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S U M M A R Y
The plane-wave reflection coefficient (PRC) plays a remarkable role in conventional amplitude
variation with offset (AVO) analysis and inversion. Compared with the widely exploited
PRC that breaks down at the near- and supercritical incidence angles, the spherical-wave
reflection coefficient (SRC) can overcome the influence of wide-angle reflection and give an
accurate description of the actual seismic wave reflection phenomenon based on spherical-
wave fronts. However, SRC is not widely used in AVO inversion due to its nonlinearity and
computational complexity. In our study, the characteristics of frequency–depth-dependent
monochromatic SRC are discussed and a novel three-parameter SRC is derived. Compared
with the conventional six-parameter SRC, the novel three-parameter SRC improves the stability
of spherical-wave AVO inversion. In addition, the concept of SRC within the Fresnel zone is
proposed, and the accuracy of SRC within the Fresnel zone in the deep subsurface is tested.
Finally, a nonlinear spherical-wave AVO inversion method for elastic media is proposed, which
can make full use of all frequency components of wavelet. The robustness of the proposed
method is verified by the application on synthetic seismogram with white Gaussian noise. The
feasibility and practicability of this method are verified by comparing the spherical-wave AVO
inversion results with the filtered well logs at the known well location.

Key words: Fourier analysis; Wave propagation; Inverse theory; Numerical modelling; Nu-
merical solutions.

1 I N T RO D U C T I O N

Plane-wave theory is widely exploited in pre-stack AVO analysis (Ostrander 1984; Rutherford & Williams 1989; Castagna & Swan 1997;
Kumar et al. 2019) and inversion (Smith & Gidlow 1987; Buland & Omre 2003; Yin & Zhang 2014; Zong et al. 2015, 2017; Li et al. 2020).
Frequency-independent plane-wave reflection coefficients are the essential tools in the estimation of elastic parameters. However, the present
widely used linear (Bortfeld 1961; Goodway et al. 1997; Aki & Richards 2002; Russell et al. 2011) and nonlinear (Wang 1999; Stovas & Ursin
2003; Cheng et al. 2017, 2018) plane-wave approximate reflection coefficients are limited by the weak-contrast assumption of interfaces.
Even the exact Zoeppritz plane-wave reflection coefficients (Zoeppritz 1919) are derived based on the assumption of plane-wave fronts. In
contrast to plane-wave theory, spherical-wave theory can describe the real seismic wave field excited by point source.

To simplify the spherical-wave equations, Sommerfeld (1909) and Weyl (1919) proposed the Sommerfeld integral and Weyl integral,
respectively. Later, the simpler formulae of reflected spherical waves for harmonic source and acoustic media were proposed (Červený 1959;
Červený & Hron 1961). The first-order and high-order spherical-wave asymptotic equations were given by Brekhovskikh (1980) and Aki
& Richards (2002), respectively. It must be noted that the high-order asymptotic equations are not always more accurate than the zeroth-
or first-order asymptotic equations. One conventional approach to obtain the exact SRC is full-wave numerical simulation (Alhussain et al.
2008; Zhu & McMechan 2012), for instance, the finite difference method. Another widely exploited approach to obtain the exact SRC is the
weighted integral of the PRC (Ursenbach et al. 2007; Ayzenberg et al. 2009). The weighted integral method is under the assumption of the
particle motions of compressional wave and shear wave are in the same and perpendicular directions to the wave propagation, respectively.
Haase & Ursenbach (2006) verified the error caused by the assumption is small and negligible.

The SRC is dependent on not only the incidence angles and elastic parameters between layers but also the frequency and the distances
between source, receiver and reflection point (Li et al. 2017a). Seismic reflection information can improve the accuracy of density inversion
at near-critical incident angle and supercritical incident angle. The SRC overcomes the error caused by the PRC at large incidence angles. In
addition, the SRC can make full use of the amplitude, frequency, and propagation distance to estimate the elastic parameters. However, its
nonlinearity and computational complexity limit its practical application. The frequency components of seismic data have been used in the
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Figure 1. A single plane interface between two half-spaces in elastic media.

conventional plane-wave AVO inversion (Kroode et al. 2013; Zong et al. 2018; Cheng et al. 2019). In recent years, the frequency-dependent
SRC has attracted more and more attention. The single-frequency spherical-wave AVO inversion of elastic media (Krail & Brysk 1983;
Skopintseva et al. 2011) and the multi-frequency spherical-wave AVO inversion of acoustic media (Li et al. 2017b) have been studied
intensively.

Previous researches on spherical-wave AVO inversion mainly utilized SRC with one or several frequency components, which could
not make full use of all frequency information of actual seismic wavelet. A single plane interface between two half-spaces rather than
multilayer interface usually was designed for spherical-wave AVO inversion. In addition, conventional SRC needs to estimate six parameters
(compressional wave velocity, shear wave velocity, and density in the upper and lower media) simultaneously. Too many unknown parameters
bring great challenges to the stability of spherical-wave AVO inversion. In view of these problems, we propose a frequency-dependent
spherical-wave nonlinear AVO inversion method to fully utilize the frequency components within the bandwidth of actual band-limited wavelet.
Moreover, the method can also achieve the estimation of elastic parameters in multilayer media, which promotes the practical application of
spherical-wave AVO inversion. To improve the stability of spherical-wave AVO inversion, an exact plane-wave reflection coefficient equation
with three parameters (P-wave velocity reflectivity, S-wave velocity reflectivity, and density reflectivity) are substituted into the conventional
SRC, and a novel three-parameter SRC is obtained. In consideration of the complexity and non-analyticity of the SRC, the nonlinear inversion
algorithm proposed by Růžek et al. (2009) is utilized in this paper. We also derive the SRC within the Fresnel zone that plays an essential
role in seismic exploration, especially in the spatial lateral resolving power and the description of reflected and transmitted wave fields (Ursin
et al. 2014).

2 T H E C O M P U TAT I O N A N D A NA LY S I S O F M O N O C H RO M AT I C S RC

A single plane interface between two half-spaces in Fig. 1 describes the incident and reflected elastic spherical compressional wave (P-
wave). We assume that the displacement of the spherical P-wave particle motion has the same direction as the wave propagation and other
displacement components are negligible (Haase & Ursenbach 2006). The receiver and the source are at the same depth.

In Fig. 1, the mirror image of the P-wave source excites the monochromatic spherical wave. The displacement potential of the incident
spherical wave at the receiver point can be expressed as (Aki & Richards 2002)

φinc = Aiω exp (−iωt)
∫ ∞

0

p

ξ
J0 (ωpr ) exp [iωξ (z + h)] dp, (1)

and the displacement potential of the reflected spherical wave at the receiver point is

φref = Aiω exp (−iωt)
∫ ∞

0
Rpp

p

ξ
J0 (ωpr ) exp [iωξ (z + h)] dp, (2)

where i, t ω are the imaginary unit, time and angular frequency, respectively. The constant A is decided by the source strength. J0 is the
zero-order Bessel function. r is the horizontal distance between the source and the receiver. z and h are the vertical distances between the
receiver, the source and the interface, respectively. The product of A, i , ω and the integral of p is the amplitude (strength) of the spherical-wave
displacement potential. The incident spherical-wave displacement can be expressed as

uinc

(
ur

inc, uz
inc

) = ∇φinc =
(

∂φinc

∂r
,
∂φinc

∂z

)
, (3)
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Table 1. Model 1.

Stratum Vp (m s−1) Vs (m s−1) ρ (g cm−3)

Shale 2000 880 2.400
Sand 2933 1882 2.000

Table 2. Model 2.

Stratum Vp (m s−1) Vs (m s−1) ρ (g cm−3)

Shale 2898 1290 2.425
Gas bearing sandstone 2857 1666 2.275

ur
inc and uz

inc are the displacement components of the incident wave in the radial direction and vertical direction, respectively. The reflected
spherical-wave displacement is

uref

(
ur

ref , uz
ref

) = ∇φref =
(

∂φref

∂r
,
∂φref

∂z

)
, (4)

ur
ref and uz

ref are the displacement components of the reflected wave in the radial direction and vertical direction, respectively. The incident
spherical-wave displacement in the ray direction can be expressed as

uinc = ur
inc sin θp1 + uz

inc cos θp1 = ∂φinc

∂r
sin θp1+∂φinc

∂z
cos θp1 = Ainc exp (−iωt) , (5)

whereAinc=Aiω2
∫ +∞

0
p
ξ

[−pJ1(ωpr ) sin θ + iξ J0(ωpr )cosθ]exp(iωξ (z + h))dp,J1 is the first-order Bessel function. The reflected spherical-
wave displacement can be expressed as

uref = ur
ref sin θp1 + uz

ref cos θp1=∂φref

∂r
sin θp1+∂φref

∂z
cos θp1 = Aref exp (−iωt) , (6)

where

Aref=Aiω2

∫ +∞

0
Rpp

p

ξ
[−pJ1(ωpr )sinθ + iξ J0(ωpr ) cos θ ] exp (iωξ (z + h)) dp.

Ainc and Aref are the incident and reflected spherical-wave amplitudes, respectively. Spherical diffusion makes Ainc and Aref decrease with
the increase of propagation distance, and its influence can be eliminated by the ratio of Aref to Ainc. The monochromatic compressional SRC
can be written as

Rsph
pp = Ainc

Aref
=

∫ +∞
0 Rpp

p
ξ

[−pJ1(ωpr ) sin θ + iξ J0(ωpr ) cos θ] exp (ıωξ (z + h)) dp∫ +∞
0

p
ξ

[−pJ1(ωpr ) sin θ + iξ J0(ωpr ) cos θ ] exp (iωξ (z + h)) dp
. (7)

The singular point (p = 1
vp1

) in the integral path brings difficulties to calculate eq. (7). We refer to the research of Ursenbach et al.

(2007). Substituting ξ= cos θp1

vp1
,

p
ξ

dp = − d cos θp1

vp1
, and x = cos θp1 into eq. (7), the equation can be further written as

Rsph
pp =

[∫ 0
1 Rpp(x)Ja exp

(
iω x

v p1
(z + h)

)
dx+i

∫ +∞
0 Rpp(ix)Jb exp

(
−ω x

v p1
(z + h)

)
dx

]
[∫ 0

1 Ja exp
(

iω x
v p1

(z + h)
)

dx+i
∫ +∞

0 Jb exp
(
−ω x

v p1
(z + h)

)
dx

] , (8)

with Ja = −
√

1−x2

v p1
J1(ω

√
1−x2

v p1
r ) sin θp1 + i x

v p1
J0(ω

√
1−x2

v p1
r ) cos θp1 andJb= −

√
1+x2

v p1
J1(ω

√
1+x2

v p1
r ) sin θp1 − x

v p1
J0(ω

√
1+x2

v p1
r ) cos θp1.

The Gauss–Kronrod algorithm (Shampine 2008) and two models are utilized to calculate the SRC. Tables 1 and 2 display the elastic
parameters of model 1 (Haase 2004) and model 2 (Goodway et al. 1997), respectively. Models 1 and model 2 are two kinds of typical models
that can reflect the characteristics of spherical wave reflection coefficients. Velocities increase across the reflected interface in model 1 that
constitutes a Class I AVO. The critical angle (43◦) only exists in model 1 and head waves can be generated from reflected waves. The elastic
parameters in model 2 are from an actual gas well and there are no critical angles and head waves.

Figs 2 and 3 display the (a) amplitude and (b) phase of the SRC and PRC variation with incidence angles calculated by model 1.
Compared to Figs 2 and 3, model 2 is utilized in Figs 4 and 5. Figs 2 and 4 display the monochromatic SRC with different frequencies when z
(the vertical distances between the receiver and the interface) is set to 500 m. The curves in cyan, green, and blue represent the monochromatic
SRC of 5 Hz, 30 Hz, and 90 Hz, respectively. Figs 3 and 5 display the 30 Hz monochromatic SRC when z equals to 200 m (cyan curves),
1000 m (green curves), and 4000 m (blue curves), respectively. The red curves represent the PRC. It can be seen from Figs. 2 to Fig. 5 that
the SRC is frequency–depth dependent, but the PRC is not. For model 1 (Figs 2 and 3), the biggest difference between the SRC and the PRC
nears the critical incident angle. The amplitude oscillations of SRC caused by head waves (Červený & Hron 1961) occur after the critical
angle. For model 2 (Figs 4 and 5), there are no critical angle and head waves. The difference between SRC and PRC is very small. We can
conclude that the PRC is closer to the SRC with the increase of propagating distance and frequency.
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Figure 2. The (a) amplitude and (b) phase of the monochromatic SRC variation with incidence angles at different frequencies calculated by model 1.
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Figure 3. The (a) amplitude and (b) phase of the monochromatic SRC variation with incidence angles at different propagation distances calculated by model
1.
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Figure 4. The (a) amplitude and (b) phase of the monochromatic SRC variation with incidence angles at different frequencies calculated by model 2.
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Figure 5. The (a) amplitude and (b) phase of the monochromatic SRC variation with incidence angles at different propagation distances calculated by model
2.

Figure 6. The first-order Fresnel zone at the non-zero incidence angles.

3 M O N O C H RO M AT I C S P H E R I C A L - WAV E AV O W I T H I N T H E F R E S N E L Z O N E

The Fresnel zone contributes to the spatial lateral resolving power (Sheriff 1980; Yilmaz 2001), the construction of observation system
(Goertz et al. 2005), the identification of geological abnormity body, and the amplitudes of reflected wavefields (Spetzler & Snieder 2004;
Favretto-Cristini et al. 2007). We derive a monochromatic SRC within the Fresnel zone and aim to emphasize its contributions to the reflected
spherical wavefield in the deep subsurface of the Earth.

In Fig. 6, the incidence angle is θp1 and the reflection point is C. The BD in red represents the reflector within the first-order Fresnel
zone. The ABE and ADE (red dotted lines) are the boundaries of the propagation path of the reflected wave within the first-order Fresnel
zone. According to the relation between wavelength (λ) and propagation distanceACE(2l), we can derive the formulae of ABE − ACE = λ

2

and ADE − ACE = λ

2 . The length of BC and CD can be derived and expressed as

BC = CD =

√√√√√
(

λl
2 + λ2

16

) (
l + λ

4

)2

sin2θp1

(
λl
2 + λ2

16

)
+ cos2θp1

(
l + λ

4

)2
. (9)

The cos θ1 and cos θ2 can be further obtained and written as

cos θ1 = h

AB
= h√

h2 + (OC − BC)2
= h√

h2 + (
h tan θp1 − BC

)2
, (10)
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Figure 7. The (a) amplitude and (b) phase of the monochromatic SRC variation with the incident angles within the Fresnel zone calculated by model 1.
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Figure 8. The (a) amplitude and (b) phase of the monochromatic SRC variation with the incident angles within the Fresnel zone calculated by model 2.

and

cos θ2 = h

AD
= h√

h2 + (OC + CD)2
= h√

h2 + (
h tan θp1 + CD

)2
. (11)

Changing the integral range by substituting eq. (10) and eq. (11) into the integral domain of eq. (8), the SRC within the Fresnel zone
can be obtained. Models 1 and model 2 are used. Thezand frequency are set to 3000 m and 30 Hz, respectively.

Figs 7 and 8 display the (a) amplitude and (b) phase of monochromatic SRC within the Fresnel zone calculated by model 1 and model
2, respectively. The curves in red, green, and black represent the PRC, SRC, and SRC within the Fresnel zone respectively. From Fig. 7 we
can see that the monochromatic SRC within the Fresnel zone has higher accuracy in contrast to the PRC. The differences between the SRC
within the Fresnel zone and the SRC are mainly concentrated at the near-critical incidence angles. Fig. 8 shows that the amplitude and phase
of SRC within the Fresnel zone basically coincide with the SRC. The SRC within the first-order Fresnel zone has high accuracy, which is
helpful to study the reflected spherical wavefield in the deep subsurface of the Earth.

4 T H E F O RWA R D M O D E L L I N G O F S P H E R I C A L WAV E

The amplitude and phase of SRC will be influenced by the monochromatic spherical waves of different frequencies during the seismic
wave propagation. With the same incidence angle, propagation distance, and elastic parameters between layers, the SRC is only dependent
on the frequency. To make full use of the frequency components of seismic wavelet, the band-limited wavelet can be decomposed into
the monochromatic spherical waves with different frequencies. As shown in Figs 2–5, the monochromatic spherical waves with different
frequencies have different reflection coefficient curves. That is to say, there is a one-to-one mapping between SRC and frequency components.
The high-frequency components make spherical wave closer to the plane wave, and the influence of low-frequency components on AVO
cannot also be ignored. The SRC is regarded as the filter or weighting factor of the band-limited spherical waves in the frequency domain.
The spherical reflection waveform can be obtained by the inverse Fourier transform to the calculations for all frequency points (Haase 2004).
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Figure 9. The band-limited Ricker wavelet in the time domain and frequency domain.
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Figure 10. The spherical-wave reflection waveform (black solid) and the plane-wave reflection waveform (dashed red) calculated by model 1 at the (a)
pre-critical incident angle (15◦), (b) near-critical incident angle (50◦) and (c) post-critical incident angle (80◦).
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Figure 11. The spherical-wave reflection waveform (black solid) and the plane-wave reflection waveform (red dashed) calculated by model 2 at the incident
angles of (a) 15◦, (b) 50◦, and (c) 85◦. (There is no critical incident angle.)

In this paper, a band-limited Ricker wavelet (the dominant frequency is 30 Hz) and model 1 (Table 1) are employed in the calculation of
spherical reflection waveform and finite difference modelling.

Figs 9(a) and (b) display the band-limited Ricker wavelet in the time domain and frequency domain, respectively. The critical angle
is 43◦ and zis 500 m. The plane-wave reflection waveform is also derived via the inverse Fourier transform. Figs 10(a)–(c) display the
differences between the spherical-wave reflection waveform (black solid) and the plane-wave reflection waveform (red dashed) at the pre-
critical incidence angle of 15◦, near-critical incidence angle of 50◦, and post-critical incidence angle of 85◦, respectively. Compared with the
PRC, the SRC is frequency-dependent, and there are slight differences between the spherical-wave reflection waveform and the plane-wave
reflection waveform at the pre-critical incidence angles. There are significant differences caused by head waves at the near-critical incident
angles. At the post-critical incident angles, the spherical-wave reflection waveform and the plane-wave reflection waveform are almost same.
Figs 11(a)–(c) display the spherical-wave reflection waveform (black solid) and the plane-wave reflection waveform (red dashed) calculated
by model 2 at the incident angles of 15◦, 50◦, and 85◦, respectively. There are subtle, or even no differences between the spherical-wave
reflection waveform and the plane-wave reflection waveform.

For demonstrating the accuracy and credibility of the band-limited spherical-wave reflection waveform, the elastic wave finite difference
(FD) modelling is implemented to calculate the reflection waveform at the pre-critical incidence angle of 15◦. Once again, the single plane
interface between two half-spaces in Fig. 1 is utilized. During the forward modelling of spherical waves, we don’t consider the free surface
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Figure 12. The normalized reflection waveforms calculated by the band-limited spherical wave (black dotted curve) and the elastic wave finite difference
modelling (red solid curve).

effects. In addition, the P-wave point source in elastic media and the planar reflection interface are assumed (as shown in Fig. 1). The simple
one reflection interface in elastic media is sufficient to verify the feasibility of our method to obtain band-limited spherical waves. Haase &
Ursenbach (2007) and Ayzenberg et al. (2009) further studied on the spherical wave reflection coefficient for anelastic media and curved
interfaces, respectively. The frequencies of incident waves should be within the seismic-frequency range. The depth of reflection interface
needs to be set first because of the spherical wave AVO is depth-dependent. The Perfect Matched Layer (PML) absorbing boundary condition
(Berenger 1994) is used to eliminate the boundary reflections.

In Fig. 12, the curves in black and red represent the reflection waveforms (after normalization) obtained from the band-limited spherical
wave and the finite difference modelling, respectively. It can be seen that the spherical-wave reflection waveform is agreement well with the
simulation results of FD.

5 B A N D - L I M I T E D S P H E R I C A L - WAV E AV O I N V E R S I O N

Six unknown elastic parameters in Zoeppritz P-wave reflection coefficient increase the uncertainty and difficulty of spherical-wave AVO
inversion. A novel exact PRC with three elastic parameters was proposed (Yin et al. 2018) and can be expressed as

Rnovel
pp = e1 f1 − g1h1

e2 f2 + g2h2
, (12)

where

e1 = 2+ 	vp
vp

2− 	vp
vp

cos θp1

[
2+ 	ρ

ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) + 2sin2θs1

]
− cos θp2

[(
1 − 2sin2θs1

) + 2
2+ 	ρ

ρ

2− 	ρ
ρ

sin2θs2

]
,

e2 = 2+ 	vp
vp

2− 	vp
vp

cos θp1

[
2+ 	ρ

ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) + 2sin2θs1

]
+ cos θp2

[(
1 − 2sin2θs1

) + 2
2+ 	ρ

ρ

2− 	ρ
ρ

sin2θs2

]
,

f1 = f2 =
(

2+ 	vp
vp

2− 	vs
vs

)
vp

vs
cos θs1

[
2+ 	ρ

ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) + 2sin2θs1

]
+

(
2+ 	vp

vp

2+ 	vs
vs

)
vp

vs
cos θs2

[(
1 − 2sin2θs1

) + 2
2+ 	ρ

ρ

2− 	ρ
ρ

sin2θs2

]
,

g1 = sin2θp2

[
2+ 	ρ

ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) − (
1 − 2sin2θs1

) + 2 cos θp1 cos θs2

(
2+ 	ρ

ρ

2− 	ρ
ρ

2+ 	vs
vs(

2− 	vp
vp

)
vp
vs

−
(

2− 	vs
vs

)2

(
2− 	vp

vp

)(
2+ 	vs

vs

)
vp
vs

)]
,

g2 = sin2θp2

[
2+ 	ρ

ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) − (
1 − 2sin2θs1

) − 2 cos θp1 cos θs2

(
2+ 	ρ

ρ

2− 	ρ
ρ

2+ 	vs
vs(

2− 	vp
vp

)
vp
vs

−
(

2− 	vs
vs

)2

(
2− 	vp

vp

)(
2+ 	vs

vs

)
vp
vs

)]
,

h1 = h2 = 2+ 	ρ
ρ

2− 	ρ
ρ

(
1 − 2sin2θs2

) − (
1 − 2sin2θs1

)−2 cos θp2 cos θs1

(
2+ 	ρ

ρ

2− 	ρ
ρ

(
2+ 	vs

vs

)2

(
2+ 	vp

vp

)(
2− 	vs

vs

)
vp
vs

− 2− 	vs
vs(

2+ 	vp
vp

)
vp
vs

)
,

	vp

vp
= vp2−vp1

vp2+vp1
is the P-wave velocity reflectivity, 	vs

vs
= vs2−vs1

vs2+vs1
is the S-wave velocity reflectivity and 	ρ

ρ
= ρ2−ρ1

ρ2+ρ1
is the density reflectivity.

Substituting eq. (12) into eq. (8), the novel SRC can be expressed as

Rsph
pp =

[∫ 0
1 Rnovel

pp (x)Jaexp
(

iω x
v p1

(z + h)
)

dx+i
∫ +∞

0 Rnovel
pp (ix)Jb exp

(
−ω x

v p1
(z + h)

)
dx

]
[∫ 0

1 Ja exp
(

iω x
v p1

(z + h)
)

dx+i
∫ +∞

0 Jbexp
(
−ω x

v p1
(z + h)

)
dx

] . (13)

The z, h and elastic parameters in layer 1 are assumed to be known. Meanwhile, the novel SRC (Eq. 13) can overcome the influence of
impedance contrast, because eq. (12) is not under the assumption of weak-contrast.
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Table 3. The elastic parameters of real gas-bearing sandstone.

Stratum Vm (m s−1) Vs (m s−1) ρ (g cm−3)

Shale 4010 2120 2.304
Gas bearing sandstone 5040 2980 2.446

0.2276 0.2265

0.3373 0.3362

0.0598 0.0608
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Figure 13. The spherical-wave AVO inversion results without noise.

The objective function of spherical wave AVO inversion can be expressed as

F =
∥∥∥∥∥

HF∑
ω=LF

W (ω) · Rsph
pp (ω) − dobs

∥∥∥∥∥
2

2

= G (m) , (14)

where W (ω) is the harmonic wave at the frequency of ω, m=[r p, rs, rd]. LF and HF are the lowest and highest frequencies in the frequency
band range of wavelet, respectively. Compared with conventional SRC, only r p,rs and rd need to be inverted in Eq. (14), the three-parameter
SRC improves the stability of spherical-wave AVO inversion. The band-limited spherical-wave reflection waveform is calculated with the
elastic parameters from real gas-bearing sandstone (Table 3) and can be used as the observation data dobs for inversion. To estimate the r p,rs
and rd , the spherical-wave AVO inversion method based on the actual band-limited wavelet and frequency-dependent SRC is proposed.
The wavelet is decomposed into harmonic waves with different frequencies, and each frequency has a unique weighting factor (SRC). The
frequency components within the bandwidth of the band-limited wavelet can be utilized fully.

A powerful nonlinear inversion tool (Růžek et al. 2009) is used to solve Eq. (14). The first step is to define the scope of model m
(m=[r p, rs, rd]) and select a centre model mc randomly. The second step is to obtain the candidate model mg , mg = mc + RLg. The
constant R is less than the distance between the centre model and boundary. gis the unit vector. We calculate L by the Cholesky decomposition

of Cm, where Cm= LLT =

⎡
⎢⎣	r p2

	rs2

	rd2

⎤
⎥⎦ , 	r p = r pmax − r pmin, 	rs = rsmax − rsmin, and 	rd = rdmax − rdmin. The third step

is to predict the model mn=[r pnew, rsnew, rdnew] by kriging, radial basis function network, and linear regression. The last step is to compare
G(mn) and G(mc). If G(mn) ≤ G(mc) and G(mn) can meet accuracy requirement, mn becomes the centre model. If G(mn) > G(mc),
returning to step 2.

To avoid the influence of the critical angle and head waves, the pre-critical synthetic data is used in the spherical-wave AVO inversion.
The synthetic data with white Gaussian noise is further implemented to demonstrate that even under the noise situation, the reasonable
inversion results can still be obtained using our method. The plane-wave AVO inversion results based on Zoeppritz equation are given for
comparison.

Figs 13 and 14 display the spherical-wave AVO inversion results without and with white Gaussian noise, respectively. The colour bars
in blue and red are the true values and inversion results, respectively. (a)–(c) display the P-wave velocity reflectivity (r p), S-wave velocity
reflectivity (rs) and density reflectivity (rd) respectively. (d)–(f) display the P-wave velocity (vp), S-wave velocity (vs) and density (ρ)
calculated by the inverted r p, rs and rd . From Figs 13 and 14 we can see that the spherical-wave AVO inversion results without and with white
Gaussian noise are highly consistent with the elastic parameters of real gas-bearing sandstone, which verifies the accuracy of our method. In
the noise situation, the plane-wave AVO inversion results based on the Zoeppritz equation in Fig. 15 are given for comparison. The colour
bars in blue, red, and yellow represent the true values, the spherical-wave inversion results, and the plane-wave inversion results based on the
Zoeppritz equation, respectively. From Fig. 15 we can see that the spherical-wave AVO inversion results are better than the plane-wave AVO
inversion results.
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Figure 14. The spherical-wave AVO inversion results with noise (signal-to-noise ratio is 4).
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Figure 15. The comparison between the spherical-wave AVO inversion results and the plane-wave AVO inversion results based on Zoeppritz equation with
noise.

6 F I E L D DATA E X A M P L E S

In the current research, the single plane interface between two half-spaces is usually designed, but the spherical-wave AVO inversion method
for multilayer elastic media has not been developed. In order to promote the practical application of spherical-wave AVO inversion, our
method can be developed to estimate elastic parameters in multilayer elastic media. The convolutional model (Robinson 1985) is utilized at
each frequency component. The objective function can be obtained and expressed as

F =
∥∥∥∥∥

HF∑
ω=LF

W (ω) ∗ Rsph
pp (ω) − dobs

∥∥∥∥∥
2

2

= G (m) , (15)

where the asterisk denotes convolution and dobs is the seismic trace near the borehole.
Fig. 16 displays the spherical-wave AVO inversion results and filtered well logs at the well location. The well logs are from an exploration

area of eastern China. The red curve and black curve represent the filtered well logs and spherical-wave AVO inversion results, respectively.
It can be seen from Fig. 16 that the spherical-wave AVO inversion results at the known well location are in good agreement with the filtered
well logs, which verifies the feasibility and practicability of our method.

It must be admitted that there is a long way to go for spherical wave AVO inversion in realistic seismic exploration. Anelastic situations
and curved interfaces make the band-limited spherical wave AVO inversion much more complicated. In addition, the band-limited wavelet is
extracted based on the assumption of plane wave fronts rather than spherical wave fronts in current AVO technology.

7 C O N C LU S I O N

In the isotropic elastic media, we derive a novel three-parameter spherical-wave reflection coefficient that can improve the stability of spherical-
wave AVO inversion by reducing the number of inverted elastic parameters. With the increase of frequency and propagating distance, the
differences between the PRC and the SRC become more and more small. In addition, we derive the SRC within the Fresnel zone that has
large errors at the near-critical incidence angles, but elsewhere it is accurate.
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Figure 16. Spherical-wave AVO inversion results (black curves) and filtered well logs (red curves) at the known well location. (a) P-wave velocity, (b) S-wave
velocity and (c) density.

The band-limited wavelet can be decomposed into the monochromatic spherical harmonic waves with different frequencies in the seismic
frequency band. There is a one-to-one mapping between the SRC and its frequency component. The SRC can be regarded as the filter or
weighting factor of the spherical waves. Elastic wave FD modelling demonstrates the accuracy and credibility of the spherical reflection
waveform obtained by the inverse Fourier transform to the calculations for all frequency points.

We also propose the frequency-dependent spherical-wave AVO nonlinear inversion method that can make full use of the frequency
components within the bandwidth of seismic data. We demonstrate the feasibility and robustness of our method by application on synthetic
seismogram with white Gaussian noise. Furthermore, our method is applied to the estimation of elastic parameters of multilayer elastic
media, and good inversion results are obtained through field data examples, which promotes the practical application of spherical-wave AVO
inversion. Future work will include the spherical-wave AVO analysis and inversion for anelastic and anisotropy media.
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