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ABSTRACT
In a public cloud, bandwidth is traditionally priced in a pay-as-
you-go model. Reflecting the recent trend of augmenting cloud
computing with bandwidth guarantees, we consider a novel model
of cloud bandwidth allocation and pricing when explicit bandwidth
reservation is enabled. We argue that a tenant’s utility depends not
only on its bandwidth usage, but more importantly on the portion
of its demand that is satisfied with a performance guarantee. Our
objective is to determine the optimal policy for pricing cloud band-
width reservations, in order to maximize social welfare, i.e., the
sum of the expected profits that can be made by all tenants and the
cloud provider, even with the presence of demand uncertainty. The
problem turns out to be a large-scale network optimization problem
with a coupled objective function. We propose two new distributed
solutions — based on chaotic equation updates and cutting-plane
methods — that prove to be more efficient than existing solutions
based on consistency pricing and subgradient methods.

In addition, we address the practical challenge of forecasting de-
mand statistics, required by our optimization problem as input. We
propose a factor model for near-future demand prediction, and test
it on a real-world video workload dataset. All included, we have
designed a fully computerized trading environment for cloud band-
width reservations, which operates effectively at a fine granularity
of as small as ten minutes in our trace-driven simulations.

Categories and Subject Descriptors
K.6.2 [Installation Management]: Pricing and resource alloca-
tion; Performance and usage measurement; G.3 [Probability and
Statistics]: Time series analysis

General Terms
Algorithms, Economics, Measurement, Performance

Keywords
Cloud Computing, Bandwidth Pricing, Distributed Optimization,
Prediction, Time Series
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1. INTRODUCTION
Cloud computing deliversInfrastructure as a Service(IaaS) that

integrates computation, storage and network resources in a virtual-
ized environment. It represents a new business model where appli-
cations astenantsof the cloud can dynamically reserveinstances
on demand. However, a major risk to these tenants using cloud
services is that unlike CPU and memory, bandwidth is not guar-
anteed in current-generation cloud platforms (e.g., Amazon EC2),
leading to unpredictable network performance [6, 20]. A lack of
bandwidth guarantee impedes cloud adoption by applications that
require such guarantees, such as transaction processing web ap-
plications [14] and video-on-demand (VoD) applications [4]. The
utility of tenants running these applications depends not only on
the bandwidth usage, but more importantly on how many of their
end-user requests are served with guaranteed performance.

With an ever-increasing demand for performance predictability,
a recent trend in networking research is to augment cloud comput-
ing to explicitly account for network resources. In fact, datacenter
engineering techniques have been developed to expand the tenant-
cloud interface to allow bandwidth reservation for traffic flowing
from a virtual machine (VM) in the cloud to the Internet [7, 12].
We envision that in future cloud platforms, bandwidth reservation
will be a value-added feature that attracts tenants who seek band-
width guarantees.

Unfortunately, even with cloud bandwidth reservation enabled,
due to demand uncertainty, it is still difficult for a tenant to pre-
dict how much bandwidth it needs at a particular time. The usual
approach of over-provisioning incurs high costs to tenants and does
not really provide quantitative service guarantees. To promote guar-
anteed services, we believe that a new cloud service model should
be introduced, in which a tenant simply needs to specify a per-
centage of its (bandwidth) demand to be served with guaranteed
performance, which we call theguaranteed portion, while the rest
of its demand will be served with best effort. It is then the cloud
provider’s responsibility to satisfy the guaranteed portion of the
tenant with a high probability. Since the cloud provider has vast
historical workload data, it can leverage statistical learning to pre-
dict tenant demands and make actual bandwidth reservations for
the tenants.

In this paper, we study how to price the above guaranteed ser-
vice. It is worth noting that usage-based pricing (pay-as-you-go)
is not suitable for pricing bandwidth guarantees. For example, it is
more costly to guarantee the performance of a tenant with bursty
demand than a tenant with constant demand, even if they have in-
curred the same usage (number of bytes transferred). As a result,
on top of theusage fee, the cloud should charge each tenant an ex-
tra reservation fee, depending on its unique demand statistics. Our
objective is to fairly set such reservation fees, with the following



challenges.First of all, the cloud provider usually multiplexes ten-
ant demands to save the service cost. Due to resource sharing, the
absolute amount of bandwidth reserved for each tenant is unknown.
It is a challenging question to find out each tenant’s fair share in the
aggregate service cost.Second, a pricing policy, when imposed to
the market, may affect tenants demand; such demand change in turn
affects pricing decisions, leading to potentially unstable iterations.

To overcome these difficulties, we define the reservation fee of
each tenant as a function of its specifiedguaranteed portioninstead
of the absolute amount of bandwidth reserved. We also express
each tenant’s utility as a function of itsguaranteed portion, which
essentially measures the Quality of Service (QoS) at the tenant.
Under this new model of pricing and utility, each tenant will choose
a guaranteed portion to maximize itssurplus, which is its utility
minus price. Note that in reality, a tenant may choose a guaranteed
portion close to1 instead of being 1 out of cost concerns, while
having the remaining demand served with best effort.

We study a cloud provider whose objective is to maximize the
social welfareof the system, i.e., the total expected tenant utility
under demand uncertainty minus the aggregate service cost. Al-
though the cloud cannot know the exact form of utility at each ten-
ant, it can affect each tenant’s choice of guaranteed portion through
pricing, and thus control the social welfare achieved. To handle the
coupled cost function (due to multiplexing), we propose a novel al-
gorithm based onchaotic equation updates, for which we provide a
sufficient convergence condition. We further propose a distributed
version of thecutting-plane methodwith guaranteed convergence.
These methods arestep-size-freeand proved to be more efficient
than traditional subgradient methods in simulations. In addition,
we give explicit solutions to optimal pricing under certain special
cases and point out the dependence of reservation pricing on de-
mand statistics such as burstiness and covariances.

Since a main duty of the cloud provider is to reserve bandwidth
for the tenants, demand forecast constitutes an important part in
the reservation-based service. Toward this end, we propose a factor
model to predict the expectations as well as covariances of tenant
demands in the near future, based on principal component analysis
(PCA). Finally, we evaluate the proposed algorithms on the work-
load traces of a real-world VoD system calledUUSee[3]. We con-
duct trace-driven simulations of bandwidth reservation and algo-
rithmic pricing based on demand prediction. The system is shown
to operate effectively at a fine granularity (of as small as 10 min-
utes).

The remainder of the paper is organized as follows. We review
related work in Sec. 2, and present our system model in Sec. 3. We
formulate the problem of social welfare maximization in Sec. 4,
where we outline the condition for optimal pricing and discuss its
economic implications. To solve the optimal pricing problem dis-
tributively, in Sec. 5, we propose two algorithms:chaotic price up-
dateand thedistributed cutting-plane method, and study their con-
vergence performance. In Sec. 6, we present our statistical methods
for demand forecast. We conduct trace-driven simulations in Sec. 7,
and conclude the paper in Sec. 8.

2. BACKGROUND AND RELATED WORK
Cloud computing, e.g., Amazon EC2, is usually offered with

usage-based pricing (pay-as-you-go) [6, 11]. Different from pay-
as-you-go, resource reservation involves paying a negotiated cost to
have the resource over a time period, whether or not the resource is
used. Although suitable for delay-insensitive applications, pay-as-
you-go is insufficient as a business model for bandwidth-intensive
and quality-stringent applications like VoD, since no performance
guarantees are provided in general.

The good news is that cloud bandwidth reservation is becoming
technically feasible. There have been proposals on datacenter traf-
fic engineering to offer elastic bandwidth guarantees for egress traf-
fic from virtual machines (VMs) [12]. The idea of virtual networks
has also been proposed to connect the VMs of the same tenant in a
virtual network with bandwidth guarantees [7,12]. Further, explicit
rate control has been proposed to apportion bandwidth according
to flow deadlines [22]. Such research progress has made the cloud
more attractive to bandwidth-intensive applications such as video-
on-demand and MapReduce computations that rely on the network
to transfer large amounts of data at high rates [25]. Netflix, as a
major VoD provider, moved its data store and video encoding and
streaming servers to Amazon AWS [2] in 2010 [4].

To support guaranteed cloud services, we need new policies to
price not only the bandwidth usage but also bandwidth reserva-
tions. Our pricing model is partially inspired by pricing electric
power consumption and capacity reservation under demand uncer-
tainty [19]. However, due to the computing capability and abun-
dant workload data in the cloud, our bandwidth reservation pricing
theory is essentially a distributed optimization problem based on
statistical learning. Amazon Cluster Compute [1] allows tenants to
reserve, at a high cost, a dedicated 10 Gbps network with no multi-
plexing. Instead of provisioning a fixed amount of capacity, we be-
lieve that tenants should be allowed to specify a guaranteed portion
of demand, as a way to control QoS level, while cloud providers
should dynamically vary bandwidth reservations based on demand
predictions. Our approach has the unique advantage that tenants
are exempted from demand estimation, for which they do not have
expertise. In contrast, the cloud can easily access tenant demand
history from online monitoring, and is computationally capable of
accurate demand forecast.

Since pricing guaranteed portions critically depends on accu-
rate estimates of demand statistics, we target applications with pre-
dictable demands, such as video access. As measurements show
that video workload demonstrates regular diurnal periodicity [5,17,
23,24], various techniques have recently been proposed to forecast
large-scale VoD traffic. Seasonal ARIMA models have been in-
troduced in [16, 17] to predict non-stationary demand evolution at
a fine granularity. Principal component analysis (PCA) has been
proposed in [13] to extract video demand evolution patterns over
longer periods (of weeks or months) and forecast coarse-grained
daily populations. We combine the strengths of both approaches
by finding the common factors driving the demand evolution of all
tenants using PCA at a fine granularity. We then make predictions
for individual tenants as regressions from factor forecasts obtained
from seasonal ARIMA models. Unlike [13], our approach makes
short-term predictions with a lead time of 10 minutes, enabling au-
toscaling of resource allocation.

Our optimal pricing algorithms are related to network utility max-
imization (NUM), which has been extensively studied in the past,
with various distributed algorithms proposed. See [10,18] for thor-
ough surveys. Most of these algorithms assume no coupling in the
objective function, and thus cannot be applied to our problem with
a coupled cost term. One existing approach to handle coupled ob-
jectives is calledconsistency pricing[10, 21], which is based on
dual decomposition and subgradient methods. However, subgradi-
ent methods suffer from the curse of step sizes, in that small steps
incur big delays (many rounds of message exchanges between the
cloud and tenants), while big steps yield big optimality gaps. Vary-
ing step sizes strategically is difficult in reality. In this paper, we
propose twostep-size-freealgorithms: 1) chaotic price update, 2)
the cutting-plane method. The first one is based on iterative equa-
tion updates instead of decomposition and achieves rapid conver-



gence under certain conditions. The second is a search algorithm
with a guaranteed convergence speed.

3. A NEW TENANT-CLOUD AGREEMENT
Our system model is a generalization of the operation mode of

the current cloud. Current cloud providers charge tenants ausage
feebased on the number of bytes transferred in the past hour, and
do not provide bandwidth guarantees. We extend this model to
allow tenants to make reservations for bandwidth guarantees ex-
plicitly. The system operates on a short-term basis, e.g., based on
hours or tens of minutes. At the beginning of each short period,
each tenant specifies aguaranteed portionto guard against perfor-
mance risks. The cloud decides the actual bandwidth reservation
for tenants through demand estimation based on workload analy-
sis, and charges both a usage and reservation fee. We now describe
our system model in detail.

We consider one such short period, whereN bandwidth-sensitive
tenants are present. Suppose that in this period, tenanti’s band-
width demand is a random variableDi (Mbps) with meanµi =
E[Di] and varianceσ2

i = Var[Di]. We assume the cloud can pre-
dict µi andσi based on demand history and share them to tenanti
before the period starts. In our proposed market, the key commod-
ity traded is a notion called theguaranteed portioninstead of the
absolute amount of bandwidth. Specifically, the tenants and cloud
will comply to the following service agreementSi(wi, ǫ, Ri):

• Before the period starts, each tenanti specifies aguaranteed
portionwi ∈ [0, 1];

• The cloud guaranteeswi fraction of demandDi with a high
probability1 − ǫ; outage is allowed to happen with a small
probabilityǫ, during which the bandwidth allocated to tenant
i is limited toRi.

The parametersǫ andRi are a part of a service level agreement
(SLA) advertised by the cloud provider. We introduce therisk fac-
tor ǫ because for random demand, regardless of how much band-
width is allocated, there exists a small risk of resource shortage.

Let qi denote the actual bandwidth usage (realized data rate) in
this period. Under a guaranteed portionwi, serviceSi(wi, ǫ, Ri)
is supposed to lead to the following actual usage of tenanti:

qi(wi) =

{

wiDi, w.p. 1− ǫ,
min{wiDi, Ri}, w.p. ǫ,

(1)

i.e., with probability1 − ǫ the actual usageqi is a realization of
wi fraction of its demandDi, while during outage (which happens
with a small probabilityǫ), the actual usageqi is rationed byRi.

Clearly, tenanti will choosewi based on both the utilityUi and
the price of guaranteeingwi portion of its demandDi. Unlike
most prior work on network utility maximization [10] that assumes
the utility Ui depends on a single variable such as rate, we model
utility Ui(qi, Di) of tenanti as a function of both actual usageqi
and the demandDi. For example, a video content provider (or
a VoD company) may have a linear utility gain (or revenue)αiqi
from usageqi and a convexly increasing utility losseAi(Di−qi)

for the denied requestsDi − qi, with αi, Ai being tenant-specific
parameters:

Ui

(

qi(wi), Di

)

= αiqi(wi)− eAi(Di−qi(wi)), (2)

where the utility loss term can model the reputation degradation

and potential revenue loss due to unfulfilled demand1. We assume
Ui is concaveandmonotonically increasingin qi.

The price for tenanti to use serviceSi(wi, ǫ, Ri) is divided into
two parts: ausage feeand areservation fee. As most current cloud
providers do, we assume uniform pricing for usage: each tenant
pays $p for every unit bandwidth consumed. As a key departure
from current clouds, we introduce a reservation fee, which is a
function of the guaranteed portion instead of the absolute amount
of bandwidth reservation: each tenanti is charged a price of $kiwi

for havingwi portion of its demand guaranteed. We price the guar-
anteed portionwi rather than the absolute bandwidth, because ten-
ants usually have no idea about how much bandwidth they need.
Instead, they can intuitively know how much percentage of guaran-
tee is desired. This new business model frees each tenant from the
computational burden of demand prediction: it simply submits its
desired guaranteed portionwi, while the cloud provider computes
the actual bandwidth reservation as well as decides the reservation
feekiwi for each tenant.

We define thesurplusof tenanti as its utility minus its price:

Si(wi, p, ki) := Ui

(

qi(wi), Di

)

− pqi − kiwi. (3)

Given pricesp andki, a rational tenant will choose awi to max-
imize its surplusSi. Tenanti will not always choosewi = 1 be-
cause when its demand is bursty, the price to guarantee 100% of
Di may be high. In this case, tenanti will choose awi close to 1
instead of being exactly 1, while the rest of its demand(1−wi)Di

will be served with best efforts.
Based on tenant-specified guaranteed portionsw1, . . . , wN , the

cloud should guarantee the demandsw1D1, . . . , wNDN for ser-
vice. Denotew := [w1, . . . , wN ]T. To realize the above service
guarantees, the cloud provider needs to reserve a totalbandwidth
capacityof K(w). Depending on the technology used, the value of
K could vary significantly from one case to another. For example,
a simple non-multiplexing technology is to reserveRi capacity for
each tenanti individually such that demandwiDi is satisfied with
high probability, i.e.,

Pr(wiDi > Ri) < ǫ, (4)

and correspondingly, reserve capacityK =
∑

i Ri in total. In
contrast, a multiplexing technology will reserve capacityK for the
tenants altogether such that the aggregate demand is satisfied with
high probability, i.e.,

Pr(
∑

i

wiDi > K) < ǫ, (5)

and during outage (when
∑

i wiDi > K), the usageqi of tenant
i is rationed toRi with

∑

i Ri = K. In both cases,K is an im-
plicit function ofw defined by the probabilistic constraints (4) and
(5), respectively. To determineK(w), the cloud provider must es-
timate the future demand statistics of all the tenants, and convert
tenant-specified guaranteed portionsw into the actual total band-
width reservationK.

Similarly, the cloud provider has two kinds of service costs: us-
age and reservation costs. We assume tier-1 ISPs charge the cloud
provider $b for every unit bandwidth actually used. Furthermore,
reserving bandwidth capacityK will incur a reservation cost of
$c(K). Due to multiplexing gain, to guarantee a similar service
level, multiplexing will incur a lowerK and thus a lower reserva-
tion costc(K) than without multiplexing.

1Even though the cloud provider may still be able to fulfillDi − qi
in a best-effort fashion, the tenant will have no knowledge if this is
the case, and will not be able to factor it into its expected utility.



We define thecloud profitΠ as the difference between its total
revenue and total cost, i.e.,

Π(w) :=
∑

i

(

pqi(wi) + kiwi

)

− c
(

K(w)
)

−
∑

i

bqi(wi). (6)

4. PRICING TOWARDS SOCIAL
WELFARE MAXIMIZATION

We study a cloud provider as a social planner whose objective
is to maximizesocial welfareW (w), which is defined as the total
tenant utility minus the total service cost:

W (w) :=
∑

i

Ui − c
(

K(w)
)

−
∑

i

bqi(wi)

= Π(w) +
∑

i

Si(wi, p, ki) (7)

Under random demands, the cloud aims to decide a set of opti-
mal guaranteed portionsw∗ = [w∗

1 , . . . , w
∗
N ]T for the tenants to

maximize theexpected social welfareby solving

maxw E[W (w)]
s.t. 0 � w � 1.

(8)

To solve (8), we first derive the expected social welfare in a sim-
pleapproximatedform. Note thatE

[

Ui

]

is bounded as follows:

E[Ui]≥ (1− ǫ)E[Ui(wiDi, Di)] + ǫE[Ui(0, Di)],
E[Ui]≤ (1− ǫ)E[Ui(wiDi, Di)] + ǫE[Ui(Ri, Di)].

When the risk factorǫ is small, we have

E
[

Ui(qi, Di)
]

≈ (1− ǫ)E
[

Ui(wiDi, Di)
]

. (9)

To simplify notations, we define

U i(wi) := E
[

Ui(wiDi, Di)
]

, (10)

which turns out to bemonotonically increasingandconcavein wi

under very mild technical conditions. Similarly, the expected usage
of tenanti is

E
[

qi(wi)
]

≈ (1− ǫ)E
[

wiDi

]

= (1− ǫ)wiµi. (11)

Therefore, the expected surplus of tenanti is

E
[

Si(wi, p, ki)
]

=E
[

Ui

]

− pE
[

qi
]

− kiwi

= (1− ǫ)
(

U i(wi)− pwiµi

)

− kiwi, (12)

and the expected profit of the cloud provider is

E[Π(w)] = (p−b)(1−ǫ)
∑

i

wiµi+
∑

i

kiwi−c
(

K(w)
)

. (13)

Substituting the above into (7) gives theexpected social welfareas

E[W (w)] = (1− ǫ)
∑

i

(

U i(wi)− bwiµi

)

− c
(

K(w)
)

. (14)

4.1 An Equivalent Pricing Problem
In reality, although the cloud provider has full knowledge about

its service costc(K(w)), it does not know the utility function of
each tenant. In other words, maximizingE[W (w)] in terms of
w requires the cloud to know the utilityUi of each tenant and is
infeasible. We now convert problem (8) into an equivalent pricing
problem.

Note that the expected social welfare is also the sum of the ex-
pected cloud profit and the total expected tenant surplus, i.e.,

E[W (w)] = E[Π(w)] +
∑

i

E[Si(wi, p, ki)]. (15)

Tenant i

Cloud Provider

Update 

w̃i(p, ki) p, ki

w̃i(p, ki) = argmax
wi

E
[

Si(wi, p, ki)
]

Tenant 1 Tenant N... ...

p, ki to increase social welfare

Figure 1: Iterative updates of prices and guaranteed portions.

Furthermore, when charged with pricesp, ki and facing a random
demandDi, a rational tenant will choose a guaranteed portionw̃i

to maximize its expected surplus, i.e.,

w̃i = argmax
wi

E
[

Si(wi, p, ki)
]

, (16)

which defines an implicit functioñwi(p, ki) of the prices. The
cloud can affect guaranteed portion choicesw̃ = [w̃1, . . . , w̃N ]T

via appropriate choices of pricesp, k1, . . . , kN , and control the
corresponding expected social welfareE[W (w̃)].

Therefore, the social welfare maximization problem (8) is con-
verted into an equivalentoptimal pricing problem :

max
p,k1,...,kN

E[W (w̃)] = E[Π(w̃)] +
∑

i

E[Si(w̃i, p, ki)], (17)

which, by combining (14) and (17), can be rewritten as

max
p,k1,...,kN

(1− ǫ)
∑

i

(

U i(w̃i)− bw̃iµi

)

− c
(

K(w̃)
)

, (18)

wherew̃i = w̃i(p, ki) is determined distributively by each tenant
i via surplus maximization (16). Such a distributed optimization is
illustrated in Fig. 1. Now the cloud provider does not need to know
Ui: it simply charges tenanti the usage pricep and reservation
priceki, and expect ãw(p, ki) chosen by tenanti.

We denote theoptimal prices that solve problem (18) asp∗, k∗
1 ,

. . ., k∗
N . The optimal pricing problem (18) is equivalent to the

original problem (8), because by adjustingp andki, w̃i(p, ki) can
take any value in[0, 1]. In other words, the guaranteed portion
w̃i(p

∗, k∗
i ) chosen by tenanti under optimal pricingp∗, k∗

i is ex-
actly the guaranteed portionw∗

i that maximizes the expected social
welfare, i.e., we have

w∗
i = w̃i(p

∗, k∗
i ). (19)

Therefore, once a set of optimal prices is obtained, we essentially
have found adecentralized solutionto expected social welfare max-
imization (8), which was originally impossible to solve.

Nonetheless, the optimal pricing problem (18) is not easy to
solve either. At a first glance, (18) can be understood as a network
utility maximization (NUM) problem [10] that may be solved via
decomposition among the tenants. A closer look at (18) suggests
that the termc(K(w̃)) in the objective function may be coupled
among allw̃i’s, so that (18) cannot be decomposed into a set of sub-
problems, each solved at a tenant distributively. Coupling happens
in the cost term when the cloud multiplexes tenant demands and
books a capacityK(w) for the aggregated demand. As shown in
Fig. 1, the key to the solution is that the cloud provider must be able
to updatep andki towards the direction that increasesE[W (w̃)].
And a good price update algorithm should require fewer rounds
of message-passing between the cloud and tenants before reaching
optimality.

Before presenting the distributed solutions to (18) in Sec. 5, let
us first provide a number of insights on how to make pricing poli-



cies, by checking the KKT conditions [8] that the optimal prices
p∗, k∗

1 , . . . , k
∗
N must satisfy.

Proposition 1. The optimal pricesp∗, k∗
1 , . . . , k

∗
N must satisfy

(1− ǫ)(p∗− b)µi+k∗
i −c′

(

K(w̃)
)

· ∂K
∂wi

∣

∣

∣

∣

w=w̃

= 0, ∀i, (20)

wherew̃ = [w̃1, . . . , w̃N ]T with w̃i = w̃i(p
∗, k∗

i ) given by (16).

Proof: Please refer to our technical report [15] for the proof.⊓⊔
An inspection of (20) reveals that one set of optimal prices is

{

p∗ = b,
k∗
i = ∂c

(

K(w)
)

/∂wi

∣

∣

w=w̃
, ∀i. (21)

Although (21) is not the only set of optimal prices, our finding
complies with the economic intuition that a welfare-maximizing
cloud provider should charge marginal cost for both traffic usage
and guaranteed reservation. In (21), we can also observe thatk∗

i

depends oñw, which in turn depends onp, k∗
1 , . . . , k

∗
N . Due to

such coupling, (21) is not yet a closed-form solution for the reser-
vation pricek∗

i .

4.2 No Multiplexing vs. Multiplexing All
To draw insights, we take a look at two special service technolo-

gies that may be adopted by the cloud: non-multiplexing and mul-
tiplexing acrossall the tenants. For simplicity, we assume a linear
reservation cost (which will be relaxed later):c(K) = βK.

When multiplexing is not used, we can derive the optimal prices
in a closed form from (21). Without multiplexing, recall that the
capacityRi is reserved for each tenanti individually, such that
Pr(wiDi > Ri) < ǫ andK =

∑

i Ri. WhenDi is a Gaus-
sian random variable (this assumption will be verified in Sec. 6), it
is easy to check that

Ri(wi) =
(

µi + θ(ǫ)σi

)

wi, (22)

whereθ(ǫ) = F−1(1 − ǫ) is a constant, withF (·) being the CDF
of normal distributionN (0, 1). Since the cost function is naturally
decoupled among tenants, according to (21), the optimal prices are
immediately given in a closed form byp∗ = b and

k∗
i = β

(

µi + θ(ǫ)σi

)

, ∀i. (23)

When multiplexing is used, however, optimal prices have no ex-
plicit solutions. Recall that with multiplexing, a capacityK is re-
served to accommodate all the tenants together, such that the ag-
gregate (instead of individual) demand is satisfied with high prob-
ability: Pr(

∑

i wiDi > K) < ǫ.
Since the random demandsD1, . . . , DN of different tenants may

be correlated, we denoteρij the correlation coefficient ofDi and
Dj , with ρii ≡ 1. For convenience, letµµµ = [µ1, . . . , µN ]T and
Σ = [σij ] be theN × N symmetric demandcovariance matrix,
with σii = σ2

i andσij = ρijσiσj for i 6= j.
Under Gaussian demands,K can be written as

K(w) =E
[
∑

i wiDi

]

+ θ(ǫ)
√

Var
[
∑

i wiDi

]

=µµµT
w + θ(ǫ)

√
wTΣΣΣw. (24)

Substituting the aboveK(w) into (21) givesp∗ = b and

k∗
i = β

(

µi + θ(ǫ) · ∂
√
wTΣΣΣw

∂wi

∣

∣

∣

∣

w=w∗

)

, ∀i, (25)

wherew∗
i = w̃i(p

∗, k∗
i ). Clearly, with multiplexing,k∗

i is not
given in a closed form yet, due to the coupled cost function.

We note that whether with or without multiplexing,K(w) is
a convex function and so isc(K(w)). In fact, we can relax the
linear cost assumptionc(K) = βK, as long asc

(

K(w)
)

is strictly
convex and monotonically increasingfor eachwi ∈ [0, 1].

There is an interesting connection between the non-multiplexing
and multiplexing cases: the optimal solution for non-multiplexing
can be used to bound the optimal solution for the multiplexing case.
Specifically, the optimal prices{k∗

i } of non-multiplexing upper-
bound{k∗

i } of the multiplexing case, whereas the optimal portions
{w∗

i } of non-multiplexing lower-bound{w∗
i } of the multiplexing

case. This is intuitive because multiplexing leads to a reduced cost
c(K), stimulating tenants to increase their choices of the guar-
anteed portion. The proof of this connection involves the use of
Cauchy-Schwarz inequality and is omitted due to space limits. We
will use this connection in our distributed algorithms.

4.3 Economic Implications
Condition (20) has several economic implications, which apply

to a general cost function, although we may use the non-multiplexing
case for explanation due to its simplicity.

First, merely adopting a usage pricep cannot maximize social
welfare: whenki = 0 for all i, there is nop that can satisfy (20).
In other words, a positive reservation feeki > 0 is necessary to
achieve welfare optimality, since in the presence of demand uncer-
tainty, onlyki can incorporate a risk factor (e.g.,σi in (23)) into
pricing. This reveals that current cloud bandwidth pricing schemes
are inefficient in terms of providing service guarantee against de-
mand fluctuation. On the other hand, a usage pricep is not neces-
sary: even ifp = 0, the expected welfare is maximized as long as
ki satisfies (20). In this case, the reservation fee can be raised to
compensate the loss from no usage fee.

Furthermore,heterogeneousreservation pricesk1, . . . , kN are
necessary to achieve optimality, eachki depending on the statisti-
cal characteristics of tenanti’s demandDi. This conforms to the
intuition that tenants have different degrees of demand volatility,
incurring different costs for service guarantees. For example, with-
out multiplexing,ki depends onσi in (23): the more bursty a ten-
ant’s demandDi, the more capacity that must be reserved to guard
against fluctuation, and thus the higher the price. In contrast, in
terms of usage pricing, it is efficient enough to charge a homoge-
neous pricep for every unit bandwidth consumed.

5. DISTRIBUTED SOLUTIONS
As has been noted, the main challenge to solving the optimal

pricing problem (18) is that the reservation costc
(

K(w)
)

is cou-
pled among all the tenants and is not decomposable in general. One
existing approach to handle coupled objective functions is to find
the dual problem of (18) and to decompose the dual among all
the tenants and the cloud provider by introducing auxiliary vari-
ables. Such an approach is calledconsistency pricing[10, 21].
Subgradient methods are among the most popular techniques to
update the prices towards the optimality of dual problems. How-
ever, they suffer from the curse of step sizes. For the final output to
be close to the optimality, subgradient methods choose small step
sizes to updateki, leading to slow convergence and many iterations
of message-passing between the cloud and tenants.

In this paper, we propose two novelstep-size-freealgorithms for
price updates that can quickly converge to the optimality of (18).
The first algorithm, calledChaotic Price Update, does not rely on
decomposition at all: instead, it resorts to iterative equation updates
based on the KKT conditions (20). The second algorithm, called
the Cutting-Plane Method, relies on dual decomposition but does
not updateki using step sizes: it is essentially a search algorithm
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Figure 2: Behavior of price update based on chaotic equations in a one dimensional case. “o” represents the starting point(w(0)
i , k

(0)
i ).

that locates{k∗
i } until it is confined in a small region. We give a

sufficient condition under which chaotic price update can achieve
rapid convergence. The cutting-plane method, which is guaranteed
to converge, is used to compensate chaotic price update when the
latter is not converging. Note that our algorithms apply to a general
convex cost functionc(K(w)) (in terms ofw) under any service
technology (e.g., multiplexing tenant demands in groups).

5.1 Chaotic Price Update
Chaotic price update is based on alternated phases of price up-

dates via the cost-price relationship (20) and the tenant surplus
maximization equation (16).

Chaotic Price Update. Denotew(t) := [w
(t)
1 , . . . , w

(t)
N ]T. Set

p ≡ b. Setk(0)
i := β(µi + θ

(

ǫ)σi

)

for all i andw(0) = 1. For
t = 0, 1, . . ., repeat

(1) Distributed Surplus Maximization. Passp andk(t)
i to each

tenanti, which returns:

w
(t+1)
i := arg max

0≤wi≤1
E
[

Si(wi, p, k
(t)
i )
]

, ∀i. (26)

(2) Price Update.Set

k
(t+1)
i := c′

(

K(w(t+1))
)

· ∂K(w)

∂wi

∣

∣

∣

∣

w=w(t+1)

, ∀i. (27)

(3) If ‖w(t+1)−w(t)‖ ≤ ξ, returnw∗ = w(t+1), k∗
i = k

(t+1)
i .

The above algorithm starts by settingk(0)
i to be thek∗

i in the cost
function without multiplexing. It then updateski andwi alternately
by setting the current pricesk(t)

i to be the marginal reservation cost
with the currentw(t), and by collecting the nextw(t+1) from ten-
ants who maximize their surpluses given the current prices. Ap-
plying the KKT conditions to (16), step (1) can also be viewed as
solving an equation

(1− ǫ)U
′

i(w
(t+1)
i ) = p(1− ǫ)µi + k

(t)
i , (28)

for w(t+1)
i . Since each tenant maximizes its expected surplus lo-

cally, the cloud provider does not have to know the utility function
of each tenant, leading to an iterative distributed solution.

Compared with Lagrangian dual decomposition based on con-
sistency pricing [10,21], chaotic price update represents a new way

of handling coupled objectives. Since price updates are based on
equation (27) rather than on updating Lagrangian multipliers, the
algorithm is not concerned with the choice of step sizes that are
required by subgradient methods.

We observe that the sequence{k(t)
i } produced by equations (27)

and (28) could demonstrate significantly different behavior under
different initial valuesw(0)

i and different forms of utility and cost
functions. In other words, our algorithm demonstrateschaoticbe-
havior, whose eventual outcome is sensitive to initial conditions
and the structure of updating equations.

Our objective going forward is to analyze the behavior of{k(t)
i }

and{w(t)} and find out the conditions under which the algorithm
can achieve fast convergence. To simplify notations, we define

hi(wi)≡ (1− ǫ)
(

U
′

i(wi)− bµi

)

, (29)

νi(w)≡ ∂c
(

K(w)
)

∂wi

. (30)

Recall thatw∗ := [w∗
1 , . . . , w

∗
N ]T, wherew∗

i = w̃i(p
∗, k∗

i ) is
the guaranteed portion chosen by tenanti under optimal pricing.
By the definition ofw∗, the optimality condition is

hi(w
∗
i ) = k∗

i = νi(w
∗), ∀i. (31)

Since we have setp ≡ b, (28) can be written as

hi(w
(t+1)
i ) := (1− ǫ)

(

U
′

i(w
(t+1)
i )− bµi

)

= k
(t)
i . (32)

Thus, theupdating rules (27) and (28) in chaotic price update can
be rewritten as

hi(w
(t+1)
i ) = k

(t)
i = νi(w

(t)), ∀i. (33)

Let us illustrate the algorithm behavior using the special case of
a singletenant. There are three scenarios where the algorithm can
produce dramatically different results, as shown in Fig. 2. Since
utility ui(wi) is strictly concave and monotonically increasing in
[0, 1], and costc

(

K(w)
)

is strictly convex and monotonically in-
creasing in[0, 1], we have for alli:
{

hi(wi) > −bµi, h
′
i(wi) < 0, ∀wi ∈ [0, 1]

νi(w) > 0, ∂νi(w)
∂wi

> 0, ∀w : 0 � w � 1.
(34)

All three cases in Fig. 2 satisfy (34). In Fig. 2(a),{w(t)
1 } always

converges tow∗
1 for any initial valuew(0)

1 ∈ [0, 1], whereas in



Fig. 2(b),{w(t)
1 } always diverges regardless of its initial starting

point. In Fig. 2(c), however, the behavior of{w(t)
1 } critically de-

pends on its initial valuew(0)
1 . If w(0)

1 takes “initial value 1”,w(t)
1

will eventually hop between two values alternately, without being
able to approachw∗

1 . On the other hand, ifw(0)
1 takes “initial value

2”, w(t)
1 will converge tow∗

1 .
We now give a sufficient condition for the convergence of chaotic

price update in Theorem 1.

Theorem 1. If for eachi = 1, . . . , N , we have

(1− ǫ)
∣

∣U
′′

i (wi)
∣

∣ >
∂2c
(

K(w)
)

∂w2
i

, (35)

for all w betweenw(0) = 1 andw(1), then using chaotic price
update,k(t)

i converges tok∗
i andw(t)

i converges tow∗
i .

Proof: Please refer to our technical report [15] for the proof.⊓⊔
The economic implication behind Theorem 1 is that the algo-

rithm will converge whenthe marginal utility gain decreases faster
than the marginal cost increases, aswi increases. This technical as-
sumption can be easily justified, since the marginal costc′(K) = β
for adding network capacity (routers and switches) is decreasing at
a fast pace in our economy.

From the Proof of Theorem 1 in our technical report [15], the
convergence speed of{k(t)

i } in chaotic price update is dictated
by Pi(w

∗
i ) andQi(w

∗
i ), which depend onhi(wi) andνi(w), the

marginal utility gain and marginal cost in terms ofwi. Intuitively
speaking, the larger the gap between the rates at which the marginal
utility gain decreases and the marginal cost increases, the faster
the convergence speed. As a result, in systems where

∣

∣U
′′

i (wi)
∣

∣

exceeds∂2c
(

K(w)
)

/∂w2
i by a substantial margin, the step-size-

oblivious chaotic price update can achieve extremely fast conver-
gence.

5.2 The Cutting-Plane Method
Chaotic price update achieves fast convergence when condition

(35) is met. A natural question arises:Can we design an algorithm
that is step-size-free while converging under a wider range of con-
ditions? Now we present such an algorithm that converges for ar-
bitrary concave utility functionU i(wi) and arbitrary convex cost
functionc

(

K(w)
)

, with aguaranteedconvergence speed. Our ba-
sic idea is to apply thecutting-plane method[8] to the dual problem
of social welfare maximization, leading to an alternative formula-
tion of the optimal pricing problem.

5.2.1 Dual Problem of Social Welfare Maximization
We introduce the dual problem of social welfare maximization,

following the framework of consistency pricing [10,21]. Note that
the social welfare maximization problem (8) can be rewritten as

maxw,v (1− ǫ)
∑

i

(

U i(wi)− bwiµi

)

− c
(

K(v)
)

s.t. w = v,
(36)

where the auxiliary vectorv is introduced to facilitatedual decom-
position. To derive the dual problem of (36), we define theLa-
grangian

L(w,v,k) = (1− ǫ)
∑

i

(

U i(wi)− bwiµi

)

− c
(

K(v)
)

+k
T(v −w)

= (1− ǫ)
∑

i

(

U i(wi)− bwiµi

)

−
∑

i

kiwi

+
∑

i

kivi − c
(

K(v)
)

. (37)

Hereki is theLagrange multiplierassociated with theith equality
constraintwi = vi; ki can be interpreted as aconsistency price, as
it will eventually steervi towardswi, as explained in [10,21].

TheLagrange dual functionis

q(k) = sup
w,v

L(w,v,k), (38)

and thedual problemof social welfare maximization (36) is

min
k

q(k). (39)

Note that there is no duality gap between the dual problem (39)
and primal problem (36) by thestrong duality theorem[8], since the
primal problem is convex optimization for any concaveU i(wi) and
convexc

(

K(v)
)

. As a result, it suffices to solve the dual problem
instead of the primal problem.

In fact, the dual problem (39) is preferable because it enables
distributed algorithms due to a natural decomposition ofq(k):

q(k) =
∑

i

sup
wi

(

(1− ǫ)
(

U i(wi)− bwiµi

)

− kiwi

)

+sup
v

(

∑

i

kivi − c
(

K(v)
)

)

.

This dual decomposition “decouples” the objective functionq(k)
so that the value ofq(k) can be found by solving a surplus maxi-
mization problem at each tenanti:

max
wi

(1− ǫ)
(

U i(wi)− bwiµi

)

− kiwi, for all i, (40)

and a profit maximization problem at the cloud provider:

max
v

∑

i

kivi − c (K(v)) . (41)

As these subproblems are independent of each other, the dual prob-
lem enables distributed solutions by charging each tenant a reser-
vation priceki and usage pricep = b (the revenue and cost related
to usagecancel each other in (41)). In contrast, the primal problem
(36) is not decomposable because of the coupled termc (K(v)).

5.2.2 Distributed Solutions via Cutting Planes
A traditional subgradient method will find a subgradientgk of

q(k) at pointk, and update the pricesk using this subgradient times
a small step size. For example, one of such subgradients is given as
below:

Lemma 1. For any pointk ∈ R
N , let the vectorw̃ = [w̃i] be

the optimal solutions to problem (40) andṽ be the optimal solution
to problem (41). That is,

w̃i = argmax
wi

(1− ǫ)
(

U i(wi)− bwiµi

)

− kiwi, ∀i, (42)

ṽ= argmax
v

∑

i

kivi − c (K(v)) . (43)

Then a subgradient ofq(k) at pointk is given bygk = ṽ − w̃.

Proof: Please refer to our technical report [15] for the proof.⊓⊔
However, to ensure the convergence speed, the subgradient method

requires tuning the step sizes strategically, which is difficult to im-
plement in reality. In contrast, the cutting-plane method is step-
size-free: it is essentially asearch algorithmbased on the following
fact (see [8] for a proof):

Lemma 2. Let vectorgk ∈ R
N be a subgradient of the objec-

tive functionq(k) at pointk ∈ R
N , i.e.,gk must satisfy

q(x) ≥ q(k) + g
T

k(x− k), ∀x ∈ R
N . (44)



1500 1550 1600 1650 1700 1750 1800 1850
0

200

400

600

Time (unit: 10 minutes)

B
an

dw
id

th
 (

M
bp

s)

 

 

Channel 295
Channel 241
Channel 317

(a) Three large channels

1500 1550 1600 1650 1700 1750 1800 1850
0

10

20

30

Time (unit: 10 minutes)

B
an

dw
id

th
 (

M
bp

s)

 

 

Channel 22
Channel 298

(b) Two small channels

Figure 3: Bandwidth consumption time series of 5 representative channels over a 2.5-day period.

Letk∗ be the optimal solution of the dual problem (39). Thenk∗

satisfiesgT

k(k
∗ − k) ≤ 0.

Lemma 2 implies that if we know a pointk with its subgradient
gk, we can confine our search fork∗ within the half-space{x :
gT

k(x − k) ≤ 0}, since the other half-space does not containk∗.
Hence, we can locatek∗ up to a certain accuracy by iteratively
ruling out a sufficient number of half-spaces, as described below.

The Cutting-Plane Method. Setk(0) = k∗∗, wherek∗∗ is
an optimal solution for the non-multiplexing case. Set the initial
polyhedron to beP0 = {k|0 � k � k(0)}. It is clear thatP0

contains an optimal solutionk∗. For t = 1, 2, . . ., repeat:

(1) Choose a pointk(t) ,which is the center of gravity ofPt−1,
denotedk(t) = CG(Pt−1);

(2) Finding a subgradientg
k(t) of q(k) atk(t);

(3) If ‖g
k(t)‖∞ ≤ ξ1, returnk(t); else, continue;

(4) Add a new cutting planegT

k(t)(k − k(t)) ≤ 0 to form the
new polyhedron

Pt := Pt−1 ∩ {k|gT

k(t)(k− k
(t)) ≤ 0}. (45)

Intuitively speaking, the above algorithm attempts to shrink the
volume of polyhedronPt that contains the optimal solutionk∗ one
iteration after another, untilk∗ is contained in a trivially small ball.
In Step (2), the subgradient can be found using Lemma 2.

Now we can quantify the communication cost of the above algo-
rithm — a crucial factor in a cloud environment. Sincek(t) is the
center of gravity ofPt−1, about half of the uncertainty is ruled out
in each iteration. It can be proved that

vol(Pt) ≤
(

1− 1

e

)

vol(Pt−1) ≈ 0.63 · vol(Pt−1). (46)

Therefore, the above algorithm convergesexponentiallyfast. Fur-
thermore, Lemma 2 shows that, in order to obtain a subgradient
g
k(t) at k(t), the cloud provider can simply charge each tenant a

usage feep = b and a reservation feeki = k
(t)
i , and expect a re-

turn w̃i from each tenanti; it obtainsṽ locally. Such price notifica-
tion and response are performed in each iteration for all the tenants
in parallel. In other words, each execution of Step (2) introduces
only oneroundof message passing between the cloud and tenants.
Since cloud-tenant communication happens only in Step (2), the
total rounds of message-passing can be bounded as follows:

Proposition 2. If the cutting-plane method terminates when the
diameter of the smallest Euclidean ball that containsPt is no greater
thand, then in the worst case, the cutting-plane method requires

R = 1.51N log2

(

maxi k
(0)
i

d

)

(47)

rounds of message passing between the cloud and tenants.

The above proposition is a well-known property of the cutting-
plane method [8]. In contrast, the worst-case communication cost
of subgradient methods are of the formO(N×1/α), whereα is the
step size. Clearly, ifd is comparable toα, the cutting-plane method
may lead to much faster convergence due to thelog2(·) operation.

It is worth noting that finding the center of gravity CG(Pt−1)
requires heavy computation. However, computation cost does not
pose a challenge for data centers that have superior computing power,
whereas communication cost (convergence speed) is the major bot-
tleneck. The cutting-plane method converges faster, reducing the
rounds of message passing between tenants and the cloud, yet at the
expense of computational cost. Such a property is in fact desirable
in the cloud. To summarize, the cutting-plane method converges
for arbitrary concave utilityU i(wi) and convex costc

(

K(w)
)

, and
can be used to compensate chaotic price update when the latter is
not converging.

6. DEMAND STATISTICS ESTIMATION
WITH A FACTOR MODEL

Recall that both algorithms for finding the optimal pricing policy
needµµµ, σσσ andΣ as inputs:µi andσi are used for the surplus
maximization at each tenanti in (26) and (42), while the demand
covariance matrixΣ is used to calculate the service costc(K(w))
in the presence of multiplexing in (27) and (43).

In this section, we address the practical issue of predicting de-
mand statistics based on demand history, which can be obtained
from cloud monitoring services such as Amazon CloudWatch [2] at
a fine granularity (e.g., at a frequency of 5 minutes in CloudWatch).
As has been mentioned, in this paper, we target applications whose
bandwidth demand patterns are tractable and predictable to some
extent. Video access is one example of such applications, with
clear diurnal patterns and the time-of-the-day effect [17], in the
sense that a popular video almost always sees its peak (or trough)
demand around the same time of day.

Our study is based on a large dataset collected from thousands of
on-demand video channels in a commercial VoD system [3] during
the 2008 Summer Olympics. The video genres are not limited to
Olympics, but range from TV episodes to sports and from movies
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to news. Fig. 3 shows the aggregate bandwidth demand in each
channel for 5 representative channels over a 2.5-day period.

We have four observations about the dataset.First, the workload
dataset consists of a large number of small unpopular channels,
such as those in Fig. 3(b), dominated by a small number of large
popular channels, such as those in Fig. 3(a).Second, there is a diur-
nal periodicity in the access pattern of each video channel.Third, a
channel’s popularity evolution may follow some trends over days.
For example, bandwidth consumption in channels 241 and 317 ex-
hibits a downward trend over the 2.5 days in Fig. 3(a), with 144
time periods representing one day. Finally, both the diurnal period-
icity and daily trends become vague in small channels, such as in
channel 22 in Fig. 3(b).

Our prior work has proposed to use seasonal ARIMA processes
to predict bandwidth series in each individual channel [17] at a fine
granularity of 10 minutes. The prediction is based on a regres-
sion of historical demand in the most recent time periods, as well
as demand around the same time in previous days. However, this
method has a shortcoming that a separate statistical model needs
to be trained for every channel and thus does not scale to a large
number of channels. Also, this approach performs poorly for small
channels, e.g., channel 22, or ill-behaved channels, e.g., channel
317. In both types of channels, the daily repetition pattern is ob-
scured by various random factors.

To tackle these problems, we use afactor modelto account for
demand evolutions, i.e., the demand series{Di(t)} of each channel
i can be viewed as driven byM uncorrelated underlying factors
C1(t), . . . , CM (t) with a zero-mean random shocke(t):

Di(t) = αi1C1(t) + . . .+ αiMCM (t) + e(t), ∀i. (48)
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Figure 7: Root mean squared errors (RMSEs) of the two pre-
diction methods over test period 1680-1860 (1.25 days), com-
pared to mean bandwidth consumption in each channel. The
three largest channels are channels 295, 241 and 317.

If the coefficientsαi1, . . . , αiM can be learned statistically, we will
be able to forecast{Di(t)} by predicting factor movements first.
As noted from Fig. 3, channel demands exhibit co-movements.
This inspires us to mine the factors while learning their coefficients
from the collective demand history ofall the channels.

We use principal component analysis (PCA) to find such un-
derlying factors. GivenN demand series{D1(t)}, . . . , {DN (t)},
PCA applies an orthogonal transformation to theseN demand se-
ries to obtain a small number of uncorrelated time series{C1(t)},
. . ., {CM (t)} called theprincipal components. This transforma-
tion is defined in such a way that data projected onto the first prin-
cipal component has as high a variance as possible (that is, accounts
for as much of the variability in data as possible), and each succeed-
ing component in turn has the highest variance possible.

We perform PCA for all the 468 channels that are online in a
2-day period (time 1500-1787). Fig. 4 plots the first 3 principal
component series in the data. We can see the first componentC1

explains the diurnal periodicity shared by all the channels. The sec-
ond componentC2 accounts for the downward daily trend, which
is salient in channel 317 as popularity diminishes and less salient in
channel 295. A further check of Fig. 5 reveals that the first 10 prin-
cipal component series explain99% of the data variability, which
are sufficient to model the factors underlying all the demand evolu-
tion.

However, different channels have different dependencies on each
factor. Fig. 6 shows the 468 demand series projected onto the first
2 components, i.e., the point(αi1, αi2) for all i. Without surprise,
the dependence on the first component,αi1, indicates how large the
channel is. In contrast, the dependence on the second component,
αi2, accounts for how fast end-users may lose interest in channel
i. Channel 295 has a lowαi2, indicating almost no decrease in
popularity over days. Channel 241 has a moderateαi2, showing a
slightly downward trend. Channel 317 has a largeαi2, exhibiting a
dramatic decrease of popularity just on the second day.

To predict the demand meansµµµ(t) and covariancesΣ(t) for
{Di(t) : i = 1, . . . , N} at time t, we first predict the principal
componentsC1(t), . . . , CM (t) for M = 10 based on the history
and obtain forecasts about their meansĈ(t) = [Ĉ1(t), . . . , ĈM (t)]T

and their covarianceŝΣC(t). We further predict the error series
e(t) to obtain its forecast̂e(t) and error variancêσ2

e(t). Note that
Σ̂C(t) is a diagonal matrix because the principal components are
uncorrelated. Denote the coefficient matrix asAN×M = [αim],
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Figure 8: 10-minute-ahead conditional mean prediction in channel 172 over a test period of 1.25 days.
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Figure 9: The departure of actual bandwidth consumption
from its conditional mean forecast and the predicted standard
deviation of bandwidth consumption in channel 172.

i = 1, . . . , N , m = 1, . . . ,M . We can therefore forecastµµµ(t) and
Σ(t) as

µ̂µµ(t) =AĈ(t) + ê(t) · 1, (49)

Σ̂(t) =AΣ̂C(t)A
T + σ̂2

e(t) · [1, . . . ,1], (50)

where1 is an all-one column vector of lengthN and[1, . . . ,1] is
an all-one matrix of sizeN ×N .

We model each principal component series using a low-order
seasonal AIRMA model [9]. Since{C1(t)} clearly shows daily
periodicity, we model{C1(t)− C1(t− 144)} as an ARMA(1, 1)
process, so that the forecastĈ1(t) is regressed from both the previ-
ous valueC1(t−1), the values one day beforeC1(t−144), C1(t−
145), and random noise terms. All other components{Ci(t)} for
i ≥ 2 do not exhibit periodicity. We thus use ARMA(1, 1) pro-
cesses to model these principal components. The conditional vari-
ances of all the component series are forecasted using GARCH(1, 1)
models [9, 16]. Since the components are orthogonal, we do not
need to forecast their covariances. For details of using seasonal
AIRMA models and GARCH models for video traffic forecast,
please refer to [16,17].

We compare PCA-based prediction with individual channel pre-
diction over a test period of 1.25 days. Each prediction is made
based on the training data of only the previous 1.25 days, which are
a little more than one day to incorporate periodicity. The root mean
squared errors (RMSEs) of both approaches for all the 468 chan-
nels are summarized in Fig. 7. The channel indices are sorted in de-
scending order of the channel size. We can see that the PCA-based
approach outperforms individual predictions regardless of channel
sizes. For large channels, the ratio of RMSE over mean bandwidth
consumption is less than15% in most cases using the PCA-based
approach.

To zoom in, we take channel 172 as an example. Fig. 8 com-
pares the conditional mean predictions produced by the PCA-based
approach with those produced by individual prediction. We ob-
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Figure 10: Q-Q plot of conditional mean forecast errors in
channel 172 over the test period 1680-1860 (1.25 days), in ref-
erence to Gaussian quantiles.

serve that individual prediction tends to oscillate drastically, while
the PCA-based approach can better identify both periodicity and
downward trends. One reason is that the driving factors found by
PCA are weighted averages over all the channels, with channel-
specific erratic noises smoothed out, exhibiting co-movements of
all the channels.

The standard deviation forecast of channel 172 is plotted in Fig. 9.
Even though there is a big gap between real demand and its condi-
tional mean forecast around time 1700, the GARCH(1, 1) model
is able to forecast a larger demand variance at this time, which
will be leveraged by the cloud to allocate more capacity to guard
against performance risks, using the technologies in Sec. 4.2. It
is worth noting that we do not assume that demand can always be
perfectly forecasted: the entire point of variance or volatility fore-
cast via GARCH is to estimate the deviation of actual demand from
the conditional mean prediction and enable risk management in a
probabilistic sense. Fig. 10 shows the Q-Q plot of forecast errors.
We observe that with PCA, the actual demand will oscillate around
its conditional mean forecast more like a Gaussian process. This
also substantiates the belief that eachDi behaves like a Gaussian
random variable.

Last but not least, the PCA-based approach has a lower com-
plexity: it involves training a seasonal ARIMA model for each
of the 10 principal components, together with finding these com-
ponents from the 468 channels using PCA. Once the models are
trained, forecasting is simply a linear regression with negligible
running time. In contrast, individual prediction has to train a sea-
sonal ARIMA model for each of the 468 channels separately, lead-
ing to a much higher complexity.

7. TRADING SIMULATIONS
In this section, we simulate a computerized bandwidth reserva-

tion and trading environment based on our proposed algorithms.
The simulation operates in rounds of 10 minutes. Before the start
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Figure 11: The mean price discount of all 100 tenants vs. time.

of each 10-minute period, the cloud provider has predicted the de-
mand mean and covariances in this period and informed each ten-
ant i about its specificµi andσi. When the period starts, the dis-
tributed price negotiation process immediately starts until conver-
gence. Since in our particular problem, the cloud provider has su-
perior computation power (even for finding polyhedra centroid), the
delay is mainly due to the iterative message passing of prices and
guaranteed portions between tenants and the cloud. We compare
three algorithms: chaotic price update, the cutting-plane method
and subgradient method, in terms of the convergence speed and op-
timization accuracy.

We consider 100 video channels of different sizes and statistics
in the UUSee demand traces over a test period of 810 minutes.
We assume each channel is atenant that relies on the cloud for
servicing the video requests from its end-users. We input such de-
mand traces to our pricing framework and check the algorithm effi-
ciency in the challenging case that prediction and optimization are
to be carried out every 10 minutes. If the algorithms work for a
10-minute frequency, they will be competent for lower operating
frequencies, such as on an hourly basis. We consider utility func-
tions of the form (2). Under a Gaussian approximation ofDi, each
tenant will have an expected utility

E[Ui(wi)] = αiwiµi − eAi(1−wi)µi+
1
2
A2

i
(1−wi)

2σ2
i . (51)

The first term on the righthand side corresponds to the expected
revenue of each tenant made from serving the demandwiDi, while
the second term models a reputation loss which is convex and in-
creasing in terms of the unfulfilled demand. In our simulation, we
setαi = 1 andAi = 0.5. Since different tenants have differentµi

andσi, their utilities are heterogeneous. We set the marginal cost
of allocating bandwidth capacity to beβ := c′(K) = 0.5, and as-
sume that the cloud provider has an outage probability ofǫ = 0.01.

We set the algorithm termination conditions as follows. In each
iteration, if the change in eitherwi, ki orgi (g

k(t) = [g
(t)
1 , . . . , g

(t)
N ])

is below some threshold, itswi is not updated (using message-
passing). Chaotic price update will stop if|w(t)

i −wt−1
i | < 0.01 or

it has run for 100 iterations. The cutting-plane method will stop if
|k(t)

i − kt−1
i | < 0.05 or it has run for 100 iterations. The subgradi-

ent method, as the benchmark, will stop if|g(t)i − g
(t−1)
i | < 0.05.

In order to be generous to the benchmark algorithm, we set the
maximum number of iterations for the subgradient method to 200.
Note that in the subgradient method, the step size of price updates
cannot be too small, which incurs slow convergence; it cannot be
too big either, in which case the final output will be far away from
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Figure 12: The guaranteed portion of each tenant averaged
over all test periods 1700-1780.
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Figure 13: The CDF of the maximum convergence iteration of
all tenants in each test period.

the real optimal value. We optimize such a step size and set it to
0.1 for price updates. The other two algorithms are step-size-free.

We first compare the algorithm outputs upon termination. Note
that with multiplexing, the final optimal pricek∗

i for each tenant
i should be lower than its initial valuek(0)

i = β
(

µi + θ(ǫ)σi

)

,
which is also the optimal price without multiplexing. We define
1 − k∗

i /k
(0)
i as the price discount that tenanti enjoys from mul-

tiplexing. Fig. 11 plots the mean price discount averaged over all
the tenants in each test period. We observe that both chaotic price
update and the cutting-plane method bring more discounts to ten-
ants than the subgradient method. We further check the mean guar-
anteed portion chosen by each tenant averaged over all test peri-
ods in Fig. 12, which shows that most tenants choose a guaran-
teed portion close to 1 and the three algorithms are close to each
other. This means although the three algorithms may reach a simi-
lar level of social welfare, the subgradient algorithm is not so good
at fine-tuning the optimal prices for tenants with a guaranteed por-
tion close to 1.

Finally, we check the communication overhead of all three algo-
rithms. We define an iteration of message passing as a round-trip
communication in which the cloud provider passes the prices to a
tenant, which returns a chosen guaranteed portion. We observe that
for chaotic price update, the convergence iteration of the last ten-
ant (worst-case convergence iteration) in each test period is almost
always less than 10. The CDF of the worst-case convergence itera-
tion of chaotic price update is plotted in Fig. 13. In the same figure,
we can observe that 40% of the time, the subgradient method needs
200 rounds to converge, while 60% of the time, it converges be-
tween 25 and 200 rounds. The cutting plane method always takes
100 rounds to converge, which are half of the maximum rounds
needed by the subgradient method.



Taking both performance and speed into consideration, chaotic
price update largely outperforms the other two. The cutting-plane
method can also achieve better performance than the subgradient
method with better price discounts reached within 100 rounds. There-
fore, a practical strategy is to use chaotic price update first, and if
it does not converge in 20 rounds, switch to the cutting-plane or
subgradient method.

8. CONCLUDING REMARKS
Current-generation cloud computing platforms do not provide

bandwidth guarantees, impeding the cloud adoption by tenants run-
ning QoS sensitive applications. Recent advancements in datacen-
ter engineering augment the cloud-tenant interface with bandwidth
reservation enabled. As bandwidth reservation becomes technically
feasible, new models are needed to price the bandwidth guarantees
to compensate the pay-as-you-go model which only prices the us-
age. In this paper, we propose a guaranteed cloud service model,
where each tenant does not have to estimate the absolute amount
of bandwidth it needs to reserve—it simply specifies a percentage
of its demand from end-users that it wishes to serve with guaran-
teed performance, which we call the guaranteed portion, while the
rest of the demand will be served with best efforts as the current
cloud providers do. The cloud provider will estimate tenant de-
mands through workload analysis and guarantee the performance
in a probabilistic sense. The above process is repeated in small
periods such as hours or tens of minutes.

Our main contribution is to fairly price such guaranteed services
in each period. In contrast to the uniform usage pricing model,
we price bandwidth reservations heterogeneously for tenants based
on their workload statistics such as burstiness and correlation. It
turns out to be computational challenge to find the optimal prices
that maximize the expected social welfare under demand uncer-
tainty. To address this challenge, we propose two novel distributed
algorithms based on iterative equation updates and cutting-plane
methods, which are oblivious to the choice of step sizes. We also
propose practical algorithms to predict demand statistics based on
a factor model. Trace-driven simulations show that both algorithms
achieve faster convergence and better performance than subgradi-
ent methods. Given the abundant computing power and workload
data in the cloud, our bandwidth reservation and algorithmic pric-
ing system operates effectively at a fine granularity of as small as
10 minutes.
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