snow: (-) 

Matching closest station 

data according to day 
Multinomial Logit model 

Clifton et al. 

(2011) 
Sydney, Austrilia 

Mode choice and trip 

generation rates 

Categorised weather types via cluster 

analysis:  

Summer cool with light rain: (+) 

Matching closest station 

data according to day 
Linear regression 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Böcker et al. 

(2013) 

Randstad, 

Holland 

Mode choice and travel 

distance 
Projected 2050 climate: (+) 

Weather matching to each 

trip (details not mentioned) 

Multinomial Logit model and 

Tobit model 

Flynn et al. 

(2012) 
Vermont, U.S.A. Bicycle commuting choice 

Daily temperature: (+) 

Precipitation: (-) 

Snow: (-) 

Wind speed: (-) 

Daylight hour: ( ) 

Matching closest station 

data according to time of 

the day 

Logistic regression 

Heinen et al. 

(2011) 

Delft and Zwolle, 

The Netherlands 

Longitudinal bicycle mode 

choice 

Daily temperature: (+) 

Precipitation: (-) 

Precipitation length: (-) 

Wind speed: (-) 

Darkness: (-) 

Sunshine hours: (+) 

Matching closest station 

data according to day 

Multinomial Logit model with 

generalized estimating equations 

Nankervis (1999) 
Melbourne, 

Australia 

Students’ bicycle commute 

choice 

Daily temperature: (+) 

Wind speed: (-) 

Precipitation: (-) 

Details not mentioned Descriptive analysis 

Helbich et al. 

(2014) 

Greater 

Rotterdam, The 

Netherlands 

Binary choice on bicycle 

considering spatial 

heterogeneity 

Daily temperature: (+) 

Precipitation: (-) 

Wind speed: (-) 

Matching a close station 

data according to day 

Geographically weighted 

Multinomial Logit model 

Ahmed et al. 

(2013) 

Victoria, 

Australia 
Cycle to commute 

Survey question “weather as a factor 

influencing bicycle to commute”: (+) Not relevantae Binary Logit model 

Parkin et al. 

(2008) 

England and 

Welsh 
Share of wards cycling to work 

Temperature: (+) 

Rainfall: (-) 

Sunshine hours: ( ) 

Matching weather at 

regional level 
Binary Logit model 

Bergström and 

Magnusson 

(2003) 

Luleå and 

Linköping, 

Sweden 

Cycling share and cycling 

distance 

 

Seasons: 

Summer (+) 

 

Not relevant Descriptive analysis 

                                                           
 

a The term “not relevant” means that the weather data and travel data are collected at the same time or there is no meteorological weather data used, e.g. weather perception in stated 

preference survey. Therefore, no weather and travel data matching is needed. 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Winters et al. 

(2007) 
Canada 

Revealed preference on the 

cycling frequency 

Historical climate data: 

Historical average temperature: (+) 

Historical wind speed: ( ) 

Historical number of rainy days in each 

season: (-) 

Historical number of snowy days in each 

season: (-) 

Matching closest station 

data 
Multilevel logistic regression 

Brandenburg et 

al. (2007) 
Vienna, Austria Bicycle countsvolume Physiologically equivalent temperature: (+) 

Matching station data 6 km 

away from studying site 

according to time of the day 

Descriptive analysis and 

correlation 

Gebhart and 

Noland (2014) 

Washington, DC, 

U.S.A. 
Bikeshare trip countsvolume 

Hourly temperature: (+) 

Precipitation: (-) 

Snow: (-) 

Thunderstorm: ( ) 

Wind speed: (-) 

Fog: ( ) 

Relative humidity: (-) 

Darkness: (-) 

Matching closest station 

data according to time of 

the day 

Negative binomial model 

Miranda-Moreno 

and Nosal (2011) 

Montreal, 

Canada 
Hourly bicycle ridership (flow) 

Hourly temperature: (+) 

Precipitation: (-) 

Humidity: ( ) 

Matching a close station 

data according to time of 

the day 

Linear regression 

Nosal and 

Miranda-Moreno 

(2014) 

Four cities in 

U.S.A 

Standardized bicycle count 

volume at studying spot 

Hourly temperature: (+) 

Relative humidity: (-) 

Precipitation: (-) 

Lagged precipitation: (-) 

Matching a close station 

data according to time of 

the day 

Linear regression 

Phung and Rose 

(2008) 

Melbourne, 

Australia 

Daily bicycle count volume at 

studying spot 

Temperature: (+ bell shape) 

Daily rainfall: (-) 

Wind speed: (-) 

Sunshine hours: (+) 

Humidity: ( ) 

Details not mentioned Linear regression 

Richardson 

(2000) 

Melbourne, 

Australia 
Average daily cycling trips 

Daily temperature: (+ bell shape ∩) 

Wind speed: ( ) 

Rainfall: (-) 

 

Matching a close station 

data according to day 

Adjusting factors for different 

weather conditions 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Thomas et al. 

(2013) 
The Netherlands 

Daily bicycle volumecount at 

certain bicycle path 

Daily temperature: (+) 

Precipitation: (-) 

Wind speed: (-) 

Sunshine hours: (+)  

Matching a “not so close” 

station data (35km) 

according to day 

Linear regression 

Weather impacts on private car/traffic flow 

Sabir (2011) The Netherlands 

Mode choice, route choice, trip 

distance, destination choice, 

daily trip frequency 

Hourly temperature: (-) 

Wind speed: (-) 

Precipitation: (+) 

Precipitation duration: (+) 

Snow: (-) 

Visibility: ( ) 

Matching closest station 

data according to time of 

the day 

Multinomial Logit model, Tobit 

model, Negative binomial model 

Böcker et al. 

(2015) 

Greater 

Rotterdam, The 

Netherlands 

Mode choice with emotion 

Hourly air temperature: ( ) 

Precipitation: ( ) 

Wind speed: ( ) 

Clearness index: ( ) 

Matching closest station 

data according to time of 

the day 

Structural Equation model 

Saneinejad et al. 

(2012) 
Toronto, Canada Mode choice 

Hourly temperature: (-) 

Precipitation: (-) 

Wind speed: ( ) 

Matching a close station 

data according to time of 

the day 

Multinomial Logit model 

Liu et al. (2015a) Sweden Mode choice 

Daily temperature, normalized: (-) 

Precipitation: ( ) 

Snow: ( ) 

Matching closest station 

data according to day 
Multinomial Logit model 

Clifton et al. 

(2011) 
Sydney, Austrilia 

Mode choice and trip 

generation rates 

Classified weather type via cluster analysis 

Summer very rainy & humid and very 

windy (+) 

Summer dry & very hot dry (+) 

Spring very rainy (+) 

Matching closest station 

data according to day 
Linear regression 

Böcker et al. 

(2013) 

Randstad, 

Holland 

Mode choice and travel 

distance 
Projected 2050 climate: (-) 

Weather matching to each 

trip (details not mentioned) 

Multinomial Logit model and 

Tobit model 

Aaheim and 

Hauge (2005) 

Bergen area, 

Norway 
Mode choice 

Daily temperature: (-) 

Precipitation: (+) 
Not mentioned Multinomial Logit model 

Anta et al. (2015) Barcelona, Spain 

SP and RP mode choice 

between private car and public 

transport 

SP options related to weather levels, 

Regular weather (-) 
Not relevant 

Combined SP-RP Multinomial 

Logit model 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Cools (2009) Belgian Traffic volume 

Temperature: (+) 

Daily precipitation: (-) 

Snow: (-) 

Cloudiness: (-) 

Sunshine duration: ( ) 

Visibility: ( ) 

Wind speed: (-) 

Matching closest station 

data according to day 
Linear regression 

Keay and 

Simmonds (2005) 

Melbourne, 

Australia 
Traffic volume 

Temperature: (+) 

3-hour measured rainfall: (-) 

Wind speed: (-) 

Cloud: (-) 

Poor surface condition: (-) 

Matching a close station 

data according to day 
Linear regression 

Datla and Sharma 

(2010) 
Alberta, Canada Traffic volume 

Daily temperature: (+) 

Precipitation: ( ) 

Snow: (-) 

Matching closest station 

data according to day 
Linear regression 

Chung et al. 

(2005) 
Tokyo, Japan Traffic volume Hourly precipitation (-) 

Matching closest station 

data according to time of 

the day 

Descriptive analysis 

Hassana and 

Barker (1999) 

Lothian Region, 

Scotland 

Ratio of traffic count to its 

historical value  

Daily temperature: (+) 

Rain: (-) 

Snow: (-) 

Sunshine hours: (+) 

Matching closest station 

data according to day 
Descriptive analysis 

Akin et al. (2011) Istanbul, Turkey Traffic speed and density 
Rain: (-) 

fog/mist/haze, or snow (-) 
Station data Log-linear regression 

Edwards (1999) Wales Traffic speed at spot 

Manual observed weather type: 

Wet weather: (-) 

Misty weather: (-) 

Manual observations of the 

weather at spot 
Linear regression 

Kyte et al. (2001) 
Interstate 

freeway in U.S.A 
Free-flow traffic speed 

Snow measured every 5 minutes: (-) 

Wind speed: (-) 

Poor visibility: (-) 

Details not mentioned Linear regression 

Oh et al. (2002) Incheon, Korea 
Traffic free-flow speed and 

traffic volume relationship 

 

Rain: (-) 

Snow: (-) 

 

Details not mentioned Linear regression 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Vlahogianni and 

Karlaftis (2012) 
Athens, Greece 

Freeway lane speed at certain 

spot 
Precipitation intensity level on lane speed: 

(-) 

Matching a close station 

data according to time of 

the day 

Recurrence quantification analysis 

Kilpeläinen and 

Summala (2007) 
Finland 

Choice of acquiring weather 

forecast and weather perception 

on driver behaviour 

Weather perception has an insignificant 

effect on drivers’ on-road behaviour 
Not relevant  Logistic regression 

Sihvola (2009) Finland 

Choice on weather forecast, 

driver’s mode choice, 

perceived weather condition 

Adverse weather leads to longer following 

distance, avoid overtaking, attention to road 

surface, driving slower 

Not relevant Descriptive analysis 

Weather impacts on public transport 

Sabir (2011) The Netherlands 

Mode choice, route choice, trip 

distance, destination choice, 

daily trip frequency 

Hourly temperature: (-) 

Wind speed: ( ) 

Precipitation: (+) 

Precipitation duration: ( ) 

Snow: ( ) 

Visibility: ( ) 

Matching closest station 

data according to time of 

the day 

Multinomial Logit model, Tobit 

model, Negative binomial model 

Böcker et al. 

(2015) 

Greater 

Rotterdam, The 

Netherlands 

Mode choice with emotion 

Hourly air temperature: (+) 

Precipitation: (+) 

Wind speed: ( ) 

Clearness index: ( ) 

Matching closest station 

data according to time of 

the day 

Structural Equation model 

Saneinejad et al. 

(2012) 
Toronto, Canada Mode choice 

Hourly temperature: ( ) 

Precipitation ( ) 

Wind speed: ( ) 

Matching a close station 

data according to time of 

the day 

Multinomial Logit model 

Liu et al. (2015a) Sweden Mode choice 

Daily temperature, normalized to its 

historical mean: ( ) 

Precipitation: (+) 

Snow: ( ) 

Matching closest station 

data according to day 
Multinomial Logit model 

Clifton et al. 

(2011) 
Sydney, Austrilia 

Mode choice and trip 

generation rates 

Classified weather type via cluster analysis 

Autumn very rainy (+) 

Matching closest station 

data according to day 
Linear regression 

Böcker et al. 

(2013) 

Randstad, 

Holland 

Mode choice and travel 

distance 
Projected 2050 climate: ( ) 

Weather matching to each 

trip (details not mentioned) 

Multinomial Logit model and 

Tobit model 

Aaheim and 

Hauge (2005) 

Bergen area, 

Norway 
Mode choice 

Daily temperature: (-) 

Precipitation: (+) 
Not mentioned Multinomial Logit model 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Anta et al. (2015) Barcelona, Spain 

SP and RP mode choice 

between private car and public 

transport 

SP options related to weather levels:  

Regular weather (+) 
Not relevant 

Combined SP-RP Multinomial 

Logit model 

Arana et al. 

(2014) 
Gipuzkoa, Spain Transit ridership 

Daily mean temperature: (+) 

Relative humidity: (-) 

Precipitation: (-) 

Wind speed: (-) 

Matching climate data from 

one close station according 

to day 

Linear regression 

Guo et al. (2007) Chicago, U.S.A. Transit ridership 

Daily temperature: (+) 

Rain: (-) 

Snow: (-) 

Wind speed: (-) 

Fog: (+) 

Matching closest station 

data according to time of 

the day 

Linear regression 

Hofmann and 

Mahony (2005) 
Ireland 

Bus ridership, headway, 

bunching, travel time 

Rain on ridership: (-) 

Rain on headway: (+ higher headway 

regularity) 

Rain on bunching: ( ) 

Rain on bus travel time reliability: (- travel 

time variability) 

Matching station data 10 

km away from boarding 

station according to time of 

the day 

Descriptive analysis 

Singhal et al. 

(2014) 

New York, 

U.S.A 

Daily and hourly subway 

ridership  

Temperature deviation normalized to its 

historical mean: (- for both too cold and too 

warm extremes) 

Rain: (-) 

Wind speed: (-) 

Snow: (-) 

Fog: ( ) 

Matching a close station 

data according to time of 

the day 

Linear regression 

Weather impacts on activity participation and scheduling 

Cools and 

Creemers (2013) 
Flemish, Belgian 

SP on mode, departure time, 

destination and route choices 

SP options related to weather conditions: 

significant weather effect 
Not relevant 

Pearson chi-square independence 

test and Multinomial Logit model 

with generalized estimating 

equations 

Chen and 

Mahmassani 

(2015) 

San Francisco 

Bay Area, U.S.A 

Activity stress defined on 

activity scheduling theory 
Interpolated rainfall: insignificant 

Matching closest station 

data according to time of 

the day 

Mixed Logit model 
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 Study location Travel/Traffic Indicators Weather effects found 
Weather and transport 

data matching 
Modelling technique 

Eliasson et al. 

(2007) 

Gothenburg, 

Sweden 
Activity participation 

Subjective weather perception, Clearness 

index: (+) 

Temperature (+) 

Wind speed (-) 

Manual observations of the 

weather at spot 
Linear regression 

Khattak and 

Palma (1997) 
Brussels, Belgian 

Frequencies of change in travel 

mode, departure time and route 

choice due to adverse weather 

Adverse weather on mode change: (+) 

Adverse weather on departure time change: 

(+) 

Adverse weather on route change: (+) 

Not relevant  Ordered Probit model 

Liu et al. (2015b) Sweden 

Daily activity duration, number 

of trips and trip chains, travel 

time and mode share 

3-hour measured temperature, relative 

humidity, precipitation, wind speed, 

visibility, snow (different effects on work 

and non-work activity participations) 

Matching closest station 

data according to time of 

the day 

Structural Equation model 

Liu et al. (2014) Sweden 

Daily activity duration, number 

of trips, travel time and mode 

share 

3-hour measured temperature, relative 

humidity, precipitation, wind speed, 

visibility, snow (different effects on routine 

and leisure activity participations) 

Matching closest station 

data according to time of 

the day 

Simultaneous Tobit model 

Liu et al. (2015d) Sweden Trip chaining decision 

Universal thermal climate index: (-) 

Precipitation: (-) 

Wind speed: ( ) 

Visibility: ( ) 

Snow: (+) 

Matching closest station 

data according to time of 

the day 

Ordered Probit model 

Note: a “-” sign indicates that the given weather variable/effect is negatively correlated with the Travel/Traffic Indicators while a “+” indicates that the given weather variable/effect is positively 

correlated with the Travel/Traffic Indicators. A blank parenthesis indicates that the given weather variable/effect has an insignificant effect on the Travel/Traffic Indicators. 

 

 


