Chen Yu

Chen Yu
Chang'an University · Colledge of Geological Engineering and Geomatics

Doctor of Philosophy

About

38
Publications
16,027
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,359
Citations
Introduction
Skills and Expertise

Publications

Publications (38)
Article
Full-text available
Landslides are destructive geohazards to people and infrastructure, resulting in hundreds of deaths and billions of dollars of damage every year. Therefore, mapping the rate of deformation of such geohazards and understanding their mechanics is of paramount importance to mitigate the resulting impacts and properly manage the associated risks. In th...
Article
Full-text available
The Mw 6.3 Yutian earthquake, occurred in northwestern Tibet on 25 June 2020, is one of the major events sequentially occurring in the region following the 2008 Mw 7.2, 2012 Mw 6.2, and 2014 Mw 6.9 earthquakes, and is of great significance for studying the tectonic activity and assessing future seismic hazards in the region. In this study, we used...
Article
Full-text available
Subsidence caused by underground coal mining activities seriously threatens the safety of surface buildings, and interferometric synthetic aperture radar (InSAR) has proven to be one effective tool for subsidence monitoring in mining areas. However, the environmental characteristics of mining areas and the deformation behavior of mining subsidence...
Article
Full-text available
Earth observation technologies have great potential in the investigation, monitoring and assessment of various geohazards. Stacking is an efficient InSAR method for estimating deformation rates and helps in the generation and update of the geohazard inventories. However, it relies on the assumption that the atmospheric statistics are stationary, wh...
Article
Full-text available
Earthquake triggered landslides often pose a great threat to human life and property. Emerging research has been devoted to documenting coseismic landslides failed during or shortly after earthquakes, however, the long-term seismic effect that causes unstable landslides only to accelerate, moderately or acutely, without immediate failures is largel...
Article
Full-text available
On 22 July 2020, an Mw 6.3 earthquake occurred in Nima County, central Qinghai-Tibet Plateau, China. We used the synthetic aperture radar interferometry (InSAR) technique with Sentinel-1 images to retrieve the line of sight (LOS) coseismic deformation fields which indicate that the maximum surface displacement reached ~30 cm. We then processed a se...
Article
Full-text available
The 5 September 2022 Mw 6.6 Luding earthquake is the largest earthquake occurring on the Xianshuihe fault, Eastern Tibet in the past 40 years, and is of great significance for investigating the tectonic activity and assessing future seismic hazards in the region. Methods: In this study, we used Sentinel-1 and ALOS-2 synthetic aperture radar (SAR) i...
Article
Full-text available
The Jinsha River flows through one of the most geologically complex regions in western China with extremely high altitudes and capricious climates. Frequent landslides (e.g., the Baige landslides on 11 October and 3 November 2018) occurred along its stretch which posed severe damage to bridges, dams, and roads, and put the safety of local residents...
Article
Full-text available
With frequent launches of Synthetic Aperture Radar (SAR) satellites, Interferometric SAR (InSAR) technology has been presented with unprecedented opportunities along with many new challenges for deformation mapping. In this paper, we concisely demonstrate the current development of SAR satellites and the principle of the InSAR technique, and then s...
Article
Full-text available
Continental earthquakes, especially shallow earthquakes, can cause disasters in populated areas. On 20 May 2016, a moderate magnitude earthquake (Mw 6.0) ruptured on Northern Territory of Australia. With the aim of seismic hazard assessment, coseismic and postsesmic deformation of the Petermann earthquake has been determined using ALOS-2 ascending...
Article
Full-text available
Plain Language Summary Large earthquakes result in stress changes, which can induce or retard regional seismic activity or even trigger other earthquakes. Therefore, understanding historical and recent earthquakes and their associated stress changes are crucial in the evaluation of future seismic hazards. One of the most popular and intuitive ways...
Article
Full-text available
Precipitable water vapor (PWV) from numerical weather models, such as the latest generation of European Centre for Medium‐Range Weather Forecasts (ECMWF) reanalysis (ERA5) and the ECMWF High RESolution (HRES) models, are important to meteorological studies and to error mitigation of geodetic observations such as Interferometric Synthetic Aperture R...
Article
Full-text available
The atmospheric effect represents one of the major error sources in Interferometric Synthetic Aperture Radar (InSAR), and its mitigation is found crucial for high-precision InSAR applications. Numerous studies on InSAR atmospheric correction methods and applications covering a wide range of regions worldwide have been reported with varying degrees...
Article
Full-text available
Interferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving la...
Article
Full-text available
The 2016 Mw 7.8 Kaikōura earthquake represents an extremely complex event involving over ten major crustal faults, altering conventional understanding of multi-fault ruptures. Although evidence for coseismic slip on the Hikurangi subduction interface is controversial, we present afterslip on the subduction zone beneath Marlborough using 13 months o...
Article
Full-text available
Real-time centimetre-level precise positioning from Global Navigation Satellite Systems (GNSS) is critical for activities including landslide, glacier and coastal erosion monitoring, flood modelling, precision agriculture, intelligent transport systems, autonomous vehicles and the Internet of Things. This may be achieved via the real-time kinematic...
Article
Full-text available
Measurements of present‐day surface deformation are essential for the assessment of long‐term seismic hazard. The European Space Agency's Sentinel‐1 satellites enable global, high‐resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the firs...
Article
Full-text available
Plain Language Summary Interferometric Synthetic Aperture Radar (InSAR) interferograms provide measurements of Earth's surface deformation at unprecedented detail over areas of tens to now several hundred kilometers with the current Sentinel‐1 mission. However, geophysical signals are easily masked in these measurements by errors which increase wit...
Article
Full-text available
Rapid population growth combined with recent drought events and decades of political instability have left the residents of Kabul facing water scarcity, significantly relying on groundwater. Groundwater overexploitation might have induced various magnitudes of ground subsidence, however, to date, no comprehensive study of ground subsidence in Kabul...
Conference Paper
Full-text available
Satellite-based InSAR (Interferometric Synthetic Aperture Radar) provides an effective way to measure large-scale land surface motions. Currently, the atmospheric phase delay is one of the most critical issues in InSAR deformation monitoring. Generic Atmospheric Correction Online Service (GACOS) is a free, globally available and easy-to-implement t...
Article
Full-text available
Underground mining activities usually induce large surface displacements thus causing serious safety hazards and potential ecological damage. The capability of conventional Interferometric Synthetic Aperture Radar (InSAR) to monitor tectonic movements, volcanic eruptions and city subsidence has been fully demonstrated, but its application to mining...
Article
Full-text available
Numerous V-shaped conjugate strike-slip fault systems distributed between the Lhasa block and the Qiangtang block serve as some of the main structures accommodating the eastward motion of the Tibetan Plateau. The Beng Co-Dongqiao conjugate fault system is a representative section, and determining its tectonic environment is a fundamental issue for...
Article
Full-text available
Radar satellites, such as Sentinel‐1, are now able to produce time series of ground deformation at any volcano around the world, but atmospheric effects still limit the real‐time detection of unrest at tropical volcanoes. Here, we test two approaches to correct atmospheric errors—phase elevation correlations and global weather models—and assess the...
Article
Full-text available
The 2019 Mw 7.5 New Ireland earthquake occurred at an equatorial area where the dense vegetation prevents remote sensing techniques such as C- or X-band interferometric synthetic aperture radar (SAR) from acquiring coherent phase measurements. Therefore, in this paper, multiple remote sensing techniques including the L-band interferometric SAR, the...
Article
Full-text available
We investigated an Mw~6.2 earthquake doublet on the border of the USA and Canada using ALOS2 Light-of-Sight displacements and GPS measurements. We selected three L-band ALOS-2 interfergorams with temporal baselines of one year to extract coseismic deformation maps, in which master and slave images were both acquired in July. A subpixel-based alignm...
Article
For mapping Earth surface movements at larger scale and smaller amplitudes, many new synthetic aperture radar instruments (Sentinel-1A/B, Gaofen-3, ALOS-2) have been developed and launched from 2014–2017, and this trend is set to continue with Sentinel-1C/D, Gaofen-3B/C, RADARSAT Constellation planned for launch during 2018–2025. This poses more ch...
Article
Full-text available
The Nyingchi Mw 6.4 earthquake on 17 November 2017 is the first large event since 1950 at the southeast end of the Jiali fault. This event was captured by interferometric synthetic aperture radar (InSAR) measurements from the European Space Agency (ESA) Sentinel-1A radar satellite, which provide the potential to determine the fault plane, as well a...
Article
Full-text available
Atmospheric effects represent one of the major error sources of repeat-pass Interferometric Synthetic Aperture Radar (InSAR), and could mask actual displacements due to tectonic or volcanic deformation. The tropospheric delays vary both vertically and laterally and can be considered as the sum of (i) a vertically stratified component highly correla...
Article
Full-text available
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high resolution water vapor maps which may be used for correcting SAR images, for numeral weather prediction and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency...
Article
Full-text available
The zenith tropospheric delay (ZTD) is an important atmospheric parameter in the wide application of GNSS technology in geoscience. Given that the temporal resolution of the current Global Zenith Tropospheric Delay model (GZTD) is only 24 h, an improved model GZTD2 has been developed by taking the diurnal variations into consideration and modifying...
Article
Tropospheric delay acts as a systematic error source in the Global Navigation Satellite Systems (GNSS) positioning. Empirical models UNB3, UNB3m, UNB4 and EGNOS have been developed for use in Satellite-Based Augmentation Systems (SBAS). Model performance, however, is limited due to the low spatial resolution of the look-up tables for meteorological...
Article
The time resolution of GZTD model developed by Yao[16] is 24 hours. To further improve the time resolution of GZTD model, we used the time series of global 4D-grid ZTD from 2002 to 2009, provided by GGOS atmosphere, to construct model according to the 6 hours resolution, and then calculated the ZTD at any time using the cubic spline interpolation m...
Article
This paper presents a new algorithm to accelerate Precise Point Positioning (PPP) convergence. The main idea is to consider the station tropospheric zenith total delay, which is obtained by a global zenith troposphere delay estimate model, as virtual observation and combine it with phase and pseudo-range observations to formulate observation equati...

Network

Cited By