
Reducing Sample Complexity of Deep Learning
with Symmetric Prior of Wireless Tasks

Chengjian Sun, Jiajun Wu and Chenyang Yang
Beihang University, Beijing, China

Email: {sunchengjian, jiajunwu, cyyang}@buaa.edu.cn

Abstract—Deep neural networks (DNNs) have been applied
to deal with various wireless problems, which usually need
a large number of samples for training. Considering that
wireless environments are highly dynamic and gathering data
is expensive, reducing sample complexity is paramount for
learning wireless tasks. Incorporating domain knowledge into
learning is a promising way of improving sample efficiency,
which is an emerging topic in the wireless community. In
this article, we first briefly summarize several approaches to
address this core issue. Then, we show that a kind of symmetric
property, permutation equivariance, widely exists in wireless
tasks. To harness such a generic prior, we introduce a simple
data representation method to compress the training set, which
is to jointly sort the input and output of the DNNs. We use power
allocation among subcarriers, probabilistic content caching,
and interference coordination to illustrate how to apply this
method, i.e., ranking, and how much the sample complexity
can be reduced. From the case study, we find an interesting
phenomenon: “sample hardening”, where the required number
of training samples decreases with the number of subchannels or
contents. We compare this method of data representation with
the DNNs embedded with the same prior or without any prior.
Simulation results show that the samples required to train a
DNN after ranking can be reduced by 15 ∼ 2400 folds to achieve
the same learning performance as the non-prior counterpart.

Index Terms—Prior knowledge, permutation equivariance,
sample complexity, deep learning

I. INTRODUCTION

Deep learning has been applied for a variety of wireless
tasks [1–6]. Early research efforts adopt pure data-driven
methodology, which entails high sample complexity, defined
as the minimal number of training samples to achieve a
given performance of learning. For example, to learn an
interference coordination policy, about one million samples
are used for training a deep neural network (DNN) [1]. For
highly dynamic wireless systems, such a large number of
samples need to be obtained frequently for re-training DNNs,
which incurs high overhead for computing and signalling.

While the availability of vast amount of data is one of the
main driver for the success of deep learning, gathering data
in wireless networks, say the labels for supervised learning,
is expensive. To facilitate training with much fewer samples,
an effective approach is to integrate prior knowledge and
mathematical models, into the learning process.

Different techniques have been developed along this line,
say structure design for DNNs [7–9], transfer learning [10,
11], optimization with unsupervised learning [12], and data
representation.

DNN structure design leverages the prior knowledge of
the input-output relation of a task for reducing the hypothesis
space of the functions. By constructing the DNNs to satisfy a
desired property, the family of functions without the property
is excluded, which yields low sample complexity. Convolu-
tional neural networks and recurrent neural networks are two
notable examples, which respectively exploit the knowledge
of spatial and temporal translational invariance of a task
[7]. Recently, a class of symmetric DNNs were proposed
[8], which are constructed to learn permutation equivariant
functions. How to incorporate the well-established models
in wireless communications into the DNN structure has also
drawn significant attention [9].

Transfer learning strives to transfer the knowledge for a
task in a scenario to learn a different but related task or the
same task in a different scenario. This technique has been
used to address the issue of designing systems with inaccurate
models, where an assumed model is used to train a DNN that
will be refined by real data [10]. Another example is to learn
the complex mixed integer problem, where a pruning policy
learned with a pre-trained DNN is used to accelerate the
searching process of finding the solution with a few samples
gathered in a new environment [11].

Optimization with unsupervised learning leverages the
available expressions of the objective and constraint func-
tions of optimization problems. When learning to optimize
wireless problems, labels are usually obtained at high cost
[1, 2] or even unable to obtain. One approach to circumvent
this difficulty is resorting to reinforcement learning, which
employs some undirected searching algorithms, say ε-greedy.
In the unsupervised learning framework [12], the Lagrangian
is taken as the loss function. With the derived gradient of the
loss function with respect to (w.r.t.) the output of a DNN,
the searching process of gradient based algorithms converge
faster with less samples.

Data representation mines the latent relationship between
the data and the target variables of a task or among the
observed data, which is called feature engineering. Features
are the input of DNN, which can be set as or transformed
from raw data. Data representation is to find a mapping from
the observation space to a feature space for easy learning,
which has been widely used for traditional machine learning.
For instance, to learn a policy whose output variable is
sensitive to the small value of input variable but insensitive to
the large input variable, the feature can be set as the logarithm



of the input data. A well-known example of harnessing the
data correlation is to transform the observed data into a low
dimensional feature space with principle components analysis
(PCA) or autoencoder (AE).

Among the four techniques, data representation has rarely
been investigated in the literature of wireless communica-
tions, except PCA and AE. This may be owing to the
fact that deep learning can jointly learn a policy and the
informative features to the policy. Yet this does not mean
that data pre-processing is not beneficial for deep learning.
Data representation can be cast into a function searching
problem, which is sample-hungry because the mapping from
observation space to feature space has vast possibilities. Task-
oriented data representation is challenging. This is because it
is difficult to determine which features are relevant to a task,
and the connection between the desired features and the task
strongly relies on the domain knowledge.

In this article, we discuss how to reduce the sample com-
plexity of deep learning by leveraging a kind of symmetric
prior: permutation equivariance (PE) [8]. This kind of prior
knowledge has been discovered in many engineering fields
and has been harnessed by constructing various DNNs with
special structures, say permutation equivariant neural network
(PENN) [8, 13] and graph neural networks [14]. We notice
that the PE property is inherent in many wireless tasks
[1–6, 10–14], thanks to an obvious but overlooked fact: a
variety of wireless polices are acted on sets. Moreover, this
property has never been leveraged for data representation to
assist in learning wireless tasks.

The rest of this article is organized as follows. We first
identify the PE property in wireless tasks. Then, we introduce
a method for training set compression, ranking, which jointly
sorts the observed data and target variables of a task. Next, we
provide case study to illustrate the performance of ranking by
comparing with fully-connected DNN (FC-DNN) and PENN,
and finally we conclude the article.

II. A GENERIC PRIOR KNOWLEDGE IN WIRELESS TASKS:
PERMUTATION EQUIVARIANCE

In this section, we show that permutation equivariant
wireless tasks are widespread, ranging from physical layer to
application layer. We proceed to provide the key components
of a policy for such tasks with several concrete examples.

A. What Wireless Tasks are Permutation Equivariant?

Many problems in wireless communications aim to find a
set of multivariate functions, which is referred to as a policy
in this article. The learning task for these problems is to
find the policy that yields a solution for every impacting
parameter to achieve a desired metric, which amounts to find
the mapping from multiple input variables to multiple output
variables. Representative tasks include (but not limited to) in-
terference coordination among transmitter-receiver pairs with
power allocation [1] or beam coordination [4], transceiver
design [3], resource allocation [2, 12–14], uplink/downlink

channel calibration [10], pilot assignment [5], and proactive
caching [6].

These wireless policies are executed on a set of objects,
e.g., users or contents, as illustrated in Fig. 1 with three
objects. The input variables of a policy reflect the states of
the objects relevant to the policy, say the channel gains of
the users and the popularity of the contents (say files). The
output variables of the policy reflect the actions taken on
these objects, say the transmit powers allocated to the users
and the caching probabilities for the files, which are the target
variables of a task. The state or the action of each object can
be expressed as a vector, noting that a scalar is a special case
of a vector and a matrix can be expressed as a vector. These
objects compose a set (e.g., a user set or a file set), where
each object is an element of the set.

A group of multivariate functions on a set must be per-
mutation equivariant to the elements in the set [8]. In other
words, the response of such a function is indifferent to the
ordering of the elements. If the state of every object can
fully represent the useful information for the policy, then the
policy must be permutation equivariant to the state vectors.
That is to say, a wireless policy for a set of objects will
be permutation equivariant to the state vectors, if they are
appropriately selected.

Objects States Policy Actions

Input variables Output variables

Fig. 1. Relation between states of objects and input variables of a policy
and relation between actions of objects and output variables of the policy.

Despite that the PE property widely exists in wireless tasks,
it has been realized in wireless community only very recently
[13, 14], possibly because of the overlooking of the “latent
variables”: objects, over which the actions are taken.

B. Several Example Tasks

Now we provide several types of wireless tasks whose
policies satisfy the PE property (called PE policies for short
in the following), and identify the objects and their states in
each policy.

1) Power Allocation among Subcarriers: To ease of un-
derstanding, we first consider a classical water-filling power
allocation policy in a single user multi-subcarrier system,
where the transmit power is allocated among subcarriers.
Since the response of the policy is indifferent to the ordering



of the subcarriers, the set of multivariate functions is permu-
tation equivariant. In this example, a subcarrier is an object,
the effective noise power at the receiver that is proportional to
the channel inverse is the state of the object, and the transmit
power allocated to a subcarrier is an action. As illustrated in
Fig. 2, when the orders of the first, second and third objects
change into the second, third and first, the orders of the input
and output variables of the policy change in the same way
whereas the policy remains unchanged.

Policy

States
(Input variables)

ℎ2 ℎ4ℎ1 ℎ3
Power of noise at 

the receiver

Feature ℎ2 ℎ4ℎ1ℎ3
Rank according 

to noise power

𝑥2 𝑥4𝑥1𝑥3
Results of

water filling

Actions
(Output variables)

𝑥2 𝑥4𝑥1 𝑥3
Transmit power 

allocation

Objects 1 2 3 4
Indexes of 

subcarriers

Total power

Fig. 2. Permutation equivariance of a power allocation policy to subcarriers.

2) Interference Coordination: Another typical example
is interference management, where all base stations (BSs)
communicate with the users associated to them over the same
frequency band. For easy exposition, consider a scenario in
[1], where each single-antenna BS serves one single-antenna
user, and the inter-cell interference is mitigated by controlling
the transmit power of each BS to maximize a weighted sum
rate according to the instantaneous channel gains. In this
example, a BS and its associated user is an object, and the
transmit power at the BS to the user is the action of the
object. The action relies on the channels between the BS to
all users, the channels between all BSs to the user, and the
weight on the rate, as shown in Fig. 3. Hence, these channel
gains and the weight can be set as the state of the object.
By defining the object and state in this way, the interference
coordination policy is permutation equivariant to the BS-user
pairs. It is noteworthy that the policy to be learned for this
task will not exhibit PE property if the state does not contain
the weight when the weights are unequal. This illustrates the
importance of appropriately defining the object and state in
order to leverage the PE property inherent in a task.

3) Caching at Wireless Edge: In cache-enabled cellular
networks, files are cached at BSs or users according to the
states of the files such as their probabilities being requested
(i.e., file popularity). By optimizing proactive caching policy
(say probabilistic caching policy) based on future file popu-
larity, the network performance such as successful offloading
probability (SOP) can be improved [6]. If the order of
files changes, the order of the caching probabilities changes
in the same way whereas the caching policy remains the
same. Therefore, the proactive caching policy is permutation
equivariant to the files. In this example, a file is an object,
the popularity of the file is the state of the object, and the
caching probability for a file is the action.

III. AN APPROACH TO EXPLOIT PE PRIOR: RANKING

In this section, we first introduce the intuition of reducing
training samples with data representation by exploiting sym-
metric prior. Then, we present a simple method to compress
the training set for learning the PE policies, ranking.

A. Reducing Sample Complexity with Symmetric Prior

To find a policy for a task with supervised learning, one
can train a DNN with the training samples, each consists
of a realization of the random states and the corresponding
actions of the policy (i.e., the label). All possible training
samples span an observation space. Without prior knowledge
for the task, the policy can only be learned accurately by a
non-structural DNN, i.e., FC-DNN, from training samples.
When prior knowledge is available for a task, fewer samples
are required either by designing the DNN structure [7,8], or
by mapping the observation space where the data is gathered
to the feature space where the samples are used.

A common practice in deep learning is to directly take the
observed data as the feature for training. To show why data
representation for a task with symmetric prior can decrease
training samples, we provide a toy example. Consider a
task of learning an axial symmetric function, say quadratic
function, with labeled training samples, where each sample
contains a positive or negative input variable and the corre-
sponding response of the function. The symmetric property of
the function is the prior knowledge, with which the function
can be determined by only given the observations of the
function on the positive or negative real axis. Therefore, the
sign of the input variable is uninformative for learning with
the prior knowledge, and the absolute value of the input
variable can be taken as the feature. Then, by using the halved
training set where each sample only contains positive input
variable and the corresponding response, the function can be
learnt without sacrificing the learning performance.

B. Ranking and Sample Hardening

PE policies exhibit a kind of symmetric property.
For easy visualization, let us consider a PE policy where

the state of every object is a scalar. The policy for the objects
is composed of multiple multivariate functions of a state
vector and yields an action vector. The state vector of the



Objects Communication network Input variables Output variables

ℎ1,1

ℎ2,2

ℎ1,2ℎ1,3

ℎ2,1

ℎ2,3

ℎ3,1
ℎ3,2

ℎ3,3

BS-user 1 BS 1 user 1 ℎ1,1 ℎ1,3ℎ1,2 𝑃1

BS-user 2 BS 2 user 2 ℎ2,1 ℎ2,3ℎ2,2 𝑃2

BS-user 3 BS 3 user 3 ℎ3,1 ℎ3,3ℎ3,2 𝑃3

BS-user 3 BS 3 user 3 ℎ3,2 ℎ3,3ℎ3,1 𝑃3

BS-user 2 BS 2 user 2 ℎ2,2 ℎ2,3ℎ2,1 𝑃2

BS-user 1 BS 1 user 1 ℎ1,2 ℎ1,3ℎ1,1 𝑃1

ℎ2,2

ℎ1,1

ℎ2,1ℎ2,3

ℎ1,2

ℎ1,3

ℎ3,2
ℎ3,1

ℎ3,3

𝛼1

𝛼2

𝛼3

𝛼3

𝛼2

𝛼1

State 1

State 2

State 2

State 1

Channels Weights Power

Policy

Permute BS-user 1 with BS-user 2 Feature

Action 1

Action 2

Action 2

Action 1

Fig. 3. Permutation equivariance of an interference coordination policy to BS-user pairs.

policy consists of the states of all objects and spans the state
space, which is the same as the observation space.

0

0

11

Fig. 4. Illustration of the training set compression. h1 and h2 are states of
two objects, h1,2 = [h1, h2] and h2,1 = [h2, h1] are state vectors.

For a PE policy, the order information of the objects im-
plicitly embedded in the training samples of the observation
space is useless for seeking the multivariate functions. To
remove the order information, we can jointly sort the states
and labels in each training sample according to a specific
order of the objects. For instance, the states can be sorted in
a descending order, and the actions are sorted accordingly. In
this way, the state vectors with same set of states arranged in
different orders are mapped into a single feature vector, i.e.,
the useless information of the order is discarded.

In Fig. 4, we show two mirror symmetric (i.e., permu-
tation equivariant) multivariate functions for two objects.
The samples for the states satisfying h1 > h2, represented
by the state vector h1,2, lie in the shadowed region O.
Other samples, represented by state vector h2,1, fall in the
non-shadowed region Ō, each can find its symmetric point
h1,2 in O by permutating the two states. Owing to the
symmetric property, the responses of the functions in the non-
shadowed region can be determined from the responses of the
functions in the shadowed region, i.e., f2(h2,1) = f1(h1,2)
and f1(h2,1) = f2(h1,2).

This suggests that only a half of each symmetric function
in the halved observation space needs to be found. Since
the state vectors only take values in the shrunken region,
the distribution of the state vector changes after ranking.
In particular, the distribution of the first element (and also
the second element) of h1,2 and h2,1 is narrower than the
probability distribution of the states h1 and h2.

When the number of objects approaches infinity, we can
resort to the theory of order statistic [15] to explain why the
training set can be compressed remarkably. For a random
vector with large number of elements, if the elements are
ranked in arbitrary (say descending) order, then the variance
of an element in any given position of the random vector
approaches zero [15].

Since after ranking, the random samples of each state are
distributed in small region with high probability, the required
training samples for learning a PE policy can be reduced.
This implies an interesting phenomenon for a PE policy with
scalar state for every object: “sample hardening”, as to be



more clear from the case study.

IV. CASE STUDY

In this section, we illustrate the gain in reducing sample
complexity from ranking, when learning to optimize the three
policies in section II with the DNNs trained by supervision.

A. Training and Testing the DNNs

The power allocation policy among subcarries is optimized
to maximize the sum rate under the maximal transmit power
constraint. The separation of subcarriers is 1 MHz, and the
signal-to-noise ratio is 10 dB. The input of the DNN for
learning the optimal policy is the effective noise power (i.e.,
the ratio between noise variance and channel gain) of the
subcarriers. The labels used for training are obtained from
solving the optimization problem by water-filling algorithm.

The interference coordination policy is optimized to max-
imize the sum rate under the maximal transmit power
constraint. The system setup is the same as the Gaussian
interference channel case with equal weights in [1]. The input
of the DNN is the channel gains among all the BS-user pairs.
The labels are the transmit powers of multiple BSs obtained
from the weighted minimum mean square error (WMMSE)
algorithm as in [1].

For both policies, the inputs of the DNNs are channel gains
generated from Rayleigh distribution.

The caching policy is optimized to maximize the SOP,
i.e., the probability that the data rate exceeds a threshold for
a requested file cached at BSs. The system setup is the same
as in [6] where 10% files are cached at each BS, except that
here we consider homogeneous network. The input of the
DNN is the popularity generated from Zipf distribution with
the skewness parameter as 0.6. The labels are the caching
probabilities optimized with the water-filling algorithm in [6].

Without ranking, the original sample used for training or
testing each DNN consists of the input of the DNN and the
corresponding label. Each sample for the DNN to learn the
interference coordination policy can be expressed as a matrix,
consisting of a channel matrix and a column vector of the
actions.

With ranking, each sample used for training or testing
the DNNs to learn the power allocation policy and the
caching policy is obtained by sorting the original sample
in a descending order according to the magnitudes of the
input of the DNN. Each sample used for the DNN to learn
the interference coordination policy is obtained by permuting
both column and row of the matrix in the same manner (e.g.,
permute the first and second columns and permute the first
and second rows at the same time, as shown in Fig. 3). We
sort each sample according to the channel gains between BSs
and their associated users (i.e., the diagonal values of the
channel matrix) in descending order.

The DNNs are trained by minimizing the empirical mean
square error between the label and the output. The hyper-
parameters are tuned via a validation set, which is randomly
generated as for the training set, and the number of samples

is the minimal integer no smaller than 10% of the training set.
The fine-tuned hyper-parameters are shown in Table I, where
[∗] denotes that the number of neurons in one hidden layer
is ∗, and [∗1, ∗2, ∗3] denotes that the numbers of neurons in
the first, second and third hidden layers are respectively ∗1,
∗2 and ∗3. 1000 samples are used for testing each DNN.

B. Performance Comparison

We compare the system performance, sample complexity
and the size of DNN of the following three learning methods.

• “No-rank”: FC-DNN trained by the samples without
ranking, which does not exploit any prior knowledge.

• “Rank”: FC-DNN trained by the samples with ranking,
which exploits the PE prior by data representation.

• “PENN”: PENN trained by the samples without ranking,
which exploits the PE prior by DNN structure.

For power allocation or interference coordination, the perfor-
mance is the ratio of the sum rate achieved by the learning
methods to the optimal solution or the solution obtained
by the WMMSE algorithm. For probabilistic caching, the
performance is the ratio of the SOP achieved by the learn-
ing methods to the solution obtained from the water-filling
algorithm in [6].

Since only a few training samples are required for the
power allocation or caching policy, we train the DNNs more
than once to reduce the uncertainty caused by the random
training set. For each time of training, the training and
validation samples are randomly generated, while the test set
is fixed. In particular, the sum rate of power allocation and the
SOP of caching are obtained by selecting the second worst
testing results from 10 well-trained DNNs, i.e., the results
are with the confidence level of 90%.1 Considering that in
the case of 30 BS-user pairs the computing time consumed
by training a PENN for interference coordination is too long,
and the sum rate obtained from the well-trained PENNs may
be low (say 0.6 or 0.7), the performance of interference
coordination is only obtained from three well-trained DNNs
by selecting the best testing results. Even though, the sum
rate achieved by “PENN” is still lower than “Rank” and ”No-
rank”, which cannot be improved by further increasing the
numbers of samples and weights significantly according to
our results (not shown for conciseness).

In Table II, we provide the system performance as well as
the corresponding numbers of samples and free parameters
for training each DNN to achieve (almost) the same per-
formance. We can observe that “Rank” and “PENN” require
much less samples and weights for training to achieve similar
performance to “No-rank”. Moreover, the number of training
samples for “Rank” decreases with the number of objects.
In particular, only three or five training samples are required
for power allocation or caching with 30 objects, with the
compression rate of 1350/3 = 450 or 12000/5 = 2400.
In fact, our result shows that only one training sample is

1If we select the best one from the 10 inference results, then the PENN
can also achieve the performance of 0.99.



TABLE I
FINE-TUNED HYPER-PARAMETERS FOR THE DNNS

Case Power allocation Caching Interference coordination

Number of objects 10 20 30 10 20 30 10 20 30

Number of neurons
in Hidden layers

No-rank [100] [100] [100] [40] [60] [100] [200, 80, 80] [1]
Rank [10] [5] [5] [10] [5] [4] [150, 50, 50]

PENN [100] [200] [300] [100] [400] [300] [100, 100] [200, 200] [300, 300]

Activation function
of the hidden layer

No-rank
ReLU ReLU ReLU [1]Rank

PENN

Activation function
of the output layer

No-rank
Softplus Sigmoid ReLU6/6 [1]Rank

PENN

Learning algorithm
No-rank

0.1/(1+0.001×iteration) 1/(1+0.001×iteration) RMSProp (Initial: 0.001) [1]
Rank

PENN Adam (Initial: 0.001) Adam (Initial: 0.01) Adam (Initial: 0.01)

Batch size
No-rank 32 32 32 32 32 32

1000 [1]
Rank 20 6 3 15 8 5

PENN 20 50 150 15 50 100 120 800 1000

TABLE II
COMPARISON FOR RANKING AND PENN.

Case Power allocation Caching Interference coordination

Number of objects 10 20 30 10 20 30 10 20 30

System
performance

No-rank 0.9951 0.9995 0.9995 0.9907 0.9909 0.9905 0.9795 0.9063 0.8562
Rank 0.9927 0.9975 0.9992 0.9900 0.9911 0.9926 0.9784 0.9042 0.8560
PENN 0.9926 0.9860 0.9770 0.9925 0.9903 0.9739 0.9003 0.8571 0.8418

Number of
training samples

No-rank 300 900 1350 5000 9000 12,000 500,000 1,000,000 1,000,000
Rank 20 6 3 15 8 5 10,000 3000 2000
PENN 20 50 150 15 50 100 120 800 4000

Number of
weights for training

No-rank 2110 4120 6130 850 2480 6130 25,570 28,380 31,190
Rank 220 225 335 220 225 274 12260 14070 16,080
PENN 51 51 51 51 101 51 480 480 480

required for power allocation with 35 subcarriers! Such a
surprising result comes from “sample harding” explained in
section III-B. “PENN” is with very small mode size, but
needs more training samples than “Rank” and achieves worse
performance than the other two methods in most cases (see
the boldfaced values).

The system performance of interference coordination in the
table is relatively low, because we intend to fairly compare
the sample complexity and DNN size of these methods. Our
results show that the sum rate of “Rank” can be improved by
using more samples for training, but “No-rank” and “PENN”
cannot. For example, the performance of 0.99, 0.97 and
0.96 for the cases of 10, 20 and 30 BS-users pairs can
be achieved by “Rank” with 200,000, 300,000 and 500,000
training samples, respectively, superior to the performance of
“No-rank” trained with doubled or even much more samples.

V. CONCLUDING REMARKS

In this article, we discussed how to leverage a sort of
prior knowledge inherent in many wireless tasks, permutation

equivariance property, for reducing the sample complexity
of DNNs. We showed that several representative wireless
problems are permutation equivariant. We introduced a data
representation method, ranking, to compress the training set
for permutation equivariant policies, explained why training
samples can be reduced, and found an interesting phe-
nomenon of “sample hardening”. The results in the case
study showed that this simple method of ranking can achieve
the same learning performance as FC-DNNs with much
fewer training sample and free parameters. Moreover, the
compression ratio increases with the number of objects,
which suggests its potential for large scale wireless problems.
Though this article considered the training of DNNs with
supervision, the method of ranking is also applicable for
the DNNs trained without labels and for other machine
learning techniques. Despite of the promising gain, many
problems remain open, say how to identify the permutation
equivariance property as well as define objects and states in a
wireless task, how to sort the samples when the state of each
object is vector or matrix, and how to improve the learning



performance of PENN.

REFERENCES

[1] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: training deep neural networks for wireless
resource management,” IEEE SPAWC, 2017.

[2] X. Cao, R. Ma, L. Liu, H. Shi, Y. Cheng, and C. Sun, “A machine
learning-based algorithm for joint scheduling and power control in
wireless networks,” IEEE Internet of Things Journal, vol. 5, no. 6, pp.
4308–4318, Dec. 2018.

[3] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans.
on Signal Processing, vol. 67, no. 10, pp. 2554–2564, May 2019.

[4] P. Zhou, X. Fang, X. Wang, Y. Long, R. He, and X. Han, “Deep
learning-based beam management and interference coordination in
dense mmwave networks,” IEEE Trans. on Vehicular Technology,
vol. 68, no. 1, pp. 592–603, Jan. 2019.

[5] J. Xu, P. Zhu, J. Li, and X. You, “Deep learning-based pilot design
for multi-user distributed massive MIMO systems,” IEEE Wireless
Commun. Letters, vol. 8, no. 4, pp. 1016–1019, Aug. 2019.

[6] J. Wu, C. Yang, and B. Chen, “Proactive caching and bandwidth allo-
cation in heterogenous networks by learning from historical numbers
of requests,” IEEE Trans. on Commun., vol. 68, no. 7, pp. 4394–4410,
July 2020.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature Cell
Biology, vol. 521, no. 7553, pp. 436–444, May 2015.

[8] Z. Manzil, K. Satwik, R. Siamak, P. Barnabas, S. Ruslan, and
S. Alexander, “Deep sets,” Advances in Neural Information Processing
Systems, 2017.

[9] H. He, S. Jin, C. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep
learning for physical layer communications,” IEEE Wireless Commun.,
vol. 26, no. 5, pp. 77–83, Oct. 2019.

[10] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design
in the era of deep learning: Model-based, AI-based, or both?” IEEE
Trans. on Commun., vol. 67, no. 10, pp. 7331–7376, Oct. 2019.

[11] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “LORM: Learning
to optimize for resource management in wireless networks with few
training samples,” IEEE Trans. on Wireless Commun., vol. 19, no. 1,
pp. 665–679, Jan. 2020.

[12] D. Liu, C. Sun, C. Yang, and L. Hanzo, “Optimizing wireless systems
using unsupervised and reinforced-unsupervised deep learning,” IEEE
Network, vol. 34, no. 4, pp. 270–277, July-Aug. 2020.

[13] J. Guo and C. Yang, “Structure of deep neural networks with a priori
information in wireless tasks,” IEEE ICC, 2020.

[14] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Trans. on Signal Process-
ing, vol. 68, no. 10, pp. 2977–2991, 2020.

[15] H. A. David and H. N. Nagaraja, Order Statistics. John Wiley and
Sons, 2003.


	Introduction
	A Generic prior knowledge in Wireless Tasks: Permutation Equivariance
	What Wireless Tasks are Permutation Equivariant?
	Several Example Tasks
	Power Allocation among Subcarriers
	Interference Coordination
	Caching at Wireless Edge


	An approach to exploit PE prior: Ranking
	Reducing Sample Complexity with Symmetric Prior
	Ranking and Sample Hardening

	Case Study
	Training and Testing the DNNs
	Performance Comparison

	Concluding Remarks
	References

