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ABSTRACT 1. INTRODUCTION

In a public cloud, bandwidth is traditionally priced in a pay-as-  Cloud computing deliverifrastructure as a Servicgaas) that
you-go model. Reflecting the recent trend of augmenting cloud integrates computation, storage and network resources in a virtual-
computing with bandwidth guarantees, we consider a novel model ized environment. It represents a new business model where appli-
of cloud bandwidth allocation and pricing when explicit bandwidth ~ cations agenantsof the cloud can dynamically reseriestances
reservation is enabled. We argue that a tenant’s utility depends noton demand. However, a major risk to these tenants using cloud
only on its bandwidth usage, but more importantly on the portion services is that unlike CPU and memory, bandwidth is not guar-
of its demand that is satisfied with a performance guarantee. Ouranteed in current-generation cloud platforms (e.g., Amazon EC2),
objective is to determine the optimal policy for pricing cloud band- leading to unpredictable network performance [6, 20]. A lack of
width reservations, in order to maximize social welfare, i.e., the bandwidth guarantee impedes cloud adoption by applications that
sum of the expected profits that can be made by all tenants and the'€quire such guarantees, such as transaction processing web ap-
cloud provider, even with the presence of demand uncertainty. The plications [14] and video-on-demand (VoD) applications [4]. The
problem turns out to be a large-scale network optimization problem utility of tenants running these applications depends not only on
with a coupled objective function. We propose two new distributed the bandwidth usage, but more importantly on how many of their

solutions — based on chaotic equation updates and cutting-planeend-user requests are served with guaranteed performance.

methods — that prove to be more efficient than existing solutions

based on consistency pricing and subgradient methods.

With an ever-increasing demand for performance predictability,
a recent trend in networking research is to augment cloud comput-

In addition, we address the practical challenge of forecasting de- ing to explicitly account for network resources. In fact, datacenter
mand statistics, required by our optimization problem as input. We engineering techniques have been developed to expand the tenant-
propose a factor model for near-future demand prediction, and testcloud interface to allow bandwidth reservation for traffic flowing
it on a real-world video workload dataset. All included, we have from a virtual machine (VM) in the cloud to the Internet [7, 12].
designed a fully computerized trading environment for cloud band- We envision that in future cloud platforms, bandwidth reservation
width reservations, which operates effectively at a fine granularity Will be a value-added feature that attracts tenants who seek band-

of as small as ten minutes in our trace-driven simulations.

Categories and Subject Descriptors

K.6.2 [Installation Managemenf]: Pricing and resource alloca-
tion; Performance and usage measurement; Br8dability and
Statisticy: Time series analysis
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width guarantees.

Unfortunately, even with cloud bandwidth reservation enabled,
due to demand uncertainty, it is still difficult for a tenant to pre-
dict how much bandwidth it needs at a particular time. The usual
approach of over-provisioning incurs high costs to tenants and does
not really provide quantitative service guarantees. To promote guar-
anteed services, we believe that a new cloud service model should
be introduced, in which a tenant simply needs to specify a per-
centage of its (bandwidth) demand to be served with guaranteed
performance, which we call thguaranteed portionwhile the rest
of its demand will be served with best effort. It is then the cloud
provider's responsibility to satisfy the guaranteed portion of the
tenant with a high probability. Since the cloud provider has vast
historical workload data, it can leverage statistical learning to pre-
dict tenant demands and make actual bandwidth reservations for
the tenants.

In this paper, we study how to price the above guaranteed ser-
vice. It is worth noting that usage-based pricing (pay-as-you-go)
is not suitable for pricing bandwidth guarantees. For example, it is
more costly to guarantee the performance of a tenant with bursty
demand than a tenant with constant demand, even if they have in-
curred the same usage (number of bytes transferred). As a result,
on top of theusage fegthe cloud should charge each tenant an ex-
trareservation feedepending on its unique demand statistics. Our
objective is to fairly set such reservation fees, with the following



challengesFirst of all, the cloud provider usually multiplexes ten- The good news is that cloud bandwidth reservation is becoming
ant demands to save the service cost. Due to resource sharing, théechnically feasible. There have been proposals on datacenter traf-
absolute amount of bandwidth reserved for each tenant is unknown.fic engineering to offer elastic bandwidth guarantees for egress traf-
Itis a challenging question to find out each tenant’s fair share in the fic from virtual machines (VMs) [12]. The idea of virtual networks
aggregate service cosdeconda pricing policy, when imposed to  has also been proposed to connect the VMs of the same tenant in a
the market, may affect tenants demand; such demand change in turwvirtual network with bandwidth guarantees [7,12]. Further, explicit
affects pricing decisions, leading to potentially unstable iterations. rate control has been proposed to apportion bandwidth according
To overcome these difficulties, we define the reservation fee of to flow deadlines [22]. Such research progress has made the cloud

each tenant as a function of its specifgadhranteed portioimstead more attractive to bandwidth-intensive applications such as video-
of the absolute amount of bandwidth reserved. We also expresson-demand and MapReduce computations that rely on the network
each tenant’s utility as a function of iggiaranteed portionwhich to transfer large amounts of data at high rates [25]. Netflix, as a

essentially measures the Quality of Service (QoS) at the tenant.major VoD provider, moved its data store and video encoding and
Under this new model of pricing and utility, each tenant will choose streaming servers to Amazon AWS [2] in 2010 [4].
a guaranteed portion to maximize gsrplus which is its utility To support guaranteed cloud services, we need new policies to
minus price. Note that in reality, a tenant may choose a guaranteedprice not only the bandwidth usage but also bandwidth reserva-
portion close tol instead of being 1 out of cost concerns, while tions. Our pricing model is partially inspired by pricing electric
having the remaining demand served with best effort. power consumption and capacity reservation under demand uncer-
We study a cloud provider whose objective is to maximize the tainty [19]. However, due to the computing capability and abun-
social welfareof the system, i.e., the total expected tenant utility dant workload data in the cloud, our bandwidth reservation pricing
under demand uncertainty minus the aggregate service cost. Al-theory is essentially a distributed optimization problem based on
though the cloud cannot know the exact form of utility at each ten- statistical learning. Amazon Cluster Compute [1] allows tenants to
ant, it can affect each tenant'’s choice of guaranteed portion throughreserve, at a high cost, a dedicated 10 Gbps network with no multi-
pricing, and thus control the social welfare achieved. To handle the plexing. Instead of provisioning a fixed amount of capacity, we be-
coupled cost function (due to multiplexing), we propose a novel al- lieve that tenants should be allowed to specify a guaranteed portion
gorithm based onhaotic equation updatefor which we provide a of demand, as a way to control QoS level, while cloud providers
sufficient convergence condition. We further propose a distributed should dynamically vary bandwidth reservations based on demand
version of thecutting-plane methodith guaranteed convergence. predictions. Our approach has the unique advantage that tenants
These methods arstep-size-freand proved to be more efficient  are exempted from demand estimation, for which they do not have
than traditional subgradient methods in simulations. In addition, expertise. In contrast, the cloud can easily access tenant demand
we give explicit solutions to optimal pricing under certain special history from online monitoring, and is computationally capable of
cases and point out the dependence of reservation pricing on de-accurate demand forecast.
mand statistics such as burstiness and covariances. Since pricing guaranteed portions critically depends on accu-
Since a main duty of the cloud provider is to reserve bandwidth rate estimates of demand statistics, we target applications with pre-
for the tenants, demand forecast constitutes an important part indictable demands, such as video access. As measurements show
the reservation-based service. Toward this end, we propose a factothat video workload demonstrates regular diurnal periodicity [5,17,
model to predict the expectations as well as covariances of tenant23, 24], various techniques have recently been proposed to forecas
demands in the near future, based on principal component analysidarge-scale VoD traffic. Seasonal ARIMA models have been in-
(PCA). Finally, we evaluate the proposed algorithms on the work- troduced in [16, 17] to predict non-stationary demand evolution at
load traces of a real-world VoD system callddSe€[3]. We con- a fine granularity. Principal component analysis (PCA) has been
duct trace-driven simulations of bandwidth reservation and algo- proposed in [13] to extract video demand evolution patterns over
rithmic pricing based on demand prediction. The system is shown longer periods (of weeks or months) and forecast coarse-grained
to operate effectively at a fine granularity (of as small as 10 min- daily populations. We combine the strengths of both approaches
utes). by finding the common factors driving the demand evolution of all
The remainder of the paper is organized as follows. We review tenants using PCA at a fine granularity. We then make predictions
related work in Sec. 2, and present our system model in Sec. 3. Wefor individual tenants as regressions from factor forecasts obtained
formulate the problem of social welfare maximization in Sec. 4, from seasonal ARIMA models. Unlike [13], our approach makes
where we outline the condition for optimal pricing and discuss its short-term predictions with a lead time of 10 minutes, enabling au-
economic implications. To solve the optimal pricing problem dis- toscaling of resource allocation.
tributively, in Sec. 5, we propose two algorithnt$raotic price up- Our optimal pricing algorithms are related to network utility max-
dateand thedistributed cutting-plane methodnd study their con- imization (NUM), which has been extensively studied in the past,
vergence performance. In Sec. 6, we present our statistical ngethod with various distributed algorithms proposed. See [10, 18] for thor-
for demand forecast. We conduct trace-driven simulations in Sec. 7, ough surveys. Most of these algorithms assume no coupling in the
and conclude the paper in Sec. 8. objective function, and thus cannot be applied to our problem with
a coupled cost term. One existing approach to handle coupled ob-

2. BACKGROUND AND RELATED WORK jectives is callecconsistency pricing10, 21], which is based on
Cloud computing. e Amazon EC2. is usually offered with dual decomposition and subgradient methods. However, subgradi-
usa e-basedpricir?' ('%.‘-as- ou-go) [6’11] Diffe);ent fra- ent methods suffer from the curse of step sizes, in that small steps
g pricing (pay-as-you-g e TP incur big delays (many rounds of message exchanges between the
as-you-go, resource reservation involves paying a negotiated cost to S X ; .
have the resource over a time period, whether or not the resource is.CIOUd and tenants), while big steps yield big optimality gaps. Vary-

used. Although suitable for delay-insensitive applications, pay-as- Ing step sizes stra_tegically Is _difficult in realit)_/. In_this paper, we
you-go is insufficient as a business model for bandwidth-intensive propose twastep-size-freelgarithms: 1) chaotic price update, 2)

and quality-stringent applications like VoD, since no performance t_he cuttmg-plgne method. The f'rSt. one1s basec_;l on |terat_|ve equa-
- - tion updates instead of decomposition and achieves rapid conver-
guarantees are provided in general.



gence under certain conditions. The second is a search algorithmand potential revenue loss due to unfulfilled dertaile assume
with a guaranteed convergence speed. U, is concaveandmonotonically increasingn g;.
The price for tenant to use service; (w;, €, R;) is divided into
two parts: ausage feand areservation feeAs most current cloud

3. ANEW TENANT-CLOUD AGREEMENT providers do, we assume uniform pricing for usage: each tenant
Our system model is a generalization of the operation mode of Pays % for every unit bandwidth consumed. As a key departure
the current cloud. Current cloud providers charge tenantsage from current clouds, we introduce a reservation fee, which is a
feebased on the number of bytes transferred in the past hour, andfunction of the guaranteed portion instead of the absolute amount
do not provide bandwidth guarantees. We extend this model to Of bandwidth reservation: each tenai charged a price ofi§w;
allow tenants to make reservations for bandwidth guarantees ex-for havingw; portion of its demand guaranteed. We price the guar-
plicitly. The system operates on a short-term basis, e.g., based orAnteed portion; rathe!r than the absolute bandW|dth_, because ten-
hours or tens of minutes. At the beginning of each short period, ants usually have no idea about how much bandwidth they need.
each tenant specifiesguaranteed portiotio guard against perfor-  Instead, they can intuitively know how much percentage of guaran-
mance risks. The cloud decides the actual bandwidth reservationte€ is desired. This new business model frees each tenant from the
for tenants through demand estimation based on workload analy-computational burden of demand prediction: it simply submits its
sis, and charges both a usage and reservation fee. We now describ@esired guaranteed portias, while the cloud provider computes

our system model in detail. the actual bandwidth reservation as well as decides the reservation
We consider one such short period, whar@andwidth-sensitive ~ fe€kiw; for each tenant. o
tenants are present. Suppose that in this period, tefsaband- We define thesurplusof tenant; as its utility minus its price:

width demand is a random variable; (Mbps) with meanu; = . N T (oo N
E[D;] and variance? = Var[D;]. We assume the cloud can pre- Si(wi, p, ki) := Ui(gi(wi), Di) = pai = kiws. ®
dict u; ando; based on demand history and share them to tehant  Given pricesp andk;, a rational tenant will choose@; to max-
before the period starts. In our proposed market, the key commod-imize its surplusS;. Tenant: will not always choosev; = 1 be-
ity traded is a notion called thguaranteed portiorinstead of the  cause when its demand is bursty, the price to guarantee 100% of
absolute amount of bandwidth. Specifically, the tenants and cloud D, may be high. In this case, tenantill choose aw; close to 1

will comply to the following service agreemest(ws, €, R;): instead of being exactly 1, while the rest of its deméhe- w;) D;
will be served with best efforts.
e Before the period starts, each tenaspecifies gyuaranteed Based on tenant-specified guaranteed portions . . , wx, the
portionw; € [0, 1]; cloud should guarantee the demandsD, ..., wnxDx for ser-
vice. Denotew := [w1,...,wx]'. To realize the above service
e The cloud guarantees; fraction of demandD; with a high guarantees, the cloud provider needs to reserve aliatalwidth

probability 1 — ¢; outage is allowed to happen with a small capacityof K (w). Depending on the technology used, the value of

probabilitye, during which the bandwidth allocated to tenant K could vary significantly from one case to another. For example,
iis limited to R;. a simple non-multiplexing technology is to rese®gcapacity for

each tenant individually such that demand; D; is satisfied with

The parameters and R; are a part of a service level agreement Nigh probability, i.e.,

(SLA) advertised by the cloud provider. We introduce tis& fac- Pr(w:D; > R:) < ¢ (4)

tor e because for random demand, regardless of how much band- ) ’

width is allocated, there exists a small risk of resource shortage. and correspondingly, reserve capacity = . R; in total. In
Let ¢; denote the actual bandwidth usage (realized data rate) in contrast, a multiplexing technology will reserve capadityor the

this period. Under a guaranteed portiaf, serviceS; (w;, €, R;) tenants altogether such that the aggregate demand is satisfied with
is supposed to lead to the following actual usage of tefiant high probability, i.e.,
(wi) = w; D;, w.p. 1—¢, 1) Pr(} wiDi > K) <, (5)
E r[lll’l{’szL,Rz}7 W.p. ¢, i

and during outage (whey, w; D; > K), the usagey; of tenant

i is rationed toR; with 3. R; = K. In both casesK is an im-
plicit function of w defined by the probabilistic constraints (4) and
(5), respectively. To determink (w), the cloud provider must es-
timate the future demand statistics of all the tenants, and convert
tenant-specified guaranteed portionsnto the actual total band-
width reservatiornk .

Similarly, the cloud provider has two kinds of service costs: us-
age and reservation costs. We assume tier-1 ISPs charge the cloud
provider $ for every unit bandwidth actually used. Furthermore,
reserving bandwidth capaciti will incur a reservation cost of
$c(K). Due to multiplexing gain, to guarantee a similar service
level, multiplexing will incur a lowerK and thus a lower reserva-
tion coste( K) than without multiplexing.

i.e., with probabilityl — e the actual usage; is a realization of
w; fraction of its demandD;, while during outage (which happens
with a small probabilitye), the actual usagg is rationed byR;.
Clearly, tenani will choosew; based on both the utility/; and
the price of guaranteeing; portion of its demandD;. Unlike
most prior work on network utility maximization [10] that assumes
the utility U; depends on a single variable such as rate, we model
utility U;(q:, D;) of tenanti as a function of both actual usage
and the demand;. For example, a video content provider (or
a VoD company) may have a linear utility gain (or revenugy;
from usageg; and a convexly increasing utility logs*: (Pi—4:)
for the denied request®; — ¢;, with «;, A; being tenant-specific
parameters:

A;(D;—q;(w; - .
Ui (qi(wi), Di) = cviqi(w;) — e Pima(wi), (2) Even though the cloud provider may still be able to fulfil] — ¢;
in a best-effort fashion, the tenant will have no knowledge if this is
where the utility loss term can model the reputation degradation the case, and will not be able to factor it into its expected utility.



We define thecloud profitIl as the difference between its total
revenue and total cost, i.e.,

H(w) = Z (in(wz‘) + k‘iwi) —c

(K(w)) =>_ bas(ws). ()
4. PRICING TOWARDS SOCIAL
WELFARE MAXIMIZATION

We study a cloud provider as a social planner whose objective
is to maximizesocial welfarelV (w), which is defined as the total
tenant utility minus the total service cost:

W(w) := Z U, — C(K(W)) - ZbQi(wi)

= (W) + Y Si(ws, p, ki) ™
Underrandom demandshe cloud aims to decide a set of opti-
mal guaranteed portions™ [wi,...,wy]" for the tenants to
maximize theexpected social welfafgy solving

maxw E[W(w)]
st. 0=wXxX1

®)

To solve (8), we first derive the expected social welfare in a sim-
ple approximatedorm. Note thatE[Ui] is bounded as follows:

E[Ui] < (1 — ) E[Us(wiD;, D;)] + €E[Ui(R;, D;)].

When the risk factoe is small, we have

E[Ui(gi, Di)] = (1 — €)E[Ui(w:Di, D)]. 9)
To simplify notations, we define
Ui(w;) := E[Ui(w;D;, Ds)], (10)

which turns out to benonotonically increasingndconcaven w;
under very mild technical conditions. Similarly, the expected usage
of tenanti is

E[ql(wz)] ~(1- 5)E[wiDi] = (1 — €)w; ;.
Therefore, the expected surplus of tenaist
E[Si(wi,p, kl)] = E[Ul] — pE [qz} — kzwl
= (1 — 6) (Ul(wz) — pwiui) — kiwi7 (12)

and the expected profit of the cloud provider is

E[lI(w)] = (p—b)(1—¢) sz‘urf—z kiw;—c(K(w)). (13)

(11)

Substituting the above into (7) gives teepected social welfar@s

EW (W)= (1—-€> (Ui(w) —bwip;) — c(K(w)). (14)

%

4.1 An Equivalent Pricing Problem

In reality, although the cloud provider has full knowledge about
its service cost(K (w)), it does not know the utility function of
each tenant. In other words, maximizidgf{\W (w)] in terms of
w requires the cloud to know the utility/; of each tenant and is
infeasible. We now convert problem (8) into an equivalent pricing
problem.

Note that the expected social welfare is also the sum of the ex-
pected cloud profit and the total expected tenant surplus, i.e.,

E[W (w)] = E[lI(w)] + Z E[Si(wi,p,ki)].  (15)

Wi (p, ki) = argmax E[S;(w;, p, k;)]

w;

| Tenant 1 | --- | Tenant i | TenantN|

Cloud Provider

Update p, k; to increase social welfare

Figure 1: Iterative updates of prices and guaranteed portions.

Furthermore, when charged with prigesk; and facing a random
demandD;, a rational tenant will choose a guaranteed portign
to maximize its expected surplus, i.e.,

w; = arg maXE[Si (wi, p, kz)], (16)
which defines an implicit functionv; (p, k;) of the prices. The
cloud can affect guaranteed portion choiges= [, ..., wN]"
via appropriate choices of prices k1, ..., kn, and control the
corresponding expected social welf&gVv (w)].

Therefore, the social welfare maximization problem (8) is con-
verted into an equivalemptimal pricing problem:
E[W(W)] = B[II(W%)] + Y B[S: (s, p, k)], (17)

max
p,k1,.. kN

which, by combining (14) and (17), can be rewritten as

N(l — 6) Z (UL(QI)Z) — bUN)z/h) — C(K(\TV)),

(18)

,,,,,

wherew; = w;(p, k;) is determined distributively by each tenant
4 via surplus maximization (16). Such a distributed optimization is
illustrated in Fig. 1. Now the cloud provider does not need to know
U;: it simply charges tenant the usage price and reservation
pricek;, and expect & (p, k;) chosen by tenant

We denote theptimal prices that solve problem (18) as’, k7,
..., kx. The optimal pricing problem (18) is equivalent to the
original problem (8), because by adjustingndk;, w; (p, k;) can
take any value irf0,1]. In other words, the guaranteed portion
w; (p*, ki) chosen by tenantunder optimal pricingy™, k] is ex-
actly the guaranteed portian; that maximizes the expected social
welfare, i.e., we have

(19)

Therefore, once a set of optimal prices is obtained, we essentially
have found a@lecentralized solutioto expected social welfare max-
imization (8), which was originally impossible to solve.

Nonetheless, the optimal pricing problem (18) is not easy to
solve either. At a first glance, (18) can be understood as a network
utility maximization (NUM) problem [10] that may be solved via
decomposition among the tenants. A closer look at (18) suggests
that the termc(K (W)) in the objective function may be coupled
among alkp;’s, so that (18) cannot be decomposed into a set of sub-
problems, each solved at a tenant distributively. Coupling happens
in the cost term when the cloud multiplexes tenant demands and
books a capacitys (w) for the aggregated demand. As shown in
Fig. 1, the key to the solution is that the cloud provider must be able
to updatep andk; towards the direction that increasB§iv (w)].
And a good price update algorithm should require fewer rounds
of message-passing between the cloud and tenants before reaching
optimality.

Before presenting the distributed solutions to (18) in Sec. 5, let
us first provide a number of insights on how to make pricing poli-

w; = w;(p", ki).



cies, by checking the KKT conditions [8] that the optimal prices We note that whether with or without multiplexinds (w) is

p*, ki, ..., kN must satisfy. a convex function and so ig K (w)). In fact, we can relax the
linear cost assumptiof( K) = K, as long ag (K (w)) is strictly
Proposition 1. The optimal price®”, ki, ..., kx must satisfy convex and monotonically increasify eachw; € [0, 1].
oK There is an interesting connection between the non-multiplexing
(1—e)(p* —b)us +k;f —¢ (K(v"v)) '3 =0, Vi, (20) and multiplexing cases: the optimal solution for non-multiplexing
Wi lw=w can be used to bound the optimal solution for the multiplexing case.
wherew = [i, . .., wn]" with@; = @:(p*, k) given by (16). Specifically, the optimal pricegk; } of non-multiplexing upper-
bound{k; } of the multiplexing case, whereas the optimal portions
Proof: Please refer to our technical report [15] for the proaf] {w;'} of non-multiplexing lower-boundwy; } of the multiplexing

An inspection of (20) reveals that one set of optimal prices is case. This is intuitive because multiplexing leads to a reduced cost
. ¢(K), stimulating tenants to increase their choices of the guar-

{ p = b, ) (21) anteed portion. The proof of this connection involves the use of

ki = aC(K(W))/awi’w:«n Vi Cauchy-Schwarz inequality and is omitted due to space limits. We

Although (21) is not the only set of optimal prices, our finding will use this connection in our distributed algorithms.

complies with the economic intuition that a welfare-maximizing 4 3 Economic Implications
cloud provider should charge marginal cost for both traffic usage
and guaranteed reservation. In (21), we can also observé:;that
depends onv, which in turn depends op, k7, ..., k5. Due to
such coupling, (21) is not yet a closed-form solution for the reser-
vation pricek; .

Condition (20) has several economic implications, which apply
to a general cost function, although we may use the non-multiplexing
case for explanation due to its simplicity.

First, merely adopting a usage pripecannot maximize social
welfare: whenk; = 0 for all 7, there is ngp that can satisfy (20).
4.2 No Multiplexing vs. Multiplexing All In other words, a positive reservation feg > 0 is necessary to

To draw insights, we take a look at two special service technolo- aqhieve welfare op_timality, since i'.q the presence C.’f demar_ld uncer-
gies that may be adopted by the cloud: non-multiplexing and mul- tal_n_ty, only_ki can incorporate a risk factor (e:gx,- n .(2.3)) Into
tiplexing acrossll the tenants. For simplicity, we assume a linear pricing. Th's re_veals that curre_nt_cloud b?‘”dW'dth pricing st_:hemes
reservation cost (which will be relaxed laterfi) — SK. are inefficient in terms of providing service guarantee against de-

When multiplexing is not used, we can derive the optimal prices Mand fluctuation. On the other hand, a usage piienot neces-
in a closed form from (21). Without multiplexing, recall that the ~S&7Y: €ven ip =0, the_ expected welfare is _maX|m|zed as qug as
capacity R; is reserved for each tenantindividually, such that k; satisfies (20). In this case, the reservation fee can be raised to
Pr(w;D; > Ri) < eandK = Y, R;. WhenD; is a Gaus- compensate the loss from no usage fee.

sian random variable (this assumption will be verified in Sec. 6), it Furthermore,hﬁterogen_eoulx_;eserva;[‘lctj)n prlg_eﬁl, N 'r’]k"N are.
is easy to check that necessary to achieve optimality, edghdepending on the statisti-

cal characteristics of tenaiis demandD;. This conforms to the
Ri(wi) = (s + 6(e)os)w, (22) intuition that tenants have different degrees of demand volatility,
1 . . . incurring different costs for service guarantees. For example, with-
wheref(c) = F'~(1 — ¢) is a constant, witl'(-) being the CDF 5+ myitiplexing, k; depends om; in (23): the more bursty a ten-
of normal distribution\V'(0, 1). Since the cost function is naturally ant's demandD;, the more capacity that must be reserved to guard
decoupled among tenants, according to (21), the optimal prices are,gainst fluctuation, and thus the higher the price. In contrast, in
immediately given in a closed form by = b and terms of usage pricing, it is efficient enough to charge a homoge-
ki = B(pi +0(e)oi), Vi (23) neous price for every unit bandwidth consumed.

When multiplexing is used, however, optimal prices have no ex- 5. DISTRIBUTED SOLUTIONS

plicit solutions. Recall that with multiplexing, a capaciy is re- . . i
served to accommodate all the tenants together, such that the ag- AS has been noted, the main challenge to solving the optimal
cing problem (18) is that the reservation co§k (w)) is cou-

gregate (instead of individual) demand is satisfied with high prob- P" _ )
ability: Pr(>, wiD; > K) < e. pled among all the tenants and is not decomposable in general. One

existing approach to handle coupled objective functions is to find

Since the random demanfd, . . ., Dy of different tenants may
be correlated, we denojg; the correlation coefficient ab; and the dual problem of (18) and to decompose the dual among all
D;, with p;; = 1. For convenience, lgi = [u1,. .., un]" and the tenants and the cloud provider by introducing auxiliary vari-

ables. Such an approach is callednsistency pricind10, 21].
Subgradient methods are among the most popular techniques to
update the prices towards the optimality of dual problems. How-
ever, they suffer from the curse of step sizes. For the final output to

3 = [oi;] be theN x N symmetric demandovariance matrix
with Oi; = 0‘1-2 andOU;j = Pij0i0; fore 7& _7
Under Gaussian demands, can be written as

K(w)=E[Y,w:D;] + 6(e)y/ Var [ 3, w; D;] be close to the optimality, subgradient methods choose small step
sizes to updatg;, leading to slow convergence and many iterations
=p'w+0(c)VwTEw. (24) of message-passing between the cloud and tenants.

In this paper, we propose two nova@kp-size-frealgorithms for

Substituting the abov&  (w) into (21) givesp™ = b and price updates that can quickly converge to the optimality of (18).

NVwWIDw ) The first algorithm, calle€haotic Price Updatgdoes not rely on
ki =p (Mi +0(e) - T‘ >7 Vi,  (25) decomposition at all: instead, it resorts to iterative equation updates
! w=w* based on the KKT conditions (20). The second algorithm, called
wherew; = w;(p*, k;). Clearly, with multiplexing,&; is not the Cutting-Plane Methodrelies on dual decomposition but does

given in a closed form yet, due to the coupled cost function. not updatek; using step sizes: it is essentially a search algorithm
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Figure 2: Behavior of price update based on chaotic equations in a @dimensional case. “0” represents the starting poin¢w§

that locates{k; } until it is confined in a small region. We give a
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of handling coupled objectives. Since price updates are based on

sufficient condition under which chaotic price update can achieve equation (27) rather than on updating Lagrangian multipliers, the

rapid convergence. The cutting-plane method, which is guarantee

dalgorithm is not concerned with the choice of step sizes that are

to converge, is used to compensate chaotic price update when theequired by subgradient methods.

latter is not converging. Note that our algorithms apply to a general
convex cost functior (K (w)) (in terms ofw) under any service
technology (e.g., multiplexing tenant demands in groups).

5.1 Chaotic Price Update

We observe that the sequer{dq‘t)} produced by equations (27)
and (28) could demonstrate significantly different behavior under
different initial valueSwEO) and different forms of utility and cost
functions. In other words, our algorithm demonstratieaoticbe-
havior, whose eventual outcome is sensitive to initial conditions

Chaotic price update is based on alternated phases of price Up—4nq the structure of updating equations.

dates via the cost-price relationship (20) and the tenant surplus

maximization equation (16).

Chaotic Price Update. Denotew ") := [w{"”, ... w{{]T. Set
p = b. Setk” := B(ui + 6(c)o;) for all i andw(® = 1. For
t=0,1,..., repeat

(1) Distributed Surplus Maximization. Pasg andk§” to each
tenanti, which returns:

w£t+1) . ()

= arg max E[Si(wi,p,ki )}, Vi. (26)

0<w; <1

(2) Price Update. Set
0K (w)

k£t+1) — CI(K(W(t+1))) awl

Vi. (27)

)
w=w(t+1)

@3) If WD —w®| < ¢, returnw* = wtHD kr = kT,

The above algorithm starts by settihﬁ) to be thek; in the cost
function without multiplexing. It then updatés andw; alternately
by setting the current priceiét> to be the marginal reservation cost
with the currentw™®, and by collecting the next- ‘1) from ten-
ants who maximize their surpluses given the current prices. Ap-
plying the KKT conditions to (16), step (1) can also be viewed as
solving an equation

(1 — Ui (w™™) = p(1 — )i + k7, (28)

for wﬁ“’l). Since each tenant maximizes its expected surplus lo-
cally, the cloud provider does not have to know the utility function

of each tenant, leading to an iterative distributed solution.

Compared with Lagrangian dual decomposition based on con-
sistency pricing [10,21], chaotic price update represents a new way converges tav; for any initial valuew

Our objective going forward is to analyze the behavio{bf)}
and{w®} and find out the conditions under which the algorithm
can achieve fast convergence. To simplify notations, we define

hi(wi) = (1 — ) (Ui (wi) — bus), (29)
Jdc(K
vi(w) = % (30)
Recall thatw* := [w},...,wi]", wherew} = @:(p*, k}) is

the guaranteed portion chosen by tenanhder optimal pricing.
By the definition ofw™, the optimality condition is

hi(wi) = ki =vi(w"), Vi. (31)
Since we have set = b, (28) can be written as
hi(w™) = (1 = ) (Ts(w™™) —bps) = k. (32)

Thus, theupdating rules (27) and (28) in chaotic price update can
be rewritten as

hi(w) = kD = v, (w®), Vi (33)

Let us illustrate the algorithm behavior using the special case of
asingletenant. There are three scenarios where the algorithm can
produce dramatically different results, as shown in Fig. 2. Since
utility «; (w;) is strictly concave and monotonically increasing in
[0,1], and cost:(K (w)) is strictly convex and monotonically in-
creasing in0, 1], we have for alk:

vi(w) >0, 2400 > 0,
All three cases in Fig. 2 satisfy (34). In Fig. 2(

(0)
1

Vwie[O,l}
Yw:0=<w=<1.

'} always
€ [0,1], whereas in

(34)



Fig. 2(b), {wf)} always diverges regardless of its initial starting Herek; is theLagrange multiplieassociated with thé&h equality

point. In Fig. 2(c), however, the behavior §fs{"} critically de- constraintw; = v;; k; can be interpreted ascansistency priceas

pends on its initial valueugo). If w%m takes “initial value 1”,w§” it will eventually steew; tovyar.dSwi, as explained in [10, 21].
TheLagrange dual functiois

will eventually hop between two values alternately, without being
able to approachi. On the other hand, m§°> takes “initial value q(k) = sup L(w, v, k), (38)
2", w'" will converge tow;. v

We now give a sufficient condition for the convergence of chaotic and thedual problemof social welfare maximization (36) is
price update in Theorem 1. I’IlkiIl (k). (39)

Theorem 1. Ifforeachi =1,..., N, we have
aQC(K(W)) Note that there is no duality gap between the dual problem (39)
> (35) and primal problem (36) by thatrong duality theorer{8], since the
Ow; primal problem is convex optimization for any concdvg w;) and
convexc(K (v)). As aresult, it suffices to solve the dual problem
instead of the primal problem.
In fact, the dual problem (39) is preferable because it enables

(1= [T (i)

for all w betweenw® = 1 andw"), then using chaotic price
update k") converges td; andw'" converges tav; .

i

Proof: Please refer to our technical report [15] for the proafi distributed algorithms due to a natural decomposition(&f):
The economic implication behind Theorem 1 is that the algo-
rithm will converge wherthe marginal utility gain decreases faster a(k) = Z sup <(1 — &) (Us(wi) — bwips) — kiwi)
than the marginal cost increasessw; increases. This technical as- — w;

sumption can be easily justified, since the marginal ¢dgt) = 3
for adding network capacity (routers and switches) is decreasing at + sup (Z kiv; — c(K(v))) .
a fast pace in our economy. v i

From the Proof of Theorem 1 in our technical report [15], the  This dual decomposition “decouples” the objective funcij¢h)
convergence speed df."'} in chaotic price update is dictated  so that the value af(k) can be found by solving a surplus maxi-
by Pi(w;') andQ;(w;), which depend ot (w;) andv;(w), the mization problem at each tenant
marginal utility gain and marginal cost in termsof. Intuitively _ )
speaking, the larger the gap between the rates at which the marginal ™2 (1= &) (Ui(wi) — bwips) — kiwi, foralli,  (40)
utility gain decreases and the marginal cost increases, the faster . N | he cl L
the convergence speed. As a result, in systems V"m}@%ﬂ and a profit maximization problem at the cloud provider:

exceeds)’c(K(w))/Ow; by a substantial margin, the step-size- max Z kv — c(K(V)). (41)
oblivious chaotic price update can achieve extremely fast conver- v 5

gence. As these subproblems are independent of each other, the dual prob-
52 The Cutting-PIane Method lem enables distributed solutions by charging each tenant a reser-

vation pricek; and usage pricg = b (the revenue and cost related
to usagecancel each other in (41)). In contrast, the primal problem
(36) is not decomposable because of the coupled t&fi(v)).

Chaotic price update achieves fast convergence when condition
(35) is met. A natural question arisé€3an we design an algorithm
that is step-size-free while converging under a wider range of con-
ditions? Now we present such an algorithm that converges for ar- 5.2.2  Distributed Solutions via Cutting Planes
bitrary concave utility functiorlU;(w;) and arbitrary convex cost A traditional subgradient method will find a subgradignt of
functionc(K (w)), with aguaranteectonvergence speed. Our ba- q(k) at pointk, and update the pricésusing this subgradient times

sic |de_a is to apply the_utt_lng-_plane m‘?thOﬁB] tothe dual_ problem a small step size. For example, one of such subgradients is given as
of social welfare maximization, leading to an alternative formula- below:

tion of the optimal pricing problem.
. o Lemma 1. For any pointk € R”, let the vectows = [1;] be
5.2.1 Dual Problem of Social Welfare Maximization  the optimal solutions to problem (40) afiche the optimal solution
We introduce the dual problem of social welfare maximization, to problem (41). That is,
following the framework of consistency pricing [10, 21]. Note that _— = o . .
the social welfare maximization problem (8) can be rewritten as Wi = arg max (1= (Ui(wi) = bwipsi) = kiwi, Vi, (42)

maxwy (1 —€) >, (Ui(w:i) — bwips) — c(K(v)) (36) vV =arg max Z kivi — ¢ (K(v)). (43)
st w=v, i

where the auxiliary vectov is introduced to facilitatelual decom- Then a subgradient af(k) at pointk is given bygi = v — w.

position To derive the dual problem of (36), we define the- Proof: Please refer to our technical report [15] for the prodf]

grangian However, to ensure the convergence speed, the subgradient method
L(w,v,k)=(1—¢) Z (Ui (wi) — bwipi) — e(K(v)) requires tuning the step sizes strategically, which is difficult to im-

plement in reality. In contrast, the cutting-plane method is step-
size-free: itis essentiallysearch algorithnbased on the following
fact (see [8] for a proof):

= (1= (Uilwi) — bwips) — Z kiw; Lemma 2. Let vectorgi € R™ be a subgradient of the objec-
¢ tive functiong(k) at pointk € R", i.e., g, must satisfy

q(x) > q(k) + gk(x — k), VxeR"Y. (44)

i

+k' (v —w)

+Z kivi — c(K(v)). 37)
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Figure 3: Bandwidth consumption time series of 5 representativettannels over a 2.5-day period.

Letk™ be the optimal solution of the dual problem (39). Then
satisfiegz) (k* — k) < 0.

Lemma 2 implies that if we know a poiikt with its subgradient
gk, we can confine our search fir* within the half-spacgx :
g1 (x — k) < 0}, since the other half-space does not contin

Hence, we can locatk™ up to a certain accuracy by iteratively
ruling out a sufficient number of half-spaces, as described below.

The Cutting-Plane Method. Setk® = k**, wherek** is

an optimal solution for the non-multiplexing case. Set the initial

polyhedron to bePy = {k|0 < k < k(©}. Itis clear thatP,
contains an optimal solutiok™. Fort = 1,2, ..., repeat:

(1) Choose a poirk™® ,which is the center of gravity dP, 1,
denotedk™ = CG(P;_1);

(2) Finding a subgradiem, ., of ¢(k) atk®;
(3) If g |l < €1, returnk®; else, continue;

(4) Add a new cutting plangl(t) (k — k) < 0 to form the
new polyhedron

Pr :=Pi1 N {klggw (k — k) <0} (45)

Intuitively speaking, the above algorithm attempts to shrink the

volume of polyhedrorP; that contains the optimal solutid« one
iteration after another, unft™* is contained in a trivially small ball.
In Step (2), the subgradient can be found using Lemma 2.

Now we can quantify the communication cost of the above algo-

rithm — a crucial factor in a cloud environment. Sirk® is the

center of gravity ofP;_1, about half of the uncertainty is ruled out

in each iteration. It can be proved that
VOl(Pt) S (1 — é) VOl(Ptfl) ~ 0.63 - VOl(’Pt71). (46)

Therefore, the above algorithm converga@onentiallyfast. Fur-

Proposition 2. Ifthe cutting-plane method terminates when the
diameter of the smallest Euclidean ball that contaihss no greater
thand, then in the worst case, the cutting-plane method requires

max; k(o)
R =1.51N log, —g L 47)

rounds of message passing between the cloud and tenants.

The above proposition is a well-known property of the cutting-
plane method [8]. In contrast, the worst-case communication cost
of subgradient methods are of the fo@V x 1/«), wherex is the
step size. Clearly, ifl is comparable te, the cutting-plane method
may lead to much faster convergence due tdalg(-) operation.

It is worth noting that finding the center of gravity CB.—1)
requires heavy computation. However, computation cost does not
pose a challenge for data centers that have superior computing power,
whereas communication cost (convergence speed) is the major bot-
tleneck. The cutting-plane method converges faster, reducing the
rounds of message passing between tenants and the cloud, yet at the
expense of computational cost. Such a property is in fact desirable
in the cloud. To summarize, the cutting-plane method converges
for arbitrary concave utility/; (w;) and convex cost( K (w)), and
can be used to compensate chaotic price update when the latter is
not converging.

6. DEMAND STATISTICS ESTIMATION
WITH A FACTOR MODEL

Recall that both algorithms for finding the optimal pricing policy
needy, o and X as inputs: u; ando; are used for the surplus
maximization at each tenantin (26) and (42), while the demand
covariance matrix® is used to calculate the service cogk (w))
in the presence of multiplexing in (27) and (43).

In this section, we address the practical issue of predicting de-
mand statistics based on demand history, which can be obtained
from cloud monitoring services such as Amazon CloudWatch [2] at
a fine granularity (e.g., at a frequency of 5 minutes in CloudWatch).
As has been mentioned, in this paper, we target applications whose

thermore, Lemma 2 shows that, in order to obtain a subgradient handwidth demand patterns are tractable and predictable to some
g atk®, the cloud provider can simply charge each tenant a extent. Video access is one example of such applications, with
usage fe@ = b and a reservation felg, = kﬁ”, and expect a re- clear diurnal patterns and the time-of-the-day effect [17], in the
turn; from each tenany; it obtainsv locally. Such price notifica- sense that a popular video almost always sees its peak (or trough)
tion and response are performed in each iteration for all the tenantsdemand around the same time of day.

in parallel. In other words, each execution of Step (2) introduces  Our study is based on a large dataset collected from thousands of
only oneroundof message passing between the cloud and tenants.on-demand video channels in a commercial VoD system [3] during
Since cloud-tenant communication happens only in Step (2), the the 2008 Summer Olympics. The video genres are not limited to
total rounds of message-passing can be bounded as follows: Olympics, but range from TV episodes to sports and from movies
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Figure 4: The first 3 principal components C;—C3 in band-
width consumption series of 468 channels during 2 days via

principal component analysis.
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diction methods over test period 1680-1860 (1.25 days), com-
pared to mean bandwidth consumption in each channel. The
three largest channels are channels 295, 241 and 317.

If the coefficientsy;1, . . ., a;ns can be learned statistically, we will
be able to forecasfD;(t)} by predicting factor movements first.
As noted from Fig. 3, channel demands exhibit co-movements.
This inspires us to mine the factors while learning their coefficients
from the collective demand history afl the channels.

We use principal component analysis (PCA) to find such un-
derlying factors. GivenV demand serie§$D+ (¢)},...,{Dn(t)},
PCA applies an orthogonal transformation to th@selemand se-
ries to obtain a small number of uncorrelated time sef@s(¢)},

... {Cn(t)} called theprincipal components This transforma-

tion is defined in such a way that data projected onto the first prin-
cipal component has as high a variance as possible (that is, accounts
for as much of the variability in data as possible), and each succeed-
ing component in turn has the highest variance possible.

468 channels.

to news. Fig. 3 shows the aggregate bandwidth demand in each

channel for 5 representa;ive channels over a_2.5—day period. We perform PCA for all the 468 channels that are online in a
We have four observations about the databiest, the workload 2-day period (time 1500-1787). Fig. 4 plots the first 3 principal
dataset consists Of a large ”““?ber of small unpopular Channels’component series in the data. We can see the first compéhent
such las tﬂose Iln Fig. ﬁ(b),tﬁomlnaltzed by a smatlrl] numberdpf large explains the diurnal periodicity shared by all the channels. The sec-
polpu a.rcd.a.rtmfe st,hsuc as ost? in '?' Swhcqu er:erl%gidlur- ond componenf’; accounts for the downward daily trend, which
na per|c3 icity In the access pattern ol each video cha a is salientin channel 317 as popularity diminishes and less salient in
channel's popularity _evolutlon may foII_ow some trends over days. channel 295. A further check of Fig. 5 reveals that the first 10 prin-
E%r.texargple, banéj\;wdtr; consutr;:ptlzog Ic? cha_nn::a_ls 2;1 and_ti’]lzﬁ(' cipal component series explai®% of the data variability, which
1ibits a downward trend over the 2.5 days In Fig. (_a), with are sufficient to model the factors underlying all the demand evolu-
time periods representing one day. Finally, both the diurnal period- tion
icity and daily trends become vague in small channels, such as in However, different channels have different dependencies dn eac

channel .22 in Fig. 3(b). factor. Fig. 6 shows the 468 demand series projected onto the first
Our prior work has proposed to use seasonal ARIMA processes ,, components, i.e., the poifit1, a.2) for all i. Without surprise,

to predict bandwidth series in each individual channel [17] at a fine the dependence on the first component, indicates how large the

g_ranul;a;]l_tyt Of. 1? dmlnuteds._ -lt—l‘r:e precilctlon |tst_based pnda regresli channel is. In contrast, the dependence on the second component,
sion ot historical démand In th€ most recent ime periods, as well , - 4ccounts for how fast end-users may lose interest in channel

as demand around the same time in previous days. However, thisi. Channel 295 has a low;., indicating almost no decrease in
method has a shortcoming that a separate statistical model “eediopularity over days Channél 241 has a modetigte showing a
to be trained for every channel and thus does not scale to a Iargeslightly downward trénd Channel 317 has a large, exhibiting a
number of channels. Also, this qpproach performs poorly for small dramatic decrease of popularity just on the second day.
channels, e.g., channel 22, or ill-behaved channels, e.g., eéhann To predict the demand meaps?) and covarianceE(t) for
317. In both types of channels, the daily repetition pattern is ob- (Di(t) : i = 1 NY at imet, we first predict the principal
scured by various random factors. components”i (t),...,Cwu(t) for M = 10 based on the history
§ To ta((i:kle tlhese problehms(,jwe usciéaator modelto acEOL;nt forI and obtain forecasts about theirmeél‘(§) -~ [C'l ) Cor "
emand evolutions, i.e., the demand sefiPs(t) } of each channe i i . T AR MAR
i can be viewed as driven by/ uncorfe{Iate(d)Emderlying factors  and their C(_)va_lrlanceEc(t). We further p_redlct the error series
e(t) to obtain its forecast(t) and error variancé?(t). Note that

C1(t), ..., Cum(t) with a zero-mean random shoelt): . ) h \ s
X c(t) is a diagonal matrix because the principal components are

Di(t) = a1 C1(t) + ... + s Cur () + e(t), Vi.  (48) uncorrelated. Denote the coefficient matrix &g« = [im],
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Figure 9: The departure of actual bandwidth consumption Figure 10: Q-Q plot of conditional mean forecast errors in
from its conditional mean forecast and the predicted standard channel 172 over the test period 1680-1860 (1.25 days), in ref-
deviation of bandwidth consumption in channel 172. erence to Gaussian quantiles.
i=1,...,N,m=1,..., M. We can therefore forecggtt) and serve that individual prediction tends to oscillate drastically, while
X(t) as the PCA-based approach can better identify both periodicity and
LN A A R downward trends. One reason is that the driving factors found by
’f(t) o A(}(t) + eT(t) ' 12’ (49) PCA are weighted averages over all the channels, with channel-
Bt)=AZc()A +6:()-[1,...,1], (50) specific erratic noises smoothed out, exhibiting co-movements of
wherel is an all-one column vector of lengfhi and[1,...,1]is all the channels.

The standard deviation forecast of channel 172 is plotted in Fig. 9.
Even though there is a big gap between real demand and its condi-
tional mean forecast around time 1700, the GARCH) model
is able to forecast a larger demand variance at this time, which
will be leveraged by the cloud to allocate more capacity to guard
against performance risks, using the technologies in Sec. 4.2. It
is worth noting that we do not assume that demand can always be
perfectly forecasted: the entire point of variance or volatility fore-
cast via GARCH is to estimate the deviation of actual demand from
the conditional mean prediction and enable risk management in a

an all-one matrix of sizéV x N.

We model each principal component series using a low-order
seasonal AIRMA model [9]. SincéC,(¢)} clearly shows daily
periodicity, we mode{C1 (¢t) — C1(t — 144)} as an ARMA1, 1)
process, so that the forecast(¢) is regressed from both the previ-
ous value” (t — 1), the values one day befof® (t —144), C1 (t—

145), and random noise terms. All other componeft@(¢)} for
¢ > 2 do not exhibit periodicity. We thus use ARMA 1) pro-
cesses to model these principal components. The conditional vari-

ances of all the component series are forecasted using GARCH probabilistic sense. Fig. 10 shows the Q-Q plot of forecast errors.

moddelts [fg, 16]. tsmc.e the cqmponen't:s arde ;)rltlhogfonall, we do nOtl\Ne observe that with PCA, the actual demand will oscillate around
need to forécast théir covanances. For detalls of using Seasonajs .ongitional mean forecast more like a Gaussian process. This

AIRMA models and GARCH models for video traffic forecast, s, gybstantiates the belief that edghbehaves like a Gaussian
please refer to [16, 17]. random variable.

We compare PCA-based prediction with individual channel pre- Last but not least, the PCA-based approach has a lower com-
diction over a test period of 1.25 days. Each prediction is made plexity: it involves t,raining a seasonal ARIMA model for each
based on the training data of only the previous 1.25 days, which are of the 10 principal components, together with finding these com-
a little more than one day to incorporate periodicity. The root mean ponents from the 468 channelys using PCA. Once the models are
squared errors (RMS.ES).Of both approach(_as f_or all the 468 ‘?han'trained, forecasting is simply a linear regression with negligible
nels are summarized in Fig. 7. The channel indices are sorted in de'running time. In contrast, individual prediction has to train a sea-
scending order of the char_m_el Size. We can see that the lD(Z’A"b""segonal ARIMA model for each of the 468 channels separately, lead-
approach outperforms individual predictions regardless of channe ing to a much higher complexity.
sizes. For large channels, the ratio of RMSE over mean bandwidth
gggfg;ncﬂt.lon is less tharb% in most cases using the PCA-based 7 TRADING SIMULATIONS

To zoom in, we take channel 172 as an example. Fig. 8 com- In this section, we simulate a computerized bandwidth reserva-
pares the conditional mean predictions produced by the PCA-basedtion and trading environment based on our proposed algorithms.
approach with those produced by individual prediction. We ob- The simulation operates in rounds of 10 minutes. Before the start
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of each 10-minute period, the cloud provider has predicted the ¢ 1 S
mand mean and covariances in this period and informed each t — Chaotic Price Update
anti about its specifigi; ando;. When the period starts, the dis-  w 0-8] — Subgradient Method ||

tributed price negotiation process immediately starts until conve O ;¢
gence. Since in our particular problem, the cloud provider has«  §
perior computation power (even for finding polyhedra centroid), tt 5 0.41

delay is mainly due to the iterative message passing of prices ¢ 5 02
guaranteed portions between tenants and the cloud. We comg '
three algorithms: chaotic price update, the cutting-plane meth 0 ‘ : ‘
. . 0 50 100 150 200
and subgradient method, in terms of the convergence speed and Convergence lteration of the Last Tenant

timization accuracy.

We consider 100 video channels of different sizes and statistics
in the UUSee demand traces over a test period of 810 minutes.
We assume each channel idemantthat relies on the cloud for
servicing the video requests from its end-users. We input such de-
mand traces to our pricing framework and check the algorithm effi- the real optimal value. We optimize such a step size and set it to
ciency in the challenging case that prediction and optimization are 0.1 for price updates. The other two algorithms are step-size-free.
to be carried out every 10 minutes. If the algorithms work for a ~ We first compare the algorithm outputs upon termination. Note
10-minute frequency, they will be competent for lower operating that with multiplexing, the final optimal pricg; for each tenant
frequencies, such as on an hourly basis. We consider utility func- ¢ should be lower than its initial valulel(o) = B(ui + 9(6)07-,),

Figure 13: The CDF of the maximum convergence iteration of
all tenants in each test period.

tions of the form (2). Under a Gaussian approximatiodgf each which is also the optimal price without multiplexing. We define
tenant will have an expected utility 1 — k/k as the price discount that tenainenjoys from mul-
tiplexing. Fig. 11 plots the mean price discount averaged over all
E[U;(w:)] = qiwipi — eAil—wipit 3 A7 (1—wi)?oF (51) the tenants in each test period. We observe that both chaotic price

update and the cutting-plane method bring more discounts to ten-
gants than the subgradient method. We further check the mean guar-
anteed portion chosen by each tenant averaged over all test peri-
ods in Fig. 12, which shows that most tenants choose a guaran-
teed portion close to 1 and the three algorithms are close to each
other. This means although the three algorithms may reach a simi-
lar level of social welfare, the subgradient algorithm is not so good
at fine-tuning the optimal prices for tenants with a guaranteed por-
tion close to 1.

Finally, we check the communication overhead of all three algo-
rithms. We define an iteration of message passing as a round-trip
communication in which the cloud provider passes the prices to a
; o ; ) P tenant, which returns a chosen guaranteed portion. We observe that
passmg). Chaotlc_pnce_ update will stpnufi —w; | < 0'0_1 Or  for chaotic price update, the convergence iteration of the last ten-
it has run for 100 iterations. The cutting-plane method will stop if - 5 (worst-case convergence iteration) in each test period is almost
|k — k=] < 0.05 or it has run for 100 iterations. The subgradi- always less than 10. The CDF of the worst-case convergence itera-
ent method, as the benchmark, will ston)gift) - g}“>| < 0.05. tion of chaotic price update is plotted in Fig. 13. In the same figure,
In order to be generous to the benchmark algorithm, we set the we can observe that 40% of the time, the subgradient method needs
maximum number of iterations for the subgradient method to 200. 200 rounds to converge, while 60% of the time, it converges be-
Note that in the subgradient method, the step size of price updatestween 25 and 200 rounds. The cutting plane method always takes
cannot be too small, which incurs slow convergence; it cannot be 100 rounds to converge, which are half of the maximum rounds
too big either, in which case the final output will be far away from needed by the subgradient method.

The first term on the righthand side corresponds to the expecte
revenue of each tenant made from serving the demam, while
the second term models a reputation loss which is convex and in-
creasing in terms of the unfulfilled demand. In our simulation, we
seta; = 1 andA; = 0.5. Since different tenants have different
ando;, their utilities are heterogeneous. We set the marginal cost
of allocating bandwidth capacity to &:= ¢'(K) = 0.5, and as-
sume that the cloud provider has an outage probability-f0.01.

We set the algorithm termination conditions as follows. In each
iteration, if the change in either;, k; or g; (g,.1) = [g@, e ,g](\t,)])
is below some threshold, it®; is not updated (using message-
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it does not converge in 20 rounds, switch to the Cutting-plane or Layering as optimization decomposition: A mathematical

subgradient method. theory of network architectureBroceedings of the IEEE
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8. CONCLUDING REMARKS

Current-generation cloud computing platforms do not provide
bandwidth guarantees, impeding the cloud adoption by tenants run
ning QoS sensitive applications. Recent advancements in datacen-
ter engineering augment the cloud-tenant interface with bandwidth
reservation enabled. As bandwidth reservation becomes technically
feasible, new models are needed to price the bandwidth guarantees
to compensate the pay-as-you-go model which only prices the us-
age. In this paper, we propose a guaranteed cloud service model,
where each tenant does not have to estimate the absolute amount
of bandwidth it needs to reserve—it simply specifies a percentage [1
of its demand from end-users that it wishes to serve with guaran-
teed performance, which we call the guaranteed portion, while the
rest of the demand will be served with best efforts as the current
cloud providers do. The cloud provider will estimate tenant de- [15]
mands through workload analysis and guarantee the performance
in a probabilistic sense. The above process is repeated in small
periods such as hours or tens of minutes.

Our main contribution is to fairly price such guaranteed services [16]
in each period. In contrast to the uniform usage pricing model,
we price bandwidth reservations heterogeneously for tenants based
on their workload statistics such as burstiness and correlation. It
turns out to be computational challenge to find the optimal prices [17]
that maximize the expected social welfare under demand uncer-
tainty. To address this challenge, we propose two novel distributed
algorithms based on iterative equation updates and cutting-plane
methods, which are oblivious to the choice of step sizes. We also[18]
propose practical algorithms to predict demand statistics based on methods for network utility maximizatiohEEE J. on Sel.

a factor model. Trace-driven simulations show that both algorithms Areas in Communication®4(8):1439 — 1451, Aug. 2006.
achieve faster convergence and better performance than subgradif19] J. . Panzar and D. S. Sibley. Public Utility Pricing under
ent methods. Given the abundant computing power and workload Risk: The Case of Self-Rationinghe American Economic
data in the cloud, our bandwidth reservation and algorithmic pric- Review 68(5):888-895, Dec. 1978.

ing system operates effectively at a fine granularity of as small as [20] J. Schad, J. Dittrich, and J.-A. Quiane-Ruiz. Runtime
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Reducing Variance. IRroc. of VLDB 2010.
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network utility maximization. IrProc. of IEEE International
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