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Abstract— Birds-Eye-View (BEV) perception can naturally 

represent natural scenes, which is conducive to multimodal data 

processing and fusion. BEV data contain rich semantics and 

integrate the information of driving scenes, which play an 

important role in researches related to autonomous driving. 

However, BEV constructed by single vehicle perception 

encounter certain issues, such as low accuracy and insufficient 

range, and thus cannot be well applied to scenario understanding 

and driving situation prediction. To address the challenges, this 

paper proposes a novel data-driven approach based on vehicle-

to-everything (V2X) communication. The roadside unit or cloud 

center collects local BEV data from all connected and automated 

vehicles (CAVs) within the control area, then fuses and predicts 

the future global BEV occupancy grid map. It provides powerful 

support for driving safety warning, cooperative driving planning, 

cooperative traffic control and other applications. More 

precisely, we develop an attention-based cooperative BEV fusion 

and prediction model called BEV-V2X. We also compare the 

performance of BEV-V2X with that of single vehicle prediction. 

Experimental results demonstrate that our proposed method 

achieves higher accuracy. Even in cases where not all vehicles are 

CAVs, the model can still comprehensively estimate and predict 

global spatiotemporal changes. We also discuss the impact of the 

CAV rate, single vehicle perception ability, and grid size on the 

fusion and prediction results. 

 
Index Terms—Cooperative Driving, Birds-Eye-View Fusion, 

Occupancy Prediction 

 

I. INTRODUCTION 

NTELLIGENT vehicles rely on accurate environment 

awareness to achieve robust and safe autonomous driving 

[1]-[2]. Driving environment includes static elements such 

as road layout and lane markings, as well as dynamic elements  
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such as vehicles and pedestrians [3]. Classical perception 

systems of intelligent vehicles collect driving environment 

data [4]-[6] through sensors such as cameras, LiDAR and 

Radar, and perform tasks such as image classification, scene 

segmentation and object detection to understand driving 

scenes. To obtain more accurate results, multi-sensor data 

fusion methods [7]-[9] are widely used by researchers. 

Perception results have various representation formats. 

Recently, the Birds-Eye-View (BEV) format has recently 

attracted the attention of many researchers. Many researches 

propose the methods that aggregate the raw sensory data, such 

as camera images and Lidar points, from the perspective view 

to the birds-eye-view on the vehicle side [10]-[11]. BEV 

clearly represents the position and state of scenario objects in 

compact and semantic way based on occupancy grid [12]-[13]. 

BEV is usually represented as an image with a certain 

resolution. Each pixel corresponds to a certain size of grid unit 

(e.g., 1 pixel corresponds to 0.5m  square grid). 

BEV data contain rich semantics, which can integrate 

environment information, road information, and static and 

dynamic information of traffic participants. As the processing 

and enhancement of raw sensory data, BEV data are 

conducive to fusion in unified space. Single frame of BEV can 

describe the driving state and relationship of each traffic 

participant at a certain time stamp in certain road environment, 

which is consistent with the concept of scene. Continuous 

frames of BEV can represent the driving behavior and 

interaction of traffic participants within a certain spatial and 

temporal range, which is consistent with the concept of 

scenario [14]. BEV data can play an important role in 

systematic and unified scenario representation in research 

fields such as motion prediction [15]-[17], trajectory planning 

[18]-[21], and intelligence testing [22]-[24]. 

However, the BEV constructed by single vehicle perception 

may have some problems, such as low accuracy and 

insufficient range. Fig. 1 shows the BEV perception centered 

on vehicle A, B and D respectively in an intersection scenario. 

If the roadside unit is not deployed in the scenario, due to the 

restrictions of road geometry and limited perception range of 

single vehicle, vehicle A, vehicle B, and vehicle D cannot 

directly achieve mutual perception. It leads to poor 

understandings of the global scenario. If vehicle A chooses to 

turn right at the intersection, it may cause safety risks due to 

insufficient warning time advance. In addition, vehicle C is lo- 
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Fig. 1. An illustration of BEV perception based on single vehicle and CAV relative to vehicle A in an intersection scenario. 

 

cated in the overlapping perception space of vehicle A and B. 

After raw perception data are aggregated to the BEV, the 

corresponding grid position and associated confidence of 

vehicle C in the local BEV of A and B are also different. It is a 

critical issue to collect and fuse the local BEV of different 

vehicles to obtain global BEV with higher reliability and more 

comprehensive scenario understanding. Through the fusion 

information, we can also make inferences and predictions for 

future driving situations. It can provide more accurate and 

comprehensive information for downstream tasks, such as 

driving safety warning, trajectory planning, and traffic control. 

Vehicle-to-everything (V2X) communication provides a 

new approach to solve the problem of data fusion for different 

vehicles and infrastructures. In cooperative driving scenario, 

each vehicle is tightly linked with other vehicles or roadside 

units [25]-[27]. Each connected and automated vehicle (CAV) 

regularly reports its own information to other vehicles or 

roadside units. By aggregating and fusing the data information 

from different CAVs, we can get a more accurate 

understanding of the global scenario. As shown in Fig. 1, we 

show the differences between single vehicle perception and 

V2X cooperative perception. The perception range of single 

vehicle is limited to the local area. With V2X communication, 

the area that can be perceived by vehicles can be significantly 

extended. Moreover, via the BEV perception of CAVs, we can 

partially recover and obtain the information of non-CAVs. 

Multi-source information fusion can also be conducted on the 

overlapping BEV space among vehicles to improve the 

perception accuracy. 

In this paper, we propose a BEV fusion and prediction 

model BEV-V2X based on V2X communication and attention 

neural network model in cooperative driving scenario. The 

roadside unit or cloud center can collect the local BEV data of 

all CAVs in the control area. By extracting the single vehicle 

BEV data in the historical time horizons, we can integrate the 

perception information of different CAVs and predict the 

global BEV occupancy grid map in the future time horizons. 

This paper focuses on BEV fusion and prediction. The fusion 

and prediction results can help achieve accurate environment 

perception and strengthen the understanding of the global 

scenario. Based on the results, the system can provide real-

time driving risk warning, formulate the corresponding 

planning scheme, and send the messages to vehicles in the 

control area. It provides powerful support for driving safety 

warning, cooperative driving planning, cooperative traffic 

control and other applications. 

In fact, there are basically two modes of vehicle-to-vehicle 

(V2V) communication and vehicle-to-infrastructure (V2I) 

communication to achieve BEV fusion via V2X technique. 

We recommend that the corresponding models be deployed at 

the roadside or cloud center. The following models are also 

explained based on this basis, and the specific advantages are 

further discussed in Section V. 

Our main contributions are as follows: 

1) We propose a new BEV fusion and occupancy prediction 

method via V2X communication. Experimental results show 

the advantages of attention model, and the global cooperative 

BEV fusion and prediction results achieve high accuracy. 

2) We compare the prediction method of single vehicle 

based on its own local BEV and the prediction method of BEV 

fusion via V2V communication. Experimental results show 

that the BEV fusion and prediction method based on edge 

computing/cloud computing via V2I communication is much 

better. 

3) When the cooperative driving scenario is not full of 

CAVs, our proposed method can still obtain the partial 

recovery information of non-CAVs and the global scenarios 

well. We also show that as the CAV rate of the control area 

increases, we can obtain richer information for fusion and get 

more accurate global cooperative BEV results. As the 

perception ability of single vehicle becomes stronger, the 

uncertainty of single BEV results will decrease, and the fusion 

and prediction results will also be better. 

The rest of the paper are arranged as follows: Section II 
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reviews the related works. Section III introduces the data flow 

and the specific neural network model structure. Section IV 

conducts simulation experiments on naturalistic datasets, and 

experimental results demonstrate the effectiveness of the 

proposed approach. Section V discusses the advantages of 

V2X based fusion and prediction compared to single vehicle 

prediction. Section VI summarizes the paper. 

II. RELATED WORKS 

A. BEV Perception and Prediction 

BEV perception on the vehicle side mainly focuses on the 

data conversion from perspective view to birds-eye-view. The 

perception module mainly takes the raw sensory data as input, 

such as camera images and Lidar point clouds, and generates 

the occupancy grid map under birds’ eye view as output. Some 

researchers use inverse perspective mapping (IPM) methods 

[28] to learn the transformation matrix. Recent works use deep 

learning-based data-driven models, such as multi-layer 

perceptron (MLP) [29], convolution neural network (CNN) 

[12], [30] and attention-based models [13], to transform the 

data. The above methods can aggregate the spatiotemporal 

features from multiple sensors and fuse them into a unified 

BEV space. 

BEV data can represent driving scenarios and help to 

effectively extract the states and interactions of the traffic 

participants. The data are frequently used as input in motion 

prediction related modules [31]-[32]. According to the output 

format, BEV based motion prediction researches can be 

categorized into two types, BEV-based trajectory prediction 

and BEV occupancy prediction. BEV-based trajectory 

prediction task is to predict the candidate trajectories of each 

vehicle and corresponding confidences in future time horizon 

with BEV as input [15], [33]. While BEV occupancy 

prediction task is defined as predicting the occupancy grid 

state within a certain spatial area in future time horizons, 

which has consistency with trajectory prediction [34]. The 

output BEV occupancy grid map results enable the system to 

directly obtain the global driving situation without processing 

the vehicles’ trajectories separately. Many researches also 

perform joint perception and prediction in multi-task modal 

using unified BEV representations [35]-[36]. 

B. V2X-based Data Fusion 

V2X communication technology enables vehicles and 

infrastructures to share their data for information fusion. We 

review the related works in terms of different data types to be 

transmitted. 

Trajectory data. In many previous works related to 

cooperative driving based on V2X communication, it is 

assumed that all vehicles are CAVs [37]-[38]. Therefore, 

vehicles can directly send position and trajectory data to other 

vehicles or roadside units, and the global scenarios and states 

can be extracted after data aggregation. Trajectory data can 

help to avoid vehicle perception failure, which also occupy 

less storage space, require less computation, and facilitate data 

transmission. Many researches address the location and state 

estimation of multiple vehicles via trajectory data exchange. 

The methods include multi-source confidence weighting [39]-

[40], Kalman filter [41], extended Kalman filter [42], etc. The 

methods use the motion equations for observation and 

prediction, and gradually update the global localization of the 

vehicles. However, it is difficult to cope with the complex 

nonlinear situation. Moreover, in real cooperative driving 

scenario, it is common that not all vehicles are CAVs [43]-

[44]. Relying only on motion or trajectory data may not work 

in these cases. 

Raw sensory data. Some researches propose the method of 

aggregating the raw sensory data from CAVs and fusing the 

information to promote the perception. [45] propose Cooper 

system to fuse the 3D Lidar point clouds collected from 

different positions and angles of CAVs. [46] propose Autocast 

to fuse Lidar data according to the visibility and relevance of 

vehicles. [47] and [48] combine the data from vehicles and 

roadside units to perform the Lidar-based data fusion and 

object detection. The above methods realize the raw level data 

fusion using rich perceptual information. However, the raw 

sensory data occupy a large amount of storage space and 

reduce the speed of data transmission and interaction, thus 

cannot ensure the real-time performance of autonomous 

driving systems. 

Intermediate feature data. To maintain the balance 

between perception accuracy and data transmission delay, 

some researches focus on the intermediate feature [49] based 

data fusion methods. The intermediate features are mainly 

generated by deep learning-based encoders deployed on 

vehicles, such as CNN [50]-[51], and attention-based models 

[52]-[54]. The aggregated features are further decoded on the 

vehicle side or road side to generate the final perception 

results. The decoders mainly include CNN [52], graph-based 

models [51], [55], and attention-base models [53]. The overall 

solutions of the above methods are mainly tightly coupled 

end-to-end models. As the compressed representation of raw 

sensory data, the intermediate feature data can reflect the 

perception information to a certain extent with the reduction of 

communication bandwidth. However, the formats of the 

intermediate features are not unified in many researches. In 

addition, the generated features are always semantically 

unexplained, which reduces the interpretability for humans 

and the reusability for other tasks. 

Compared with the above methods, our V2X-based BEV 

fusion and prediction approach has the following differences: 

1) Compared to trajectory data, BEV data contain more 

perception information and extend more perception space. 

With the help of BEV data, we can partially recover the state 

of non-CAVs and obtain more accurate global results through 

the spatial and temporal data fusion in the unified BEV space. 

2) Compared to raw sensory data, BEV data are the 

aggregation and summarization of the vehicle’s raw sensory 

information. The BEV format can reduce memory storage and 

save transmission bandwidth. According to the points 

generated by 64-laser Lidar per second, the size of raw data is 

up to 150 Mbit. In contrast, the size of BEV data package is 

less than 1Mbit. The data transmission delay of BEV data can 
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guarantee the real-time performance according to the current 

development of V2X communication protocol [56]. We will 

introduce the data structure in detail in Section III and Section 

IV. 

3) Compared to intermediate feature data, the proposed 

method has the following differences. First, the explainable 

BEV data are generated on the vehicle side and transmitted to 

the road side for fusion and prediction. The methods can fully 

utilize the perception ability of single vehicles, and construct 

the loosely coupled hierarchical model. Second, as a typical 

representation format of driving scenario, BEV data contain 

rich scenario semantics and human-machine understanding. 

The use of scenario data can increase the interpretability and 

trust of data-driven models [57]. Third, BEV data are also 

convenient and useful for many other modules related to 

autonomous driving, such as trajectory planning, motion 

control, and intelligence testing. The reusability of data can be 

significantly increased by transmitting BEV instead of 

intermediate features. 

4) Compared to the upstream perception tasks, our focus is 

on obtaining global BEV fusion and prediction results and 

supporting the downstream tasks, such as driving safety 

warning, cooperative driving planning, and cooperative traffic 

control. Although the data metrics cannot be directly 

compared due to different data sources and tasks, according to 

the results of real-time scene segmentation and object 

detection related to BEV perception with high accuracy, the 

performance of our proposed approach is acceptable and 

valuable. The details will be further illustrated in Section IV. 

III. A DATA DRIVEN MODEL 

A. The Data 

Fig. 2 shows the overall data flow of the fusion and 

prediction process. The roadside unit collects the local BEV of 

all CAVs in the control area, and periodically extracts the 

historical data. Using the data, the system calls the deep 

learning model to fuse the information from different vehicles, 

and predict the future cooperative BEV occupancy grid map. 

The data and phrase definitions of each side in the 

framework are described in detail as follows: 

 

1) Vehicle side 

With the help of various sensors, such as cameras and Lidar, 

the single vehicle perceives the surrounding environment. 

Then, the vehicle system converts the raw sensory data, such 

as images and point clouds into BEV space, and generates the 

local BEV centered on its own coordinates. BEV is a 

semantically composite data structure, which uses matrices to 

represent the occupancy of scenario elements within a certain 

spatial area. Each matrix element corresponds to the 

occupancy probability or state of each grid in the driving 

environment, which can be further summarized and displayed 

as RGB image. 

 

Single Vehicle BEV Probability (SBEV-P) 

At each grid location of the BEV, the occupying objects 

may include both vehicles and road elements, and they are not 

in conflict with each other. Therefore, we divide the scenario 

elements into different categories, i.e., dynamic traffic 

participants such as vehicles and pedestrians, and static road 

environment information such as drivable areas, lanes, traffic 

infrastructures, channelization, etc. We apply the symbol 

( , )cP x y  to denote the probability that the BEV position ( , )x y  

is occupied by category c . [ ( , )]c C H WP x y  
 is the occupancy 

probability matrix of C  elements in the grid network with the 

size of H W . 

 

BEV-V2X

Model Input

Single Vehicle 
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Fig. 2. The data flowchart of cooperative BEV fusion and prediction. 
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Single Vehicle BEV Image (SBEV-I) 

Each BEV grid has a corresponding probability estimate for 

different categories. By summarizing the occupancy 

probability representation into occupancy state representation, 

the corresponding BEV RGB image can be further displayed. 

We use  ( , ) 0,1cM x y =  random variable to represent whether 

grid position ( , )x y  is occupied by category c . By setting 

certain threshold TH, the transformation from probability 

representation to state representation is shown in equation (1). 

 

 
1, ( , )

( , ) (0,1)
0, ( , )

c

c

c

  P x y TH
M x y   TH

 P x y TH


= 


 (1) 

where TH is usually set as 0.5. [ ( , )]c C H WM x y  
 is the 

occupancy state matrix of C  elements in the grid network 

with the size of H W . 

We assign different RGB values to each category and set 

cPriority  for all categories in the category set 
cS . For example, 

the priority of vehicles and pedestrians is higher than that of 

road information, and the priority of traffic infrastructures is 

higher than that of lanes. In this way, the final color assigned 

to each grid position ( , )x y  in the BEV image follows equation 

(2). 

 

 
{ | ( , ) 1}

( , ) ( )
c c

c
c S M x y

RGB x y RGB argmax  Priority
 =

=  (2) 

By further distinguishing the colors of the current ego 

vehicle from the perceived surrounding vehicles (such as 

green and blue in Fig. 2), the BEV image centered on the ego 

vehicle can be obtained. The tensor size of SBEV-I is 

3 H W  . 

 

SBEV-P represents the estimated probability information of 

the driving environment with the help of vehicle perception 

ability. While SBEV-I implies the transformation rules and 

contain richer semantics via the adjacent image pixels, which 

are close to human understanding. The combination of SBEV-

P and SBEV-I can comprehensively reflect the vehicle 

perception results and will also be applied to the input of our 

proposed model. 

CAV sends its real-time SBEV data package to the roadside 

unit in a timer-trigger style [58]. In Section IV, we will explain 

the impact of the SBEV grid size on transmission, collection 

and storage with specific naturalistic data. 

 

2) Road side 

The roadside unit collects the local BEV information of all 

CAVs in the control area, and periodically extracts data in the 

historical time horizon. Combined with the internal pre-stored 

grid map data of the control area, the system calls the 

deployed BEV-V2X fusion and prediction model, and obtains 

the cooperative BEV occupancy of the global scenario in the 

future. 

 

PreStored Map (PMap) 

The roadside unit can store the map representation of the 

control area in advance. We also use  ( , ) 0,1cM x y =  random 

variable to indicate whether the grid position ( , )x y  in the map 

is occupied by category c . Differently, here the categories 

include all static elements except dynamic traffic participants, 

such as drivable area, lanes, traffic infrastructures, etc., that is 

\c cc S Dynamic . Assuming that there exist static elements of 

MC  classes, the [ ( , )]c MC HO WOM x y  
 matrix is the occupancy 

state representation of MC  elements in the grid map with the 

size of HO WO . 

 

Cooperative BEV Fusion and Prediction Model (BEV-V2X) 

The system extracts SBEV data in historical time horizon 

T , and builds the fusion and prediction model BEV-V2X 

based on spatiotemporal attention. The specific model 

structure will be detailed in Section III.B. 

 

Cooperative BEV Occupancy Map (CBEV) 

The model outputs the BEV occupancy grid estimate for the 

whole control area in future time horizon F . The output 

[ ( , )]c C HO WOP x y  
 is the occupancy probability of C  elements in 

the global grid network with the size of HO WO . Further, the 

occupancy state representation and visual image of the global 

CBEV are generated by the transformation rules in formula (1) 

and (2), which constitute the final fusion and prediction 

information. 

B. The Structure of BEV-V2X 

In this paper, the BEV fusion and prediction model of 

cooperative driving scenario emphasizes the spatial and 

temporal interaction of CAVs within the control area of 

roadside units. Therefore, we use the attention mechanism of 

the transformer model [59] to capture the spatiotemporal 

relationship of the data. The model outputs the cooperative 

BEV occupancy prediction of the global scene. Previous 

studies [33], [60] have illustrated the effectiveness of attention 

models in prediction tasks. 

The overall BEV-V2X model is shown in Fig. 3, with the 

SBEV obtained by each CAV perception as the external input, 

i.e., the normalized connection tensor of SBEV-I and SBEV-P 

in Section III.A, and the pre-stored map of the control area as 

the internal input, that is, the PMap in Section III.A. The 

model outputs the future cooperative BEV occupancy grid 

map. In addition, the model also estimates its global road map 

representation to accelerate the training convergence. 

The BEV-V2X model can be roughly divided into three 

parts: data collection and embedding based on convolution 

model, fusion and prediction of spatiotemporal data features 

based on attention model, and upsample and construction of 

the global BEV based on deconvolution. 

In the first part, the dimensions of SBEV-I and SBEV-P are  

(3, , )H W and ( , , )C H W  respectively. The total dimension of 

the perception tensor is ( , , , 3, , )B T N C H W+  , where B  is the 

batchsize of the model, T  is the historical time horizon, N  is 

the maximum number of possible vehicles in the control area.  
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Fig. 3. The structure of BEV-V2X. 

 

Since the number of CAVs’ data packages received by 

roadside unit at each timestamp may be uncertain, to maintain 

the size unity during model calculation, we choose the upper 

limit of the possible CAV number as N . The model marks the 

valid CAV data when receiving data stream, and the rest will 

be processed by corresponding padding. The dimension of the 

original map tensor pre-stored by the roadside unit is 

( , , , )B MC HO WO . 

We apply Resnet [61] to embed the input SBEV data, and 

obtain the tensor V  with dimension ( , , , )B T N E , where E  is 

the embedding dimension of each SBEV data group. The 

tensor will be used for subsequent spatiotemporal attention 

extraction and prediction. The similar Resnet model is applied 

for map data embedding, and the tensor M  with dimension 

( ,1, , )B N E  is obtained. 

In the second part, we use the spatiotemporal attention 

model to extract the spatiotemporal interactions of CAVs’ 

SBEV data in the control area. 

Attention mechanism of transformer model is initially 

applied in the NLP field, and is used to conduct machine 

translation via encoder-decoder architecture. Here we follow 

the similar multi-head attention approach. For each attention 

module, the ( , , )q k v  triplet input should be conducted scaled 

dot-product operation and softmax normalization operation. 

The number of attention heads is set as h  , and the projections 

of each attention head are , ,q k v
d d d

i i iQ R K R V R   . The 

embedding dimensions of the three tensors in this paper are 

the same, which are set as E d= . Thus, the embedding 

dimension of each attention head follows: 

 

 q k v

d
d d d

h
= = =  (3) 

The parameters of the model include h  groups of different 

weight matrix pairs ( , , )q k v

i i iW W W , whose dimensions 

correspond to ( , , )q k vd d d d d d   . The obtained query, key 

and value are: 

 

 , ,q k v

i i i i i iQ qW K kW V vW= = =  (4) 

 

The calculated attention tensor is: 

 ( , , ) ( )
T

i i
i i i i i

k

Q K
head Attention Q K V softmax V

d
= =  (5) 

By concatenating the results of each head, the final attention 

of multi-heads can be obtained as follows: 

 

 ( ,..., ) O

i hMultiHead = Concat head head W  (6) 

 

where the dimension of OW  is d d . 
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Fig. 4. The structure of spatial temporal attention. 

 

The spatiotemporal attention model is shown in Fig. 4, 

which adopts encoder-decoder architecture. The dimension of 

the input V  tensor is ( , , , )B T N E . First, the global spatial 

aware attention is conducted with the roadside unit pre-stored 

map, where the map embedding M  is expanded to ( , , , )B T N E  

along the time axis. In this step, attention related calculation is 

operated at the spatial level. We transpose and reshape V  and 

M  tensors to the dimension of ( , , )B T N E  . We take V  as 

query, M  as key and value for the attention operation, the 

dimension of output tensor is ( , , )B T N E  and is further 

reshaped as ( , , , )B T N E . The global spatial aware attention is 

equivalent to adding global spatial position encoding to the 

original input data, so that we can fuse CAVs’ positions in 

cooperative BEV and be aware of the coordinate system 

transformation. 

Next, we conduct the spatial self attention operation. The 

input data are taken as query, key and value simultaneously, 

and are conducted at the spatial level similar to previous 

operations. The spatial self-attention is operated to be aware of 

vehicle’s spatial relations, which facilitates the fusion of 

CAVs’ BEV perception results. 

Then, we extract the temporal interaction of the input data. 

We add a learnable temporal position encoding to fully 

represent the time series position of each CAV’s data. In the 

encoder module, we reshape the dimension of tensor to 

( , , )B N T E  and conduct the temporal self attention operation. 

The dimension of output tensor is ( , , )B N T E  and is further 

reshaped as ( , , , )B T N E . The prior physical information of 

vehicle motion determines that there exist temporal relations 

between the BEV data of continuous frames. Here we adopt 

temporal cross attention in the decoder module, which makes 

the decoder query interact with the encoder outputs to 

accurately capture the temporal evolutions. The design can 

help the model make better inferences and predictions along 

the time axis. 

Finally, in the encoder and decoder of spatiotemporal 

attention, we further add casual convolution with dilation. 

Causal and dilated convolution [62]-[64] shows high 

performance in time series prediction task, which can expand 

the receptive field without increasing parameters. Thus, the 

top layer can use a wider range of information in the input 

data layer through the dilation. We reshape the dimension of 

tensor to ( , , )B N E T  and conduct the casual convolution 

operation. The time length of the output satisfies 
outT T= . 

In the third part, the prediction feature of the future time 

horizon F , whose dimension is ( , , , )B F N E , is conducted 

linear and upsample operation to output the predicted 

cooperative BEV occupancy. Due to the large size of 

cooperative BEV, the compressed feature of dimension 

( , , / 4, / 4)B F HO WO  is output through the vehicle linear layer, 

and the tensor of dimension ( , , / 4, / 4)B MC HO WO  is output 

through the map linear layer. Then after two layers of 

deconvolution and upsample, the tensors are output as the 

predicted cooperative BEV occupancy and the predicted road 

map, which correspond to the dimensions of ( , , , )B F HO WO

and ( , , , )B MC HO WO  respectively. 

Since the map information is pre-stored on the roadside, the 

system only needs to take the predicted grid occupancy state 

of vehicles and pedestrians, and then concatenate the tensors 

with the pre-stored standard map occupancy state as the final 

results. 

We further consider the computation complexity of the 

model. The complexity of the convolution and embedding 

model in the first part is ( )O HW E+ , the complexity of the 

spatiotemporal attention model in the second part is 2( )O E E+ , 

and the complexity of deconvolution and upsample in the third 

part is 2( )O E . Since the tensor dimension E  of the embedded 

data is far smaller than the size HW  of each source SBEV 

matrix. Using the embedded tensor for attention calculation 

can significantly reduce the complexity and computation time. 

C. The Metrics and Loss Function 

The output of cooperative BEV is the probability matrix of 

grids occupied by dynamic traffic participants at each future 

timestamp. The probability matrix element is denoted as s

tP , 

where t  represents the temporal position and s  represents the 

spatial position. The grid occupancy state prediction s

tM  is 

estimated by the probability, which can be transformed 

according to equation (1). It is assumed that the grid 

occupancy state label is represented as s

tO . We use 

Intersection over Union (IOU) to evaluate the effectiveness of 

the output CBEV as follows: 
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,
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( , )

s s

t t

x y

t s s s s

t t t t

x y x y x y

M O

IOU M O
M O M O

=
+ −



  
 (7) 

 

By calculating the IOU between the global CBEV 

prediction and CBEV occupancy label, we can compare the 

prediction accuracy and further evaluate the effectiveness of 

the model. The higher the IOU index, the more parts of the 

prediction results coincide with the true label, and the model 

fusion and prediction accuracy is better. 

During model training, in addition to the loss function 

related to IOU, we also add the loss related to binary cross 

entropy (BCE) to accelerate the convergence of the model and 

ensure that the foreground (the vehicle map) of the model will 

not be merged by the background (the road map). BCE loss 

function is expressed as follows: 

 

 ,

log (1 )log(1 )

( , )

s s s s

t t t t

x y

t

O P O P

BCE P O
HO WO

+ − −

= −



 (8) 

 

The probability of predicted vehicle occupancy is denoted 

as ( )s

tP V , and the probability of predicted map occupancy is 

denoted as ( )s

tP M . The total loss function is as follows: 

 

 

( , ) ( ( ), ( )) ( ( ), ( ))

( ( ), ( )) ( ( ), ( ))

V t t

t

M t t

t

loss P O IOU P V O V BCE P V O V

IOU P M O M BCE P M O M

= + +

+




 (9) 

where ,V M
 are the coefficients of vehicle occupancy and 

road map occupancy. 

IV. TESTING RESULTS 

To verify the effectiveness of the method, we conduct a 

series of simulation experiments. First, we verify that the 

global BEV fusion and prediction information output by the 

model achieves high accuracy, which can achieve better 

results compared to other deep learning-based models. Second, 

when the vehicles in the scenario are not full of CAVs, we 

verify that the proposed method can still better obtain the 

recovery information of non-CAVs and global scenes. Finally, 

we observe the influence of the CAV rate, single vehicle 

perception ability, and grid size on the final BEV fusion and 

prediction results. 

A. Experiment Setting 

The simulation experiment of BEV fusion and prediction 

requires naturalistic driving scenario data, which contain the 

movement information of traffic participants in a certain 

spatial area and a continuous time range, as well as the 

environment information. Currently there are many scenario 

datasets, including NGSIM [65] and HighD [66] and other 

datasets are collected on highways, which are mostly straight 

roads. The driving behaviors are relatively trivial, and not 

typical for comparison. Argoverse [67] dataset does not 

provide specific size information of traffic participants, such 

as the length and width of the vehicle. Although it is suitable 

for trajectory prediction, it is not suitable for occupancy 

prediction, where vehicle size parameters need to be 

specifically considered. Interaction dataset [68] contains a 

variety of rich interactive driving scenarios that provide 

vehicle motion data and road map data, etc. The duration of 

each vehicle’s trajectory is relatively long. Therefore, we 

focus on the model evaluation using the Interaction dataset. 

We use data framework [14] to preprocess and annotate the 

trajectory data, map data and drivable area. 

We select the typical intersection scenario dataset to 

demonstrate our simulation. DR_USA_Intersection_EP0 

consists of 8 data parts, each lasting about 6 minutes. 

Referring to the observation and prediction time parameters 

set by previous motion prediction works [15], [17], [33], and 

further considering the time statistics of the dataset [68], we 

set the historical time horizon to 3s, and the prediction time 

horizon to 3s. We divide the training set, validation set and 

test set according to the ratio of 8:1:1. 

 

 
Fig. 5. An example of SBEV-I with 0.5m grid. 

 

In the intersection scenario, the range of single vehicle 

perception is limited due to factors such as road geometry and 

vehicle occlusion, we set the SBEV range to a square area of 

36m around each vehicle. In addition, we set the CBEV range 

to a square area of 144m, which is occupied by the categories 

of drivable area, road markings, and vehicles, respectively. 

Following previous work on autonomous driving perception 

and prediction modules, each pixel of the BEV image 

corresponds to a grid size of 0.5m [13], [15]. As shown in Fig. 

5, we show the SBEV-I example for the 0.5m grid size. Due to 

the dense grid lines, we do not specifically show the grids in 

the following experimental results to make the BEV results 

more clear. 

According to the above data parameters, the size of the data 

package transmitted by CAV is 0.62Mbit once the time is 

triggered. When the single vehicle perception range is from 

15m to 50m, and the category C varies from 2 to 5, the size of 
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each package transmitted by CAV is from 0.08Mbit to 

1.84Mbit. Under the communication protocol related to the 

internet of vehicles [56], [69], the transmission delay to the 

roadside can be kept below 70ms. The transmitted data of each 

CAV can be aggregated, stored and extracted through the CD-

DB model [38] deployed on the roadside unit. According to 

experimental tests, the average time of data operations can be 

kept below 10ms. Under the computation complexity analyzed 

in Section III.B, the computation and inference time of the 

deep learning model can be below 50ms. Thus, the real-time 

capability of driving safety warning and motion control 

modules can be guaranteed. 

In Section III.A, we denote the occupancy probability of 

BEV position ( , )x y  by C  elements as ( , )cP x y , which is 

obtained from the perception module of the single vehicle. 

The level of the probability close to the true label can 

represent the perception ability of vehicles. The probability 

result SBEV-P constructed by different perception data 

sources will correspond to different distribution functions 

under different perception modules, among which the most 

typical one is Beta distribution. In [70]-[71], the grid 

occupancy of the map is set as a random variable satisfying 

the Beta distribution. The corresponding probability density 

function ( , )x Beta  is as follows: 

 

 1 11
( ) (1 ) [0,1]

( , )
f x x x  x

B

− −= −   (10) 

 

where ( , )B  is as follows: 

 

 
1

1 1

0

( ) ( )
( , ) (1 )

( )
B x x dx− −  

= − =
 +  (11) 

(2,10)

(4,10) (6,10) (10,6) (10,4)

(10,2)

 
Fig. 6. Probability density curves of Beta distribution and the 

symmetric distribution under different ( , )  parameters. 

( , )  parameters are marked near each curve. 

 

As sampling distribution for grid map occupancy, Beta 

distribution has the following three advantages: 

1) The value range of Beta distribution sampling is [0, 1], 

which meets the requirement of probability value; 

2) Beta distribution is a conjugate prior distribution related 

to presence or absence, success or failure, such as Bernoulli 

distribution and Binomial distribution, which meets the 

requirements for describing BEV perception; 

3) Beta distribution is very flexible. By changing the ( , )

parameters, it can simulate the Uniform distribution, Normal 

distribution, Bell-shaped distribution, U-shaped distribution, 

and many other distributions on [0, 1]. 

Therefore, in the experiment, we take Beta distribution as 

an example to sample SBEV-P data. When is constant, the 

 mainly affects the mean of Beta distribution function. 

When  increases, the mean value will decrease, which 

corresponds to the fact when the actual occupancy of the grid 

is 1, the probability value assigned to the grid by the single 

vehicle perception is more deviated from 1. Similarly, when 

the actual occupancy of the grid is 0, we adopt the symmetric 

Beta distribution of the previous function, so that the 

probability value assigned by single vehicle perception will 

also be more deviated from 0. Taken together, it reduces the 

single vehicle perception ability. Fig. 6 shows the probability 

density curves of Beta distribution under different groups of 

symmetric parameter values. We set the  parameter to 10, 

and the  parameter to 2, 4, and 6 respectively to simulate the 

different perception ability. 

As shown in Fig. 7, we compare the SBEV-I corresponding 

to the probability matrix under the three groups of parameters. 

It can be seen that with the increase of  parameter, the 

perception accuracy decreases, which is reflected in more 

scattered noises and more sparse objects in the corresponding 

BEV image. The parameter settings can simulate many cases 

related to vehicle perception, such as the equipment of low-

precision Lidar, and the execution errors of sensors. 

 

10, 2= = 10, 4= = 10, 6= =
 

 

Fig. 7. Different single vehicle perception ability of different 

Beta distribution parameters. 

 

We set the initial value as 10, 4= = . When the true 

occupancy state of the grid is 1, the mean and variance of Beta 

distribution are 0.71 and 0.01, representing CAVs with 

relatively strong perception ability. When the true occupancy 

state of the grid is 0, the distribution function used to sample 

the probability value is symmetric (4,10)Beta . The probability 

matrix can be used for generating initial SBEV-P and 

corresponding SBEV-I. The generated data from original 

datasets can be the simulation data of our experiments. 

In our experiment, the CPU of the machine is Intel 10900X, 

and the GPU is RTX 3090. Our operating system is Ubuntu 

18.04LTS with 128GB RAM. 
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For the training of the dataset, we set batchsize as 4, the 

maximum number of vehicles as 16N = , and the embedding 

dimension as 64E = . When the model is applied to other 

scenario datasets, the training parameters can be adjusted 

appropriately. The deep learning framework is Pytorch. 

During the training process, we select Adam optimizer with 

the initial learning rate of 0.001. The evaluation function and 

loss function are shown in Section III.C., where the parameter 

is set as 1, 0.03V M= = . L1 regularization of 1 6R e= −  

coefficient is added to suppress overfitting. We train for about 

150 epochs. The optimal model is selected according to the 

performance of the validation set, and the final model 

performance is tested on the test set. The training loss and 

validation set evaluation curves of the BEV-V2X model are 

shown in Fig. 8. 

 
Fig. 8. Loss and validation IOU curve of training process. 

B. The Performance Testing Results of BEV-V2X 

We select typical neural network models MLP [72], LSTM 

[73], ResNet [61], and Casual Conv [64] to replace the 

attention core module in BEV-V2X. The rest of the 

embedding and output upsample layer remain unchanged, and 

then we compare them with the BEV-V2X model. In addition, 

we also ablate the attention module as BEV-V2X-S, BEV-

V2X-T, BEV-V2X-S+T, and BEV-V2X-M+S+T respectively, 

which indicate the spatial attention, temporal attention, spatial 

and temporal attention, and spatial and temporal attention with 

global map. We then verify the effectiveness of each part of 

the attention module. 

When evaluating the model effectiveness, we initially 

assume that all vehicles in the scenario are CAVs, i.e., the 

roadside unit can collect the local SBEV data of all vehicles. 

The IOU evaluation metric is used to compare the fusion and 

prediction performance of different types of models, and the 

average IOU values are shown in Table I. 

Over time, we find that the grid occupancy IOU of the 

fusion and prediction models gradually decreases. The reason 

is that the historical data features have a limited time horizon 

for reference, and the error of the previous prediction will also 

accumulate. The final BEV-V2X-M+S+T model can reach the 

IOU value of 39, and the prediction can still reach the IOU 

value of 28 when the prediction time extends to 3s. Compared 

with the results of real-time scene segmentation and object 

detection related to BEV perception with high accuracy [12], 

[30], [48], the IOU value of BEV-V2X model is acceptable. 

Furthermore, considering that the fusion and prediction task of 

global CBEV is more difficult, the effectiveness of the 

proposed model is relatively good and valuable. 

As shown in Table I, compared with non-attention models, 

when attention is used in the core module, it can better learn 

the spatiotemporal relationship of the data feature. In the 

future time stamps, the overall IOU value is better than that of 

non-attention models. For attention-based models, by 

comparing the ablation results of temporal, spatial and map 

modules, it can be found that the fusion and prediction result 

of spatiotemporal attention is better than that of temporal and 

spatial attention alone. If the prior map information is added to 

extract global spatial attention, the performance of the model 

can be further improved, which is also one of the advantages 

of the roadside deployment model for fusion and prediction. 

For the sake of clarity, the following BEV-V2X model refers 

to the overall BEV-V2X-M+S+T model. 

As shown in Fig. 9 and Fig. 10, we select two typical 

examples from the test set to show the fusion and prediction 

results of the model. More examples can refer to the 

supplement video files. The model can well extract the motion 

and interaction information of each vehicle in the control area, 

and infer the future motion patterns and spatiotemporal 

changes. We take one vehicle as the ego at each timestamp 

and build the spatial attention weight of the other vehicles' 

corresponding perception area into the heat map. Then the he- 

 

Table I 
COMPARISON OF FUSION AND PREDICTION PERFORMANCE BY DIFFERENT METHODS 

(F refers to future predicted timestamp, similarly hereinafter) 

Type Method IOU (F=1s) IOU (F=2s) IOU (F=3s) 

Comparison 

Models 

MLP 33.9 31.4 24.7 

LSTM 30.5 30.4 27.0 

ResNet 30.8 30.1 25.4 

Casual Conv 34.9 32.9 24.0 

Ablation 

Models 

BEV-V2X-S 37.6 33.7 25.6 

BEV-V2X-T 36.0 34.3 26.7 

BEV-V2X-S+T 37.9 34.8 27.6 

BEV-V2X-M+S+T 39.0 35.6 28.7 
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Fig. 9. Fusion and prediction example in dataset part 5, with attention weights visualization of ego vehicle id 8. 

(Due to the large number of vehicles in the area, only six typical historical SBEVs are listed here) 
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Fig. 10. Fusion and prediction example in dataset part 3, with attention weights visualization of ego vehicle id 81. 

 

at map is overlaid on the global CBEV result to intuitively 

explain the spatial interaction that the model focuses on. In 

addition, we extract the temporal attention weights of the same 

ego vehicle on the historical data of the past 3s (4 sampling 

timestamps) and perform the visualization accordingly to 

show the temporal fusion. 

For feature fusion at the temporal level, the attention-based 

model learns appropriate temporal weights corresponding to 

the historical 3s (4 sampling timestamps) data features via 

data-driven methods to achieve the temporal fusion. 

As for the feature fusion at the spatial level, in Fig. 9, there 

are a large number of vehicles in the control area, and the 
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vehicle in the central area of the intersection is used to 

construct the spatial attention map as the ego vehicle. It can be 

seen that when the model fuses and predicts the relevant 

information of the ego, it mainly focuses on the intersection 

conflict area and the vehicles with interactions. In Fig. 10, the 

number of vehicles in the control area is relatively small, and 

the vehicle which is turning right is used to construct spatial 

attention map as ego vehicle. It can be seen that the model 

mainly focuses on the road areas and vehicles located on main 

road that have certain influence on its turns. The above 

focuses are consistent with human driving behaviors, 

indicating that the attention-based deep learning model can 

effectively learn relevant knowledge such as motion patterns 

and spatial interaction contained in naturalistic driving data. 

C. Comparison between Different Levels of CAV Rate 

When the cooperative driving scenario is not full of CAVs, 

we explore the ability of the proposed method to obtain the 

state of non-CAVs and the global BEV. We set the rate of 

CAVs in the scenario as 80%, 70%, and 60%, respectively. As 

shown in Fig. 11, we compare the IOU metric of CBEV 

results predicted by the BEV-V2X model. 

 
 

Fig. 11. Fusion and prediction IOU comparison of different 

CAV rates. 

 

When the CAV rate is higher, the IOU of fusion and 

prediction is also relatively higher. The reason is that the local 

SBEV of CAVs collected by the roadside unit will have more 

overlapping areas. For grid state estimation, there are more 

data sources for reference, and the model with attention 

mechanism can be well applied to integrate. 

With the decrease of CAV rate, the performance of fusion 

and prediction will decrease accordingly, and it will also 

decrease gradually with time. However, according to the 

results of previous scene segmentation works [12], [30], [48], 

the IOU metric of global CBEV output by the model is still 

maintained at a relatively high level in the future time horizon.  

It indicates that in the cooperative driving scenario where 

CAVs and normal vehicles are mixed, the BEV-V2X model 

based on V2X communication can still predict the 

spatiotemporal changes of the global scene very well by fusing 

the data transmitted by all CAVs. 

As shown in Fig. 12, we show the fusion and prediction 

results when the CAV rate decreases. Thus, with the help of 

CAVs in the control area, the proposed model can still 

perceive other non-CAVs well, infer their future positions and 

states, and maintain good understanding and prediction ability. 

 

Future CBEV Label Future CBEV Output(100% CAV)

Future CBEV Output(70% CAV)Future CBEV Output(80% CAV)  
 

Fig. 12. Fusion and prediction example of different CAV rates. 

(Non-CAVs have been marked by red circles) 

D. Comparison between Perception Ability of Single Vehicles 

When the perception ability of each CAV is enhanced or 

weakened, we explore the impact of perception ability on the 

final CBEV fusion and prediction. 

Table II 
COMPARISON BETWEEN DIFFERENT PERCEPTION ABILITY 

OF SINGLE VEHICLES 

IOU 

Beta Parameters 
F=1s F=2s F=3s 

10, 2= =  39.3 37.8 29.2 

10, 4= =  39.0 35.6 28.7 

10, 6= =  35.3 32.5 26.3 

 

As shown in Section IV.A, we conduct experiments for 

SBEV data with different Beta distribution parameters. The 

testing results are compared in Table II. It can be found that 

when the perception ability of single vehicle decreases, the 

IOU metric of fusion and prediction also decreases 

correspondingly. However, when the perception parameters 

are within certain ranges, the performance still maintains a 

relatively high level. The results suggest the following two 

points: 

1) The fusion and prediction of multi-vehicle information 

collected via V2X communication can properly cope with the 

weaknesses of inaccurate and limited perception. Through 

multi-source data fusion, the accuracy of global information 

can be maintained at relatively high level even when the 

perception ability of vehicles is not high. 

2) Cooperative driving fusion and prediction also depends 

on the single vehicle perception ability to a certain extent. If 

the perception ability of the vehicle is improved, V2X 

communication can play a more powerful role. However, once 
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the perception ability reaches a certain high level, for example, 

if the Beta parameter is changed from (10,4) to (10,2) to 

improve the perception, the final CBEV IOU metric will be 

slightly improved. 

E. Comparison between Different Grid Size 

We further explore the impact of different grid sizes on 

CBEV fusion and prediction. The fineness of the grid was set 

to 0.25m, 0.5m and 1.0m squares for each pixel respectively.  

We conduct experiments under the same Beta parameter to 

ensure the consistency of the perception ability. The 

corresponding SBEV-I differences can be visually compared 

in Fig. 13. 

 

1.0m 0.5m 0.25m  
Fig. 13. Different SBEV visualization of different grid size 

parameters. 

 

For the model training with different grid sizes, the 

parameters shown in Fig. 3 are adapted accordingly. The 

comparisons of fusion and prediction performance are shown 

in Table III. 

Table III 
COMPARISON BETWEEN DIFFERENT GRID SIZE 

IOU 

Grid Size 
F=1s F=2s F=3s 

1.0m 35.2 34.2 25.4 

0.5m 39.0 35.6 28.7 

0.25m 39.1 36.9 28.1 

 

As the grid size corresponding to BEV pixels decreases, i.e., 

the fineness increases, the IOU metric of fusion and prediction 

shows a trend of improvement. When the grid fineness is 

changed from 1.0m to 0.5m, the IOU increases significantly. 

While when the grid fineness is changed from 0.5m to 0.25m, 

the IOU increases slightly, and the prediction performance at 

different future timestamps cuts both ways. Furthermore, 

considering that as the fineness of the grid increases, the 

computation burden of the model will increase in quadratic 

order, so in the simulation environment of this paper, it is 

more appropriate to select 0.5m grid parameters for 

transmission, fusion and prediction. It is also compatible with 

the grid size settings in previous BEV-related researches [12], 

[13], [15]. 

V. FURTHER DISCUSSION ABOUT METHODS VIA SINGLE 

VEHICLES, V2V COMMUNICATION, AND V2I COMMUNICATION 

There are mainly three different methods for fusion and 

prediction based on BEV data. One is that the single vehicle 

generates SBEV by its own perception system, and does not 

acquire other vehicles' information, so it only conducts 

prediction by the spatiotemporal features of its own SBEV 

data. Another is to transmit BEV among CAVs via V2V 

communication to fully utilize the shared information for 

spatiotemporal fusion and prediction. The third is the method 

adopted by our model, which applies roadside unit or cloud 

center to collect all CAVs’ information in the control area in a 

unified and centralized manner for global fusion and 

prediction. 

First, we compare the two methods based on V2V 

communication and V2I communication. Through the above 

experimental comparison, it can be seen that the application of 

edge computing based on V2I communication has the 

following obvious advantages: 

1) The global map information of the control area can be 

pre-stored on the road side. As shown in Table I, when the 

map is input into the model as a priori, it is helpful for the 

attention module to better extract the global spatial position 

information of vehicles and improve the accuracy of model 

fusion and prediction. In addition, the map information can be 

directly used as the output of the occupancy state of road 

elements in the final CBEV result, which can improve the 

accuracy of environment perception. 

2) Compared with vehicles, roadside units have a wider 

field of view and a wider range of information collection [74]. 

In addition, the application of data model [38] can efficiently 

store and extract CAVs’ data. As shown in Fig. 11, as the 

number of CAVs increases, the model can integrate more 

information and achieve better results. 

3) Compared with vehicles, roadside units have stronger 

computing resources [75] and can efficiently and quickly 

complete the deployment and calculation of models. 

Further, to compare the fusion and prediction performance 

based on V2X approach and single vehicle, we conduct the 

experiment to predict the future global BEV (SBEV to CBEV) 

based on V2X communication and its own local BEV (SBEV 

to SBEV) based on its own local historical BEV data. 

In the SBEV prediction experiment, we also set the 

perception parameter as (10,4)Beta . In the model shown in 

Fig. 3, the data input is the historical SBEV data, and the 

dimension is ( , ,1, )B T E . After the ResNet embedding 

operation, the features are input to the attention layer. Since 

the driving environment around the single vehicle will 

gradually change with the movements, the map-based global 

spatial aware attention is not set in the spatiotemporal feature 

extraction layer. The rest are the same as the modules of BEV-

V2X. The experiment comparison results are shown in Table 

IV. 

When only historical SBEV data are used to predict the 

future global CBEV, due to the limited perception range of the 

vehicle itself, the estimation and prediction of scenario 

elements outside its perception range will have large 

deviations, thus the IOU metric values will be very low. While 

the fusion and prediction based on V2X communication can 

collect more vehicles’ information in a wider range. The 

spatial and temporal features of SBEV constructed by vehicles  
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Fig. 14. Comparison example between SBEV output via Single: SBEV to SBEV model and corresponding SBEV cropped from 

V2X: BEV-V2X model. 

 

are integrated by BEV-V2X model, which significantly 

expands the perception range of each vehicle, and the IOU 

values of global CBEV results also reach a high level. 

When only historical SBEV data are used to predict future 

local SBEV information, we take SBEVs corresponding to the 

perception range of vehicles cropped from the global CBEV 

results based on V2X communication for comparison. Typical 

examples are shown in Fig. 14. Further combined with the 

results of Table IV, the following four points can be illustrated: 

 

Table IV 

COMPARISON BETWEEN METHODS VIA SINGLE VEHICLES 

AND V2X COMMUNICATION 

IOU 

Methods 
F=1s F=2s F=3s 

Single: SBEV to CBEV 19.0 18.1 16.8 

V2X: BEV-V2X 39.0 35.6 28.7 

Single: SBEV to SBEV 36.0 22.6 17.0 

V2X: BEV-V2X crop SBEV 41.4 39.3 32.3 

 

1) Since the data source of Single: SBEV to SBEV is only 

the vehicle itself, there are more uncertainties in grid 

occupancy states. While the V2X-based approach can collect 

the historical data of many vehicles, so the methods can 

expand the perception area significantly. In addition, there are 

also overlapping parts among the corresponding perception 

areas of the single vehicles, which can be effectively applied 

to the fusion. The results in Table IV show that the IOU metric 

value of fusion and prediction is significantly improved. 

Furthermore, from Fig. 14, it can be seen that the fusion and 

prediction performance of the cropped local BEV of the BEV-

V2X model is significantly better than that of the single 

vehicle-based prediction. 

2) The prediction via single vehicle cannot capture the 

information of vehicles that will enter the perception area of 

single vehicle in the future. As shown in Fig. 14, in the results 

from Single: SBEV to SBEV, the grid occupancy in the lower 

left black box area are not correctly predicted. The true 

situation is that although no vehicle occupied the lower left 

part of the ego SBEV area in the historical time horizon (the 

ego vehicle was on the branch lane, and the perception was 

difficult to touch the main lane), there will exist vehicles 
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entering the perception area of the ego vehicle in the future 3s. 

Therefore, it is difficult for vehicles to capture relevant 

information only from the historical data of single vehicle. 

Fortunately, with the help of V2X communication, it can 

perceive the global vehicles’ movements information to make 

better fusion and prediction. 

3) When we deploy BEV-V2X model via V2X 

communication on the roadside/cloud, the global map 

information of the control area can be pre-stored and directly 

applied to output results. In contrast, the fusion and prediction 

method based on single vehicle not only predicts the 

occupancy state of vehicles in the grid map, but also needs to 

predict the occupancy of road elements such as drivable areas 

and road markings. As shown in Fig. 14, the results show 

certain deviations compared with the real road map, which 

weakens the accuracy of environment perception. 

4) As shown in Table IV, the fusion and prediction index 

based on single vehicle decreases rapidly with time, while the 

index of methods based on V2X communication decreases 

slowly. It shows obvious advantages in long-term prediction 

tasks. 

VI. CONCLUSIONS 

In this paper, a BEV fusion and prediction method based on 

V2X communication and attention neural network model is 

proposed. The experiment results show that the performance 

of the proposed BEV-V2X model is significantly better than 

the prediction based on single vehicle perception. When the 

grid size is 0.5m, the fusion and prediction accuracy of the 

global CBEV at the future 1s timestamp can reach 40 IOU 

index, and the accuracy of the future 3s timestamp can still 

reach 30 IOU index. Referring to the high accuracy results of 

BEV perception related real-time scene segmentation studies, 

the BEV-V2X model can meet the requirements of accurate 

scene understanding and inference. Even if the cooperative 

driving scenario is not full of CAV, when the CAV rate 

reaches over 60%, the fusion and prediction method based on 

V2X communication can maintain the IOU index of more than 

30, and the model can still accurately estimate and predict the 

spatiotemporal dynamic changes of the global scenario. It will 

also be better with the enhancement of single vehicle 

perception ability. The fusion and prediction results can 

further support driving safety warning, multi-vehicle 

cooperative driving, cooperative traffic control, and other 

applications. 

Due to the space limitation of this paper, the following three 

aspects are not further discussed: 

First, in the cooperative driving scenario, the roadside unit 

collects CAV data in the control area to obtain global 

information. BEV data contain more semantic information, 

and can be applied to the driving scenario where CAVs and 

non-CAVs are mixed. However, BEV data also has some 

disadvantages compared to trajectory data, such as complex 

data structure and large space consumption, which may lead to 

slow transmission and computation. In the future, we will 

further analyze the advantages and disadvantages, and the 

influence of interactive data format between vehicle side and 

road side in the researches of cooperative warning and 

planning. 

Second, through the above experiments, it can be observed 

that when the CAV rate increases or the single vehicle 

perception ability increases, the fusion and prediction 

performance will be improved. However, when the single 

vehicle perception ability reaches a certain high level, the 

performance is not significantly improved, while increasing 

the CAV rate will achieve more significant improvement. In 

addition, there also exist problems such as visual blind area 

and vehicle occlusion in vehicle perception. The limited 

ability will increase the bottleneck of perception ability 

improvement. The research in this paper will prompt us to 

further think about measures to promote the development of 

autonomous driving, focusing on increasing the CAV rate or 

improving the perception ability, which will also be an 

interesting topic for researchers to discuss. 

Third, in this paper, we focus on demonstrating the 

experiments of typical intersection scenario datasets. 

According to studies on motion prediction [15]-[17] and time 

statistics of datasets [68], we set the historical time and future 

time horizon as appropriate values. Under different types of 

driving scenarios and behaviors, the corresponding time 

parameter settings should also be changed and adapted. We 

will further discuss the issue in the future work related to 

driving behaviors simulation and verification. 
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