
Journal of VLSI Signal Processing 42, 297–320, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11265-006-4190-4

Survey on Block Matching Motion Estimation Algorithms
and Architectures with New Results

YU-WEN HUANG, CHING-YEH CHEN, CHEN-HAN TSAI, CHUN-FU SHEN AND LIANG-GEE CHEN
DSP/IC Design Lab, Graduate Institute of Electronics Engineering and Department of Electrical Engineering,

National Taiwan University, Taipei 10617, Taiwan

Received February 11, 2005; Revised February 11, 2005; Accepted August 4, 2005

Published online: 13 February 2006

Abstract. Block matching motion estimation is the heart of video coding systems. During the last two decades,
hundreds of fast algorithms and VLSI architectures have been proposed. In this paper, we try to provide an
extensive exploration of motion estimation with our new developments. The main concepts of fast algorithms
can be classified into six categories: reduction in search positions, simplification of matching criterion, bitwidth
reduction, predictive search, hierarchical search, and fast full search. Comparisons of various algorithms in terms of
video quality and computational complexity are given as useful guidelines for software applications. As for hardware
implementations, full search architectures derived from systolic mapping are first introduced. The systolic arrays
can be divided into inter-type and intra-type with 1-D, 2-D, and tree structures. Hexagonal plots are presented for
system designers to clearly evaluate the architectures in six aspects including gate count, required frequency, hard-
ware utilization, memory bandwidth, memory bitwidth, and latency. Next, architectures supporting fast algorithms
are also reviewed. Finally, we propose our algorithmic and architectural co-development. The main idea is quick
checking of the entire search range with simplified matching criterion to globally eliminate impossible candidates,
followed by finer selection among potential best matched candidates. The operations of the two stages are mapped
to the same hardware for resource sharing. Simulation results show that our design is ten times more area-speed
efficient than full search architectures while the video quality is competitively the same.

Keywords: block matching, motion estimation, global elimination algorithm, VLSI architecture

1. Introduction

Motion compensated transform coding has been
adopted by all of the existing international video cod-
ing standards, such as the ISO MPEG series [1–3] and
the ITU-T H.26X series [4–6]. Motion estimation (ME)
removes temporal redundancy within frames and thus
provides coding systems with high compression ratio.
Since ME module is usually the most computationally
intensive part (50–90% of the entire system) in a video
encoder, efficient implementation of ME is a must.
Block matching approach is mostly selected as the ME
module in video codecs and is also adopted in all ex-

isting video coding standards because of its simplicity
and good performance. The block matching algorithm
(BMA) is described as follows. Each luma frame is
divided into blocks of size N × N, and each block in the
current frame is matched with candidate blocks of size
N × N within the search area in the reference frame.
The best matched block has the lowest distortion
among all of the candidate blocks. The displacement
of the best matched block, or namely the motion
vector (MV) of current block, will be transmitted
with prediction residues to the decoder. The distortion
is mostly evaluated by sum of absolute differences
(SAD).

298 Huang et al.

Among all the BMAs, full-search block matching
algorithm (FSBMA) is the most popular. FSBMA can
be described by:

SAD(m, n) =
N−1∑

i=0

N−1∑

j=0

|c(i, j) − s(i + m, j + n)|

(1)

MV = {(u, v) | SAD(u, v) ≤ SAD(m, n);

− p ≤ m, n ≤ p − 1} (2)

where SAD(m, n) is the distortion of the candidate
block at search position (m, n), {c(x, y) | 0 ≤ x ≤ N −
1, 0 ≤ y ≤ N −1} means current block data, {s(x, y)|
−p ≤ x ≤ p + N − 2,−p ≤ y ≤ p + N − 2}
stands for search area data, the search range is [−p,
p−1], the block size is N × N, and MV expresses the
motion vector of current block with minimum SAD
among (2p)2 search positions. FSBMA demands a lot
of computation. For example, real-time ME for CIF
(352 × 288) 30 frames per second (fps) video with
[−16, +15] search range requires 9.3 Giga-operations
per second (GOPS). If the frame size is enlarged to D1
(720 × 480) 30 fps with [−32, +31] search range, 127
GOPS is required. Clearly, such huge computational
complexity is far beyond the processing capabilities of
today’s general purpose processors. Therefore, many
fast algorithms and hardware architectures have been
proposed.

The main purpose of this paper is to make a com-
prehensive study of ME algorithms and architectures.
Comparisons in many directions are made for sys-
tem designers to determine the best tradeoff. The rest
of this paper is organized as follows. In Section 2,
different categories of fast ME algorithms are dis-
cussed. Section 3 investigates both full search and
fast search architectures. In Section 4, we propose
our hardware-oriented algorithm and its correspond-
ing architecture. Finally, Section 5 concludes this
paper.

2. Exploration of Algorithms

We classify fast algorithms into six categories. The first
five categories are lossy, which means that FSBMA
outperforms them in video quality. The last category
is lossless, which means that it produces the same re-
sults as FSBMA. A fast ME algorithm can belong to
combination of the several categories.

2.1. Reduction in Search Positions

Under the assumption that the distortion monotonically
increases as the search position moves away from the
point corresponding to minimum distortion, conver-
gence to the optimal position still can be achieved with-
out matching all the candidates. Computation is thus
significantly reduced by decimation of search posi-
tions. Since 1981 many algorithms of this type, e.g. two
dimensional logarithmic search [7], three step search
[8], conjugate direction search [9], modified logarith-
mic search [10], cross search [11], parallel hierarchi-
cal one dimensional search [12], one dimensional full
search [13], new three step search [14], four step search
[15], block-based gradient descent search [16], center-
biased diamond search [17, 18], advanced diamond
zonal search [19, 20], minimum bounded area search
[21], one-dimensional gradient descent search [22],
cross diamond search [23], predictive line search [24,
25], and many others, have been proposed. Roughly
speaking, a newer algorithm requires less computa-
tion, achieves faster convergence, and results in higher
video quality. In [12, 13], and [24], not only the num-
ber of searched candidates but also the feasibility of
parallel processing, regularity of data flow, and effi-
ciency of memory access were taken into consider-
ation toward system optimization. The first diamond
search [26], which is adopted by the reference soft-
ware of MPEG-4, has significantly better performance
in speed and quality than its prior algorithms. Although
improvements still can be made after diamond search,
the contribution is less recognized.

2.2. Simplification of Matching Criterion

The SAD matching criterion involves all pixels in the
current block and the candidate block. In order to re-
duce the computational effort, a subsampling scheme
was performed in [27]. Only every second pixel is
taken into account for estimation of distortion in both
horizontal and vertical directions, and the computa-
tional burden is reduced by a factor of four. Aliasing
effects can be avoided by low-pass filtering. In [28,
29], periodic alternation of four subsampling patterns
was adopted on different search positions to solve the
aliasing without filtering. Adaptive pixel-decimation
scheme was further proposed in [30]. It does not re-
quire an initial division of a block and selects pixels
only when they have the features important in deter-
mining a match.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 299

Pixel difference classification (PDC) [31] is to
threshold every pixel absolute difference and classify
it into match or mismatch. The best candidate block
has the highest number of match pixels. The hardware
complexity can be dramatically reduced because only
one counter is required to replace the accumulators.
However, the threshold value affects the quality a lot
and is not easy to be decided automatically.

Minimax criterion [32] finds the maximum error
among all pixels in a candidate block and then chooses
the final MV by minimizing the maximum errors of all
candidate blocks. Although the number of operations is
not reduced in software implementation compared with
FSBMA, minimax criterion can save 15% of hardware
area because an eight-bit comparator is much smaller
than a 16-bit accumulator. Boundary match [33] is also
a simplified matching criterion. Moreover, it is often
adopted for error concealment from loss of MVs.

The concept of integral projection was introduced
in [34, 35]. For simple translational motion, the infor-
mation on the axes in the Fourier transform domain
is sufficient to estimate motion between two images.
Computing the horizontal and vertical frequency infor-
mation is equivalent to discrete approximation as inte-
gral projections at these two orientations. The simple
equivalence between shifts in integral projection mea-
surements and shifts in the corresponding segments of
images suggests the comparison of integral projections
as a computationally efficient technique for BMA since
the pair of horizontal and vertical projections contain
fewer data than the pixels in a candidate block.

2.3. Bitwidth Reduction

Originally, each pixel is represented with eight-bit res-
olution. In [36, 37], their algorithms involve transform-
ing each pixel to one-bit representation and then ap-
plying conventional ME search strategies. In [38], they
directly truncate the bitwidth of pixels. It is shown that
on average more than four bits can be truncated without
significantly affecting the picture quality. Pixel trunca-
tion can lead to substantial reduction in hardware com-
plexity and power consumption. Fixed length trunca-
tion saves hardware areas and power consumption but
runs the risk of losing too much quality. Adaptive trun-
cation by masking the least significant bits of pixels to
zero cannot reduce areas, but it has chances to save a
lot of power without losing quality. Furthermore, pixel
truncation can be also applied in software implemen-
tation for the popularity of single instruction multiple

data (SIMD) of processors since fewer-bit representa-
tion may achieve higher degrees of parallel processing.

2.4. Predictive Search

For the video sequences with fast moving objects, the
heuristic fast search algorithms of the first category
perform poorly due to the frequent failure of mono-
tonically increasing distortion model assumption. Al-
gorithms belonging to decimation of search positions
are often trapped in local minima of distortion, thus
resulting in poor ME accuracy. Predictive motion esti-
mation [39–43], which utilizes the motion information
in the spatial and/or temporal neighboring blocks to
form an initial estimate of current MV, can effectively
reduce the search area as well as the computation. The
reduced motion search area also provides an additional
compression since the overhead information of MV is
less. In [20], the MV predictors can be the MVs of
the MBs on the left, top, and top right, their median,
zero MV, the MV of the collocated MB in the previous
frame, and the accelerated MV of the collocated MBs
in the previous two frames. These predictors are most
frequently adopted in predictive search.

2.5. Hierarchical Search

It is well known that a multiresolution structure, also
known as a pyramid structure, is a very powerful com-
putational configuration for image processing task. To
save the computation of FSBMA, it is common to resort
to the pyramid structure. The multiresolution scheme
is based on the idea of predicting an initial estimate
at the coarse level and refining the estimate at the fine
level. Usually two- or three-level hierarchical search is
adopted [44–46]. The search range at the fine level is
much smaller than the original search range. Basically,
more levels can save more computation, but the prob-
ability of being trapped in local minimum is higher
because when the image is scaled down, the detailed
textures will be lost. In fact, the multiresolution tech-
nique has been regarded as one of the most efficient
methods in BMA and is mostly adopted in applications
with very large frames and search areas.

2.6. Fast Full Search

The main idea of fast full search algorithms is stated
as follows. In the early stage, a simple check is done to

300 Huang et al.

detect whether a candidate block is possible to be the
optimal one. Then, only the potential candidate blocks
are further processed for detailed distortion calcula-
tion. Thus, a large portion of unnecessary computation
for impossible candidate blocks can be avoided. For
example, successive elimination algorithm (SEA) [47]
eliminates impossible candidate blocks by checking
if the absolute difference between current block pixel
sum and candidate block pixel sum is larger than the
up-to-date minimum SAD, denoted as SADmin. If the
condition holds, it is proved that the SAD of the candi-
date block will be larger than SADmin, and this search
position should be skipped. If the condition fails, SAD
calculation is still necessary for finding the global min-
imum distortion. The sum of all pixels in current block
only has to be computed one time, and the sum of
all pixels in a candidate block can be computed in a
fast way by simple partial result reuse. Therefore, the
computational overhead of the checking procedure is
very small, and the skipping of impossible candidate
blocks can speed up the whole BMA process. Note
that a good initial guess of MV with smaller SAD is
critical for SEA to increase the skipping ratio. Conse-
quently, SEA is often combined with the use of MV
predictors or spiral scanning order of search positions.
Multilevel successive elimination algorithm (MSEA)
[48–50] improves SEA by changing the checking pro-
cedure. The probability to skip candidate blocks can be
greatly increased. In [51], MSEA is further improved
by combination with SIMD for speeding up.

The concept of partial distortion elimination (PDE)
[52] is simple and effective. Computation of FSBMA
is reduced by using a halfway-stop technique in the
SAD calculation. When the partial distortion of a can-
didate block is already larger than the current mini-
mum distortion, this candidate block can be skipped.
In [53], the partial distortions and the current minimum
distortion were normalized to increase the probabil-
ity of early rejection of non-possible candidate MVs.
In addition, grouping of partial distortion and spiral
scan of search positions also increase the probability
of early termination. However, normalized PDE can-
not guarantee exactly the same result as FSBMA. It
may suffer a little quality loss but is still very close to
FSBMA. In [54], an adaptive scanning order of pix-
els in a candidate block was proposed for distortion
calculation to further speed up the PDE. In [55], mod-
els to describe the probability distribution of the total
distortion given a measured partial distortion are intro-
duced. In [56], analysis-based method for optimizing

the timing of decisions regarding early termination was
proposed for developing PDE algorithms on different
platforms.

Winner-update algorithm [57] is a very interesting
fast full search algorithm. Suppose there are five play-
ers in a game of poker cards, and each player is dealt
four cards. The player with the minimum sum of the
four card values is the winner. The basic idea is that one
does not have to calculate the summation of all the card
values for each player when determining the winner.
In the beginning, every player shows one card, and the
player with the smallest card value can show the sec-
ond card. Then, only the player having the minimum
sum of card values can reveal the next card, and the first
player reaching the fourth card is the winner. Similarly,
in the process of FSBMA, the candidate blocks and the
pixels in a block can be regarded as the players and the
number of cards dealt for each player, respectively.
In [57], hash chain is used in the implementation of
winner-update strategy to avoid the expensive sorting
procedure of finding the minimum partial SAD value.
Also, in order to reduce the size of hash table and thus
achieve speed-up, MSEA is applied with normalized
partial distortion.

In fact, the results of fast full search are not exactly
the same as FSBMA. Sometimes, minor differences
occur. For example, when two or more search posi-
tions have the same minimum SAD, the result will be
dependent on scan order. However, these minor differ-
ences do not cause noticeable effect on quality.

2.7. More Discussion and Comparison

Combination with mode decision and encoding issues
is another trend. In [58], a quantization parameter de-
pendent threshold value is applied on SAD to detect
all-zero residues and to early stop ME. In [59, 60],
diversity-based method takes advantages of multiple
algorithms. For example, diamond search or four step
search has good performance when the motion field
is small while three step search converges faster when
the motion field is larger. Thus, a pre-checking can be
developed to select what algorithm is more suitable for
the current block. In [61], a computation-aware (CA)
scheme for software-based BMA was introduced. In
a computation-limited environment, the computation-
distortion curve of a BMA is much more important than
the rate-distortion curve for real-time applications. Ac-
cording to their experiments, CA diamond search is
usually the best while CA three step search or CA

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 301

FSBMA is the worst. Recently, in the new video cod-
ing standard, H.264/AVC, multiple reference frames
and variable block sizes make BMA much more com-
plex, which becomes the hottest new topic of fast ME.
However, we do not have enough space for this topic.
Interested readers can refer to [46, 62–71], and many
others. These papers were dedicated for the BMA in
H.264/AVC. Other kinds of ME algorithms may in-
clude considerations for fractional pixel accuracy, bidi-
rectional frames, fields, and deinterlacing.

Now we compare representative BMAs in terms
of motion compensated PSNR and execution time.
The platform is a personal computer (PC) with Pen-
tium IV 2.53 GHz CPU and 1 GB DRAM (DDR 333
MHz), and the program is written in C language. The
implemented BMAs are FSBMA, three step search
(TSS), one dimensional full search (1DFS), center-
biased diamond search (DS), predictor-biased diamond
search (PDS), two-level hierarchical search (2-Level
Hier.), three-level hierarchical search (3-Level Hier.),
full search with 1/2-subsampling (in SAD computa-
tion), full search with 1/4-subsampling, full search
with 1/8-subsampling, spiral SEA, spiral MSEA, spi-
ral PDE, and winner-update strategy. The results of
Foreman (QCIF [−16, +15]) and Stefan (CIF [−32,
+31]) are shown in Tables 1 and 2, respectively. As
can be seen, real-time encoding of QCIF 30 Hz video

Table 1. Comparison of BMAs for Foreman, QCIF 30 Hz, [−16,
+15].

BMA Time (ms) Speed up PSNR (dB) Diff.

FSBMA 105.108 N/A 31.911 N/A

TSS 003.486 30.151 31.431 −0.480

1DFS 010.454 10.054 31.377 −0.534

DS 002.822 37.246 31.555 −0.356

PDS 002.506 41.943 31.730 −0.181

2-Level Hier. 009.008 11.668 31.752 −0.159

3-Level Hier. 007.130 14.742 31.634 −0.277

1/2-Subsample 048.439 02.170 31.868 −0.042

1/4-Subsample 024.987 04.207 31.739 −0.172

1/8-Subsample 014.882 07.063 30.355 −1.555

Spiral SEA 018.128 05.798 31.911 −0.000

Spiral MSEA 004.892 21.486 31.911 −0.000

Spiral PDE 024.083 04.364 31.911 −0.000

Winner-Update 009.905 10.612 31.903 −0.008

Time: Average milli-second per frame.
Platform: Pentium IV 2.53 GHz, 1 GB DDR 333 MHz DRAM, C
language.

Table 2. Comparison of BMAs for Stefan, CIF 30 Hz, [−32,
+31].

BMA Time (ms) Speed up PSNR (dB) Diff.

FSBMA 1,683.107 N/A 25.732 N/A

TSS 0,016.569 101.582 22.619 −3.113

1DFS 0,079.953 021.051 25.302 −0.430

DS 0,016.669 100.972 22.747 −2.985

PDS 0,014.736 114.217 24.507 −1.224

2-Level Hier. 0,122.649 013.723 25.700 −0.032

3-Level Hier. 0,059.886 028.105 25.186 −0.546

1/2-Subsample 0,770.482 002.184 25.724 −0.007

1/4-Subsample 0,393.656 004.276 25.513 −0.219

1/8-Subsample 0,225.806 007.454 24.878 −0.853

Spiral SEA 0,403.324 004.173 25.732 −0.000

Spiral MSEA 0,092.756 018.146 25.732 −0.000

Spiral PDE 0,470.268 003.579 25.732 −0.000

Winner-Update 0,164.505 010.231 25.713 −0.019

Time: Average milli-second per frame.
Platform: Pentium IV 2.53 GHz, 1 GB DDR 333 MHz DRAM, C
language.

with FSBMA is not achievable even on such a high
speed PC. If MMX/SSE instructions can be used, 2–
3 times of speed-up can be further achieved, but the
column of speed up will still be about the same. TSS,
1DFS, and DS belong to the category of reduction in
search positions. DS has better tradeoff in speed and
quality. PDS has better quality than DS with faster con-
vergence, which shows the advantage of motion vector
prediction. Hierarchical search BMAs provide moder-
ate performance in both speed and quality. The quality
drops of 1/2-, 1/4-, and 1/8-subsampling are insignifi-
cant, moderate, and unacceptable, respectively. As for
fast full search, spiral MSEA is the fastest and is about
20 times faster than FSBMA. Note that the speed up of
fast full search may vary a lot with different sequences.
The earlier the global minimum distortion is found, the
more computation is saved. For software implementa-
tions, lossy BMAs slower than spiral MSEA are out of
popularity. Recently, prevailing lossy BMAs should be
capable of providing more than 100 times of speed-up
with acceptable quality loss (<0.5 dB).

3. Investigation of Architectures

In this section, we will introduce FSBMA architectures
and discuss on-chip memories for storing search area

302 Huang et al.

data, followed by using hexagonal plots to compare six
aspects, and surveying fast BMA architectures.

3.1. FSBMA Architectures

Many FSBMA architectures were developed due to the
regularity of data flow. In this subsection, we will try to
bring a thorough survey of FSBMA designs. Most of
them belong to systolic arrays [72] composed of locally
connected processing elements (PEs). A pipelined si-
multaneous data flow via the local connections does
not require any control overhead. The small load ca-
pacities to be driven permit high clock frequencies and
thus higher processing speeds. Moreover, after a da-
tum is accessed from memory, it is reused for each PE
by propagating through the array, which significantly
reduces the memory bandwidth. For FSBMA, each PE
is responsible for computing the absolute difference of
one current block pixel and one search area pixel. In
the following discussion, we denote the block size and
search range as N × N and [−p, p − 1], respectively.

In [73], Komarek and Pirsch contributed a detailed
systolic mapping procedure to derive FSBMA architec-
tures. The first step is to establish the dependence graph
(DG) of FSBMA. In DG, a node represents a basic op-
eration (absolute pixel difference), and an arc denotes
data dependence. Second, a time schedule and assign-
ment of multiple nodes to a single PE by projection are
specified to provide a signal flow graph (SFG) of re-
duced dimension compared with DG. The time sched-
ule must be carefully designed. Multiple nodes (opera-
tions) projected to the same PE should not be executed
at the same time. Note that the DG is not unique. Dif-
ferent DGs, as well as different time schedules and pro-
jections, lead to different architectures. With a single
projection, a 2-D DG and a 3-D DG can be transformed
into a 1-D array and a 2-D array, respectively. DGs with
dimensions higher than three have to be mapped on to
systolic arrays by multiple projections. In this paper,
two DGs were displayed, and two projections were at-
tempted for each DG. The proposed architectures are
AB1, AB2, AS1, and AS2. “A” denotes array, “1” rep-
resents 1-D, “2” stands for 2-D, “B” means that the
number of PEs is in proportion to the block size (1-D:
N; 2-D: N2), and “S” indicates that the number of PEs is
proportional to the search range (1-D: 2p; 2-D: N × 2p).
The four architectures are fully systolic without any
global routing, but the bitwidths of memory access are
large.

In [74], Vos and Stegherr proposed a 2-D semi-
systolic array with an adder tree. The most special
idea is the scanning order of search positions, known
as snake scan. The number of PEs is N2, and the N2

pixels of current block are stayed in the corresponding
PEs. All pixels of a candidate block are also properly
moved to the corresponding PEs. Each PE computes
the absolute difference, add its own difference with the
output of previous PE on the same row, and send the
result to the next PE in the horizontal direction. The last
PE on each row outputs the SAD of a row, and an adder
tree calculates the final SAD of a candidate block. In
the beginning, the first column of search positions is
scanned from top to bottom. Then the second column
is scanned from bottom to top, followed by the third
column scanned from top to bottom, and so on. In or-
der to successively compute SAD values without extra
cycles to load pixels, two sets of (2p − 1) × N registers
are required to prepare the proper search area pixels
beforehand, and the data path should be periodically
configured as 2p cycles upward, one cycle leftward, 2p
cycles downward, and one cycle leftward. The large
register sets is a tradeoff for the bitwidth of memory
access. The utilization of this architecture is higher
(produces one SAD value of a search position per cy-
cle) for large search range application. If 2p is smaller
than N, there exist (N−2p) bubble cycles when search
positions are switched from one column to another.

In [75], Yang, Sun, and Wu implemented the first
VLSI motion estimator in the world. The most im-
portant concept is data broadcasting. Two 1-D semi-
systolic arrays were proposed based on data-flow de-
signs which allow sequential inputs but perform par-
allel processing. One type is broadcasting reference
frame data with current block data propagated through
PEs while the other type is broadcasting current block
data with reference frame data propagated through PEs.
With broadcasting technique, although some global
routing is required, the bitwidth of memory access in
one cycle can be significantly reduced. The number of
PEs is the same as the number of search positions in
the horizontal direction. Each PE not only computes
the absolute pixel difference but also accumulates the
SAD of a search position. In order to achieve 100%
utilization during the row change of search positions,
two reference frame pixels are simultaneously fetched,
and a multiplexer is required for each PE to select the
proper data. Moreover, the chips can be cascaded for
larger search range. A chip-pair design is also derived
to obtain fractional MVs.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 303

In [76], Hsieh and Lin focused on the decrease of
pin counts (bitwidth of memory) and the flexibility of
search range. The proposed structure is a 2-D systolic
array and a shift register array. The number of PEs is
N2, and the N2 pixels of current block are stayed in the
corresponding PEs. Each row of PEs, except the bottom
row, is followed by (2p − 2) shift registers (SRs), and
the total number of SRs is (2p − 2) × (N − 1). The
main purpose of SRs is to get the profit of serial data
inputs. The length of SRs is programmable to support
flexible search range. A search area pixel propagates
from the PEs and SRs on the first row, and then to the
second row of PEs and SRs, and so on. The PEs sends
the partial results of SAD in the upward direction. Only
one search area pixel is inputted in each cycle. It takes
(N + 2p − 1)2 to scan the whole search area, and the
number of valid cycles for generating SAD values is
4p2. Lower PE utilization and the area of SRs are the
tradeoff for bitwidth of memory access.

In [77], Jehng, Chen, and Chiueh proposed an
efficient and simple tree architecture, which gave a
completely different ME structure. The tree structure
supports not only FSBMA but also fast algorithms
by decimating search positions, such as three step
search. Concepts of memory interleaving and pipeline
interleaving were proposed to enhance the supported
memory bandwidth and to prevent the hardware from
idling, respectively. However, when the block size
is enlarged, the required bitwidth of full tree will
become too large. Therefore, subtree of 1/2m-cut was
described to trade off between processing speed and
memory bitwidth. Another solution of the bitwidth
problem is to employ a search area pixel cache with
snake scan of search positions. The inputs of the cache
are 17 pixels and the outputs are 256 pixels. Related
materials can be found in [78].

In [79], Chang et al. contributed an approach that
employs transformation on a 4-D DG (represented by
multiple 3-D sub-DGs), called slice and tile, to produce
different forms of DGs. A 3-D sub-DG is partitioned
into slices, and the slices of all sub-DGs are tiled in
a direction. They categorized 2-D systolic arrays of
FSBMA into six types. Type A and B are obtained
by tiling slices in the diagonal direction with diagonal
and horizontal projection, respectively. The numbers
of PEs for type A and type B are 4p2 and N2, respec-
tively, and the numbers of cycles required for process-
ing a macroblock (MB) are N2 and 4p2, respectively,
assuming the PE utilization is 100%. Usually, type A is
called inter-level parallelism in which every PE com-

putes SAD for a candidate block, and type B is referred
as intra-level parallelism in which every PE computes
an absolute pixel difference in candidate blocks. Type
C and D are obtained by tiling slices in the horizon-
tal direction with diagonal and horizontal projection,
respectively. Type E and F are achieved through the
projection of the direct form DG along the horizontal
direction of current block with different scheduling.
The numbers of PEs and the ideal numbers of cycles
for type C–F are 2p × N.

In [80], Yeo and Hu transformed the 1-D linear ar-
ray of broadcasting reference frame data with 2p PEs in
[75] to a 2p × 2p 2-D basic mesh array. Current block
pixels are propagated among PEs where the last PE of
a row is connected to the first PE of the next row. The
reference frame data are broadcasted not only in the
horizontal direction but also in the vertical direction.
A basic mesh array requires 2p to be equal to N. For
large search range applications, multiple mesh arrays
can be applied. The search range is partitioned into
multiples of N × N search positions, and each partition
is processed by one mesh array. Under typical specifi-
cations, this architecture results in the fastest speed and
the fewest amount of memory access when compared
with prior FSBMA hardware. However, the number of
total PEs in the multiple mesh arrays is relatively high,
and thus this architecture is more suitable for high-end
applications.

In [81], Lai and Chen proposed a 1-D PE array and
two data-interlacing SR arrays that utilize 2-D data-
reuse. In fact, it can be regarded as an extension of the
1-D linear array of broadcasting current block data in
[75]. The main difference from [80], which is the ex-
tension of broadcasting reference frame data in [75], is
that search range partition is not always necessary. The
PEs can be cascaded when the number of PEs reaches
the number of search positions. In this situation, every
reference frame pixel is fully reused and is only fetched
from memory to PEs for one time. Nevertheless, the
MB latency of generating a motion vector will become
the number of pixels in the search area, which is quite
large. With search range partition, the PE number is still
the same, but the reference frame pixel reuse becomes
incomplete, which increases the memory bandwidth,
as a tradeoff for shorter MB latency.

In [82], Yeh and Lee found that overlapped data flow
can increase the PE utilization for 2-D arrays where
current block stays (intra-type). Search area data from
two different rows are needed as a boundary candi-
date is detected, and thus two inputs are requested. A

304 Huang et al.

stream memory similar to the SRs in [76] is adopted to
reduce the memory bandwidth. However, unlike [76],
two search area pixels are propagated simultaneously.
During the row change of search positions, no bubble
cycles exist, so the utilization is much higher. Based on
the overlapped data flow and the stream memory, a sys-
tolic 2-D array (SA architecture) and a semi-systolic
2-D array (SSA architecture) were devised to collabo-
rate with N-parallel adder tree for FSBMA.

In [83, 84], four levels of search area data reuse were
discussed. Let N × N , [−p, p − 1, W × H , fr be the
block size, search range, image size, and frame rate, re-
spectively. Level A is the reuse of the N ×(N −1) over-
lapped pels between two horizontally adjacent candi-
date blocks. Level B is the reuse of the (N + 2p −
1) × (N − 1) overlapped pels between two vertically
adjacent candidate block strip. Level C is the reuse of
the (2p − 1) × (N + 2p − 1) overlapped pels between
the search areas of horizontally adjacent MBs. Level D
is the reuse of the (W +2p −1)× (2p −1) overlapped
pels between vertically adjacent search area strips. In
today’s VLSI technology, on-chip SRAMs can be as
large as several tens of Kbytes. Therefore, level C is the
most popular scheme. The search area pels are buffered
in the on-chip memory. For the left most MBs in the im-
age, the whole search area ((N +2p−1)×(N +2p−1)
pels) is reloaded from external DRAM to on-chip
SRAM. For the rest MBs, only part of the search area
(N × (N + 2p − 1) pels) is loaded. The bus band-
width can thus be reduced from ((N + 2p − 1) × (N +
2p −1)) · (W/N) · (H/N) · fr to (N × (N +2p −1)) ·
(W/N) · (H/N) · fr, that is, (2p − 1)/(N + 2p − 1)
of the bus bandwidth is saved. Currently, level D is
impractical due to the limited SRAM size. If level D
becomes feasible in the future, the bus bandwidth for
loading search area pels will be reduced by a factor
of five. Level D scheme is also beneficial to power-
limited systems because external DRAM access con-
sumes more than tens times higher of power than on-
chip SRAM.

There still exist many other FSBMA implementa-
tions. For example, reference [85] depicted a type D
architecture and implemented the FSBMA with dis-
crete TTL components. Reference [86] combined the
architecture in [76] with the MSEA to avoid the unnec-
essary SAD computations for low power consumption.
Reference [87] designed a powerful FSBMA chip with
1024 PEs to provide computational capability of 165
GOPS. Reference [88] modified the 1-D linear array
in [75] to support half-pixel precision, AP mode, PB

mode, and RRU mode for H.263+. Reference [89] im-
proved the architecture in [74] by changing the snake
scan of search positions to regular column scan (top
to bottom and then left to right) and using a circular
shift scheme for PEs with half-reduced SRs. Reference
[90] worked on an architecture design of variable block
sizes ME for H.264/AVC.

According to our survey, PE array is the trend of FS-
BMA architectures. Tradeoffs can be made between
area (number of PEs) and throughput (processing ca-
pability), SAD latency (total cycles to compute a SAD)
and memory bitwidth/bandwidth (serial/parallel load-
ing), PE utilization and data alignment circuits (shift
registers/memory with circular addressing), bus band-
width and on-chip SRAM size. The designers have to
carefully select what can be sacrificed and what must
be insisted on for target applications.

Usually, MB latency (cycles/MB) is defined as the
duration from the start of processing an MB to the end
of finding its motion vector. Throughput (MBs/sec) is
denoted as the reciprocal of the timing interval between
generating two MVs. For intra-type FSBMA architec-
tures, the timing interval is the same as MB latency. For
inter-type designs, the PE array starts processing the
next MB before finishing one MB. The MB latency will
be much larger than the timing interval of generating
two MVs if the search range is much larger than an MB.
That is, the schedule of an inter-type design is often
arranged to process multiple current blocks in parallel.
However, such schedule is not very suitable for MB
pipelining, which is often adopted in a hardware accel-
erated video coding system. When an inter-type design
is integrated into MB pipelining systems, the claimed
throughput and utilization will be dropped. For exam-
ple, two-stage MB pipelining handles two MBs at the
same time. When one new MB is processed at ME
stage, its previous MB is processed at block engine
(BE = DCT + Q + IQ + IDCT + VLC) stage. Before
finishing all the operations for one MB, every stage
cannot start processing the next MB. Hence, system
designers should pay more attention on the MB la-
tency of inter-type architectures than on the claimed
throughput.

We derive hexagonal plots to evaluate representative
FSBMA architectures including Komarek and Pirsch’s
AB2 [73], Vos and Stegherr’s [74], Yang, Sun, and
Wu’s broadcasting reference frame [75], Hsieh and
Lin’s [76], Yeo and Hu’s [95], and Lai and Chen’s [81].
While [75, 80, 81] are inter-type architectures, AB2 of
[73, 74, 76] are intra-type. The results are shown in

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 305

Fig. 1. Gate count, required frequency, hardware uti-
lization, memory bandwidth, memory bitwidth, and
SAD latency are the six dimensions of the hexago-
nal plots. The search range is H[−64, +63]/V[−32,
+31]. The required frequency is estimated for CIF
30 Hz video. Both the required frequency and hard-
ware utilization are derived with integration of ME
into MB pipelining systems. The “latency” in the plot
is SAD latency instead of MB latency. The inverse of
MB latency is proportional to the required frequency,
so we do not have to plot it again. The SAD latency
is the timing interval from start processing an MB to
finish accumulating the first SAD value. For each di-
mension of the hexagonal plots, the performance is
better (or worse) when the curve approaches vertex
(or center). For example, Yeo and Hu’s inter-type 2-D
broadcasting reference frame architecture is good in
required frequency, memory bandwidth, and latency.
However, its gate count, memory bitwidth, and utiliza-
tion are the tradeoffs. These hexagonal plots provide
system designers with a quick evaluation of architec-
tures. The detailed data of these designs are shown in
Table 3.

3.2. Fast BMA Architectures

Fast ME algorithms can reduce the heavy computa-
tion burden of FSBMA with acceptable video quality.
The challenges of architecture design for fast ME algo-
rithms include unpredictable data flow, irregular mem-
ory access, difficult mapping to systolic arrays, low
hardware utilization, and sequential procedures with
data dependence that cannot be parallelized. Besides,
the silicon area of fast ME architectures must be signif-
icantly smaller than that of FSBMA architectures for
cost efficiency considerations. In this subsection, we
will survey the previous arts.

In [91], Jong et al. developed a fully pipelined paral-
lel architecture for three step search BMA. Basically,
nine PEs compute the SAD of the nine candidates in
each step, and 256 cycles are required for each of the
three steps. Intelligent data arrangement and memory
arrangement are used to completely utilize the advan-
tage of three step search. The proposed architecture
can be extended to 27 PEs with MB pipelining to triple
the throughput of blocks. The latency of 27-PE design
is still the same as 9-PE design. The proposed archi-
tecture can be also reduced to 3 PEs with one third
of the throughput and three times of the latency. The

3-PE, 9-PE, and 27-PE designs all have computation
efficiency close to 100%. Compared with a 256-PE
FSBMA array, the gate count of 9-PE architecture is
significantly smaller (36.6 K vs. 192.2 K). When 27-
PE design is used, the throughput is about the same as
a 256-PE FSBMA array, and the area (110 K) is still
much smaller.

In [92], Dutta and Wolf modified the data flow of
the 1-D linear array in [75] to support FSBMA, three
step search, and conjugate direction search on the same
architecture. Multiple memory banks are organized in
communication with PEs via a multistage interconnec-
tion network. When three step search is selected as
the target BMA, the throughput is eight times of FS-
BMA. The programmability makes the 1-D linear array
suitable for more applications with different timing or
power constraints.

In [93], Lin et al. proposed a joint algorithm-
architecture design of a programmable motion estima-
tor chip. Various algorithms are implemented through
a search strategy with macrocommands that can be
executed efficiently on the chip. Two types of pro-
grammable mechanism are supported. One is subsam-
pled search positions and/or block pixels, and the other
is the cluster search. Because the programmable ME re-
quires executing macrocommands interactively as op-
posed to executing fixed search patterns in batches,
the latency in computing the SAD values must be kept
low. Therefore, serial array architecture is not suitable,
and parallel 2-D array is chosen. Conventionally, mul-
tiple banks of SRAMs with bank selection and window
shift are required as an interface between SRAMs and
the parallel 2-D array to perform data alignment. In
this paper, a synchronous self-align array composed
of pixel-rotating PEs, together with a dual-addressing
single-port memory, achieves data alignment without
the complex interface. A prototype chip was imple-
mented. The maximum computational power is 14
GOPS, and it is enable to deliver full search quality
at CIF 30 fps, near full search quality at NTSC level,
and a wide range of other video quality and resolution
rasolution tradeoffs.

In [94], Cheng and Hang used a universal systolic
arrays structure to realize many BMAs. In summary,
they found that the relative performance in chip area
and I/O bandwidth between various algorithms is
strongly picture size- and search range- dependent. For
small pictures and slow motion, all the BMAs under
consideration are on a par. For larger picture sizes and
fast motion, certain fast algorithms have significantly

306 Huang et al.

Figure 1. Hexagonal plots to evaluate different architectures for CIF 30 Hz video with search range as H[−4, +63]/V[−2, +31]; (a) Komarek
and Pirsch’s AB2; (b) Vos and Stegherr’s; (c) Yang, Sun, and Wu’s; (d) Hsieh and Lin’s; (e) Yeo and Hu’s; (f) Lai and Chen’s.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 307

Table 3. Comparison of FSBMA architectures.

Area Freq. Util. SAD Latency Bitwidth Bandwidth

Architecture (Kgates) (MHz) (%) (Cycles) (Bits) (Kbits/MB)

Komarek and Pirsch’s 0,061.9 196.0 99.2 0.256 080 1.290

Vos and Stegherr’s 0,108.8 108.9 89.3 0.048 128 1.146

Yang, Sun and Wu’s 0,301.3 112.3 88.9 1.024 016 0.146

Hsieh and Lin’s 0,231.9 109.4 72.5 2.176 008 0.090

Yeo and Hu’s 2,907.0 006.1 50.0 0.256 520 0.260

Lai and Chen’s 4,055.0 006.1 50.0 0.512 520 0.260

CIF 30 Hz video, H[−64, +63]/V[−32, +31].

smaller chip areas. In fact, if a more efficient dedicated
hardware is designed for a certain fast algorithm
instead of using systolic arrays, fast algorithms may
even result in much smaller chip area for low-end
applications, like the three step search architecture
developed in [91]. Their analysis provides useful
guidelines to system designers in choosing a suitable
high-level algorithm for VLSI implementation.

In [95], Minzuno et al. pointed out that conventional
ME designs with pipeline/parallel processing must de-
cide a search window size in advance, since the designs
are optimized in accordance with the search window
size. The efficiency needed to achieve the performance
cannot be maintained when the search window size
varies. This lack of flexibility is a significant drawback.
Hence, they developed a motion estimation algorithm
and a hardware implementation method with which the
search window size can be varied without degrading
pipeline/parallel processing efficiency. Two-step hier-
archical search scheme is employed. The first phase
determines coarse motion vectors with a precision of
two pel in the horizontal direction and one pel in the
vertical direction. The second phase is performed at
5 × 3 points in the center of the area determined by the
first phase. The final MVs are obtained within a pre-
cision of half pel. The quality loss for edge-sharpness
sequences is 0.13 dB and for typical sequences is 0.03
dB. The search range of ME is −48/+47 horizon-
tal and −16/+15.5 vertical. The pseudo search range,
which is the size when the location of the search win-
dow is adaptively shifted, is −96/+95 horizontal and
−32/+31.5 vertical and improves 0.4/0.8 dB of coding
performance. Other hierarchical ME architectures can
be found in [45, 96]. Three-level hierarchy was adopted
instead. In [95], tasks of different levels are executed
in separate processing units, so MB pipelining can be

utilized for tasks of different levels. On the contrary,
the architecture in [45] iterates a basic searching unit
for different levels of block matching to save the chip
area.

In [97], Moshnyaga proposed a fast algorithm from
observing that the size of the search window can be
gradually reduced during processing based on the level
of picture distortion between the current block and the
candidate block. After i rows of SAD are accumulated
for a candidate, if the partial SAD value exceeds a
threshold, the candidate can be eliminated at row i + 1,
i + 2, . . . , with all the corresponding operations. The
1-D linear array [75] and the AB2 [73] are taken as
examples to fit the adaptive scheme. However, only
the power consumption can be reduced, but the chip
area and the latency for an MB is still the same due to
the already established data flow. The threshold mod-
ification algorithm was described and claimed to save
up to 75% of the operations whilst preserving the high
quality.

In [98], Hsia adopted temporal prediction of MV
with refinement in a significantly smaller search win-
dow. Only eight PEs with 8 K gates are designed to
achieve throughput of 53 K MBs/s. The produced MVs
may cover the range of [−127, +127]. An adaptive
−7/+7 full search centered at temporal MV predictor is
adopted. The claim that the proposed algorithm is bet-
ter than FSBMA in video quality is misleading because
it was only compared with −7/+7 full search centered
at the origin. In fact, compared with −127/+127 FS-
BMA centered at the origin, the quality loss of this
design will become very large. For example, in Foot-
ball sequence, the camera pans fast toward left at frame
1–70 and then pans fast toward right. In this case, the
predictive search method suffers more than 2 dB PSNR
degradation.

308 Huang et al.

In [99], Kawahito et al. combined ME with CMOS
sensors. In the future, CMOS sensor will become
more and more popular than CCD sensors due to
the easier integration with other CMOS components
to achieve system on chip (SOC). By utilizing high-
speed intermediate pictures from the sensor, an adap-
tive iterative-search BMA was proposed. The concept
is very simple. Since the frame rate of intermediate
pictures is much higher, the motion between con-
secutive intermediate pictures is also much smaller.
ME can be performed on the intermediate pictures
with much smaller search range, and these MVs can
be used to composite the MVs of pictures with nor-
mal frame rate. For instance, let the original frame
rate and search range be 30 and [−64, +63], re-
spectively. If the frame rate is increased to 480, the
search range can be reduced to [−4, +3]. Assume the
same BMA is applied for both frame rates, the ratio
of computational complexities is 1282 × 30:82 × 480
= 16:1. In addition to the reduced complexity, mem-
ory access is also reduced due to the shrink of search
range.

In [100], Vleeschouwer et al. proposed a directional
squared-search BMA. It is similar in performance to
other up-to-date fast BMAs belonging to decimation
of search positions and predictive search, which is not
a surprise as it exploits the same under-lying principles
including spatial correlation of MVs, center-biased dis-
tribution of MVs, faster convergence toward an op-
timum, and early termination when the distortion is
small enough. However, the algorithm is designed with
architectural considerations such that the data reuse of
adjacent candidate blocks can be utilized. Three PEs
are used for three horizontally/vertically adjacent can-
didates. According to their experimental data, the video
quality is worse than diamond search and the com-
plexity is higher, but their algorithm has more efficient
memory access for hardware. Unfortunately, no report
of implementation or simulation result is available in
the paper, so comparison with other papers cannot be
made.

In [102], Chao et al. contributed a novel hybrid
motion estimator supporting advanced zonal diamond
search [19] and fast full search (SEA) [47]. The design
target was CIF 30 fps with search range of [−16, +15].
The search area pixels are buffered in the on-chip
SRAM for level C data reuse. Search area pixels on
different columns are interleaved in eight banks of
SRAMs so that any 8 × 1 pixels in the search area can
be accessed in one cycle. An eight-PE SAD tree [77]

is adopted to compute a SAD in 32 cycles. When dia-
mond search mode is selected, some candidates will be
searched for more than one time without checking. To
avoid the computation redundancy, 1024 one-bit flags
are conventionally used to record if search positions
have been searched. The average saved computation is
24.43%. In this paper, the authors used a ROM-based
method to determine the search positions of the next
step, and the 1024 flags are omitted. Although it is
still possible to search a candidate twice, the saved
computation is 24.23% statistically, which almost
reaches the conventional way. PDE is also applied
in the design to shorten the processing cycles with a
comparator to compare the accumulated partial SAD
with SADmin. When the design is configured as SEA
mode, extra circuits to decide if the SAD calculation
of a search position is necessary will be activated.
The decision is made for every search position in one
cycle. However, if skipping condition does not hold,
the number of cycles to compute an SAD is 32, and
the SAD decision circuit must be stalled. Therefore,
a FIFO is inserted between the SAD decision circuit
and 8-PE SAD tree to increase the throughput. This
architecture has been successfully integrated into an
MPEG-4 simple profile level 3 VLSI encoder and
the ME gate count is only 9 K. The extension of this
architecture to a computation-controllable version
with half/quarter pel accuracy can be found in [102].

Based on our survey, the trend of fast BMA architec-
tures is algorithmic and architectural co-development.
The benefits from the algorithmic level are usually
larger than those from the architectural level. Not only
the traditional algorithmic issues, such as convergence
speed and avoidance of being trapped in local minima,
but also the architectural issues should be taken into
consideration. For example, searching eight random
candidates requires memory access of 16 × 16 × 8 =
2048 pixels, but searching eight successive candidates
requires to access only 16 × (16 + 7) = 368 pixels,
which suggests the line search pattern is more efficient
in memory access. Serial systolic array architectures,
though may have high throughput by many cascaded
PEs, requires a long latency to load pixels, which will
lead to low throughput and low utilization for fast al-
gorithms whose next-step-candidates cannot be known
in prior. Thus, architectures with parallel loading of
reference frame pixels, though require a wider mem-
ory bitwidth, are more suitable for fast BMAs. Besides,
algorithms utilizing sequential processing candidates
by candidates, which may cause an upper bound of

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 309

throughput that cannot be improved by parallelism,
should be avoided.

4. Proposed New Design

In [103], we proposed a global elimination algorithm
(GEA) to remove the branches of SEA/MSEA. The
data flow becomes more regular for hardware. The
video quality is almost the same as that of FSBMA. The
corresponding GEA architecture was also developed.
Compared with FSBMA architectures, we concluded
that our GEA design is much more area-speed efficient.
The processing capability of ours is about the same
as 256-PE intra-type 2-D array while our gate count
is five times smaller. However, the drawback is the
longer critical path. It is difficult to meet the real-time
requirement for high specifications. Recently, we have
developed a new parallel GEA and its corresponding
architecture to solve the encountered problem, which
will be described in detail as follows.

4.1. Global Elimination Algorithm

The original GEA is described as Eqs. (3)–(9).

−p ≤ (m, n) ≤ p − 1 (3)

0 ≤ (i, j) ≤ 2L − 1 (4)

CSL , j,i =
yb∑

yc=ya

xb∑

xc=xa

C(xc, yc)

0 ≤ (xc, yc) ≤ N − 1

ya = j · N/2L , yb = ya + N/2L − 1

xa = i · N/2L , xb = xa + N/2L − 1

(5)

SSL , j,i,n,m =
yd∑

ys=yc

xd∑

xs=xc

S(xs, ys)

0 ≤ (xs, ys) ≤ 2p + N − 2

yc = n + p + j · N/2L , yd = yc + N/2L − 1

xc = m + p + i · N/2L , xd = xc + N/2L − 1

(6)

SSAD(m, n) =
2L −1∑

j=0

2L −1∑

i=0

|C SL , j,i − SSL , j,i,n,m | (7)

(mi , ni) ∈ {(m, n) | SSAD(m, n) ≤ SSADM} (8)

MV = {(u, v) | SAD(u, v) ≤ SAD(mi , ni)}

SAD(m, n) =
N−1∑

y=0

N−1∑

x=0

|C(x, y)−S(x + m + p, y + n + p)| (9)

The search range is [−p, p−], (m, n) denotes a search
position, and (i, j) is the subblock index. Level is indi-
cated by L, and a block of size N × N is divided into
2L × 2L subblocks of size (N/2L) × (N/2L). The cur-
rent block data and the search area data are denoted
as C and S, respectively. CS is the sum of all pixels
within a subblock in current block, and SS is the sum
of all pixels within a subblock in a candidate block.
Originally, the matching criterion is sum of absolute
differences (SAD) for all pixels in the block. Here, we
define subsampled-SAD (SSAD) as sum of absolute
differences between CS and SS. After all the SSAD(m,
n) values are calculated, we will find the most probable
M motion vectors (mi, ni) whose SSAD values are the
smallest. The M-th smallest SSAD among all candidate
blocks is denoted as SSADM . Finally, we compute the
SAD at the M search positions to find the final motion
vector (MV). In [103], we found that L = 2 and M = 7
are suitable parameters for CIF and QCIF under N =
16 and p = 16 or p = 32.

4.2. Problem Statement

The previously proposed architecture is composed of
a systolic module and a 16-pel SAD tree to efficiently
calculate SSAD and SAD, and a comparator tree to
record the M most probable motion vectors. The com-
parator tree is designed to match the throughput of gen-
erating SSAD values, so the critical path of the com-
parator tree is roughly proportional to logM+1

2 . How-
ever, for high-end applications with larger frame size,
the search range and the M parameter should be en-
larged (e.g. p = 64, M = 15 or 31) to obtain FSBMA
quality. Moreover, our previous architecture computes
SSAD sequentially (one SSAD per cycle), so the op-
erating frequency must be significantly increased with
search range and frame size to an unacceptable degree.
Consequently, parallel algorithm and architecture with
short critical path are demanded.

4.3. Proposed Parallel GEA

In order to compute the SSADs of several candidate
blocks in parallel, we divide them into P groups.

310 Huang et al.

Figure 2. Scanning order of search positions for SSAD calculation: (a) sequential GEA; (b) parallel GEA with P = 8.

Candidate blocks with the same value of m%P are
grouped together, and the the most probable K motion
vectors with the smallest SSADs are found separately
for each group. Hence, after all the SSAD values are
estimated, SAD values of the K · P search positions
are further computed to get the final motion vector.
Although the K · P most probable candidates do not
correspond to the K · P smallest SSAD values within
the whole search range, the parallel GEA does not
suffer noticeable quality degradation because the K · P
globally smallest SSAD values usually belong to dif-
ferent groups. The collection of K candidates in each of
the P groups should be similar to the K · P candidates
with globally smallest SSAD values. In this way, P
duplications of the original GEA architecture can be
configured as an array of GEA-PEs to support parallel
scanning of search positions and parallel calculation
of SSAD values. Figure 2 illustrates the scanning
order. Besides, K is much smaller than K · P, which
indicates that the critical path of comparator tree in
each GEA-PE can be reduced at the algorithmic level.

Many conditions have been tested to verify the qual-
ity of our parallel GEA. In our experiments, we embed
parallel GEA with P = 8 and K = 3 into an MPEG-4
simple profile encoder. The resolution of CS and SS
is truncated from 12-bit to eight-bit in order to save
more area and to reduce the critical path for hard-
ware. The other parameter sets are {CIF 30 fps [−32,
+31.5] 384/2048 Kbps} and {D1 30 fps H[−4, +63.5]
V[−32, +31.5] 1536/8192 Kbps}. CIF sequences are
Foreman, Hall Monitor, Mobile Calendar, Stefan, and
Table Tennis. D1 sequences are two clips from the
movie, Crouching Tiger Hidden Dragon. One clip is
the scene with two actresses fighting against each other
in the courtyard, and the other clip is the leading ac-

tor chasing the leading actress on bamboos. Compared
with FSBMA, the average PSNR losses for the seven
sequences are only 0.16, 0.13, 0.05, 0.00, 0.14, −.02,
0.05 dB, respectively. Note that Lagrangian mode de-
cision [104] is applied for both BMAs.

4.4. Proposed Parallel GEA Architecture

In the following, N = 16, L = 2, P = 8, K = 3, and
H[−64, +63.5] V[−32, +31.5] are used as an example
to explain the parallel GEA design. The specification
is D1 30 fps.

The purpose of the systolic module is to generate 16
subblock sums of 4 × 4 pixels in parallel. As shown in
Fig. 3, the input is a row of 16 × 1 pixels. After consec-
utive 16 rows of pixels are inputted, the 16 subblock
sums at search position (m, −p) are produced. The
systolic module utilizes vertical data reuse, and thus
the subblock sums at the search positions (m, −p + 1)
(m, p − 1) can be obtained in the following (2p − 1)
cycles. Compared with the original systolic module in
[103], the improved systolic module not only removes
the redundant computation of subblock sums but also
reduces the resolution of subblock sums from 12-bit to
eight-bit. The gate count of this part is reduced from
6.0 to 4.7 K.

The SAD tree is illustrated in Fig. 4, and the goal is
to compute SSAD/SAD values. An AD unit computes
the absolute difference of two eight-bit samples. When
SAD tree is used to generate SSAD values, the inputs
are 16 subblock sums of current block and 16 subblock
sums of a candidate block. The throughput is the same
as the systolic module, i.e. one candidate block per
cycle (except the first candidate block at each column

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 311

Figure 3. Systolic module to generate 16 subblock sums of 4 × 4 pixels.

Figure 4. SAD Tree to compute SSAD/SAD.

of search positions). When SAD tree is used to compute
SAD values, the inputs are rows of current block data
and search area data, and its output is fetched to a 16-
bit accumulator. It takes 16 cycles for one candidate
block to compute SAD. Due to the bitwidth reduction
of CS and SS, the gate count of this part is reduced
from 4.6 to 2.8 K.

The purpose of the comparator tree is to find the
three smallest SSAD values among one group of can-
didate blocks. The throughput is also matched with the
systolic module and the SAD tree. The concept is to
keep the up-to-date three smallest SSAD values and
their corresponding MV’s in the registers, compare the
new coming SSAD value with the three stored values,
and replace maximum stored values by the new SSAD
if it is larger than the new one. Figure 5 illustrates
the comparator tree. The MAX unit outputs the larger
value of its two inputs, and the EQU unit tells if the
two given inputs are the same. The previous architec-
ture shown in [103] finds the maximum SSAD value
and feed it back to compare with three stored values
to see if a stored value should be replaced. Then, a
CHECK unit is to ensure that only one stored value
will be replaced if more than one stored values are

equal to the maximum. Stall signal should be activated
when the invalid SSAD value is generated from SAD
tree for the first 15 cycles of a column of search po-
sitions. We shorten the critical path in three aspects.
First, at the algorithmic level, search positions are di-
vided into eight groups. Originally, if M = 24, we will
have to find the 24 smallest values, but now only three
smallest values in each group are required. Second,
the bitwidth of SSAD is reduced from 16-bit to 12-bit.
Third, as shown in Fig. 5, instead of feeding the max-
imum SSAD value back to compare for replacement,
we give each SSAD value an unique 2-bit tag and feed
the tag with the maximum SSAD back for compari-
son. The gate count of the comparator tree is reduced
from 1.5 to 1.1 K, compared with the previous version
[103] for M = 3.

Figure 6(a) illustrates a GEA-PE. The systolic mod-
ule, SAD tree, MV cost generator, and comparator tree
are configured in cascoding. The MV cost generator,
which requires only 0.6 K gates, adds a bias of motion
information to the distortion function (known as La-
gragian method [104]) and provides additional coding
gain of 0.2–1.0 dB in PSNR for the MPEG-4 simple
profile encoder. The gate count of a GEA-PE is 11.3 K.

312 Huang et al.

Figure 5. Comparator tree to find the three smallest SSAD values.

Figure 6. Illustration of the motion engine: (a) GEA processing element; (b) system block diagram.

Figure 6(b) illustrates the entire ME accelerator. Cur-
rent block data and search area data are loaded from
external SDRAM to on-chip SRAMs. The SRAMs be-
have as a cache of the ME processor, and the bus band-
width is reduced from more than 7 Gbytes/sec to 477

Mbytes/sec. We adopt (level C) data reuse of over-
lapped search area between two horizontally adjacent
MBs to further reduce the bus bandwidth from 477
Mbytes/sec to 71 Mbytes/sec. The interpolation cir-
cuit is used to generate half-pixels. Besides, thanks to

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 313

the versatility of SAD tree, advanced prediction (AP)
mode (four 8 × 8-MVs for an MB) is also supported.
Inter mode selection between 16 × 16 and 8 × 8 con-
figurations of an MB is done after half-pixel ME, and
intra/inter mode decision is also included in the ac-
celerator. In general, an MPEG-4 simple profile en-
coder with our ME accelerator provides 0.5 dB better
coding performance than the reference software using
FSBMA.

4.5. Discussion and Comparison

The sequential GEA only utilizes the data reuse in the
vertical direction by systolic module to compute the
SSAD values. For one column of 64 search positions,
79 rows of 16 × 1 pixels are fetched, and 1264 bytes of
memory access are required. The parallel GEA utilizes
not only the vertical but also the horizontal data reuse.
As mentioned before, SSAD values of eight columns
of search positions are generated in parallel. In order
to achieve parallel SSAD calculation, 79 rows of 23
× 1 pixels (1817 bytes) are fetched. Let us denote the
fetched 23 × 1 pixels from left to right as p0–p22. The
first 16 pixels, p0–p15, are sent to PEO, p1–p16 are sent
to PE1,. . ., and p7–p22 are sent to PE7. In this way,
compared with the sequential GEA (1264 bytes for one
column), parallel GEA is much more efficient in on-
chip SRAM access (1817 bytes for eight columns, i.e.
227 bytes for one column on average). The bandwidth
of on-chip SRAM for SSAD computation is reduced
from 6.55 Gbytes/sec to 1.18 Gbytes/sec.

The numbers of cycles to compute CS values, SSAD
values, integer-pel SAD values, and half-pel SAD val-
ues are 16, (64 × 15) × 128/8 = 1264, 16 × 24 = 384,
and (16 + 2) + (8 + 2) × 4 = 58, respectively. There-
fore, for processing an MB, about 1722 cycles are re-
quired (including pipelines and mode decision). For
D1 30 fps, there are 40,500 MBs in a second, so the re-
quired frequency is 69.741 MHz. We use one 16 × 128
(words × bits) single-port SRAM to store current block
data (16 × 16 pels) and eight 400 × 32 single-port
SRAMs to store the search area data (160 × 80 pels).
If the bus bitwidth is 32, loading current block data
and search area data from external DRAM to on-chip
SRAM requires about 500–700 cycles in average, de-
pending on the bus traffic and protocol. Therefore, the
frequency must be increased to 100 MHz. If dual-port
SRAMs can be used, the loading operations of the
next MB and the ME operations of the current MB

can be executed at the same time, and no extra cycle
is needed. Nevertheless, dual-port SRAMs are larger
than single-port SRAMs, which is the tradeoff for
speed.

In Fig. 6(b), there are eight GEA-PEs in parallel.
Since the utilization rates of different modules vary a
lot, the inputs of the idling circuits should be masked to
zero for power saving. When the ME engine is config-
ured to compute CS values, only one “Systolic Mod-
ule” should be activated, and the rest of circuits can
be shut down. When the ME engine is configured to
compute SSAD values, all the logic circuits except in-
terpolation will be activated. When the ME engine is
configured to compute integer-pel SAD values of the
24 potential candidates, five ‘SAD Tree’ and ‘MV Cost
Bias’ circuits (one for 16 × 16-block, four for 8 × 8-
blocks) will be on. When the ME engine is config-
ured to compute half-pel SAD values of one 16 × 16-
block and four 8 × 8-blocks, only the interpolation and
one ‘SAD Tree” and ‘MV Cost Bias” circuits will be
used.

For the sake of clarity, GEA-PEs are used to ex-
plain the parallel processing for multiple columns of
search positions. However, there exist redundant com-
putations of SS values. For example, when pixels of
8 × 1 candidate blocks are inputted row by row (23
pels by 23 pels), the second column 4 × 4-block sum
of the first candidate block is exactly the same as the
first column 4 × 4-block sum of the fourth candidate
block. To avoid the redundant SS computation of the
8 × 1 candidate blocks, the ME engine can be modified
as Fig. 7. First, “Systolic Module” is removed from a
GEA-PE, as shown in Fig. 7(a). Second, a systolic col-
umn PE is used to compute four 4 × 4-block sum with
one inputted 4 × 1-pel sum at every cycle, as shown in
Fig. 7(b). Third, for replacing the original eight “Sys-
tolic Module” circuits in GEA-PEs, we integrate 24
systolic column PEs and additional adders to compute
4 × 1-pel sums, as shown in Fig. 7(c). Finally, the mod-
ified system block diagram is shown in Fig. 7(d). In
this way, about 15 K gates can be saved, and the over-
all logic gate count in Fig. 7(d) is reduced from 113 to
98 K (synthesized by Synopsys Design Compiler with
Artisan 0.18 µm cell library at 70 MHz).

In order to compare our implementation with the
hexagonal plots in Fig. 1, the specification is lowered
from D1 30 fps to CIF 30 fps to get the scaled
hexagonal plot of our eight-parallel GEA design, as
shown in Fig. 8. With the moderate performance in
memory bitwidth and utilization, our design performs

314 Huang et al.

Figure 7 Illustration of the modified motion engine: (a) modified GEA processing element; (b) systolic column processing element (c)
integrated systolic module with systolic column processing elements (d) modified system block diagram.

very well in the other four dimensions. Besides, the
functionality of our ME engine is quite rich. Not only
integer-pel ME, but also half-pel ME, AP mode, MV
cost bias, intra/inter MB mode decision are included.
It is a good silicon intellectual property (IP) and has
been integrated into several commercial MPEG-4
VLSI coding systems.

Next, we compare our implementation with 1-D
semi-systolic FSBMA array architecture [75] due to

its high flexibility of search range and scalability of
PEs. The results are shown in Table. 4. Search range
partition is adopted for [75] to achieve the scalable
PEs. The gate count of our design is 4.57, 9.14, and
18.29 times smaller than 512-PE, 1024-PE, and 2048-
PE array, respectively, while the working frequencies
of the three array configurations are 2.37, 1.19, and
0.6 times of our design’s for D1 30 fps H[−4, +63]
V[−2, +31]. Apparently, our design is more efficient

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 315

Figure 8. Hexagonal plots of our eight-parallel GEA design for CIF 30 Hz video with search range as H[−4, +63]/V[−2, +31].

in all aspects except a minor loss of video quality. The
video quality of an MPEG-4 simple profile encoder
adopting our ME accelerator is 0.1–0.2 dB worse than
that of adopting FSBMA and Lagrangian mode deci-
sion, but is significantly better than that produced by
the reference software.

4.6. Summary

We presented a new parallel global elimination
algorithm and architecture for fast block matching. By
rejecting less possible candidates with simplified dis-

tortion estimation, only a few potential candidates are
required to be refined with fine distortion estimation.
The software complexity of our algorithm is about
8.8% of the full search. To achieve parallel processing,
candidate blocks are divided into independent groups
so that the coarse distortion estimation of several search
positions can be executed simultaneously. Many design
techniques, such as systolic flow, 2-D data reuse, reuse
of overlapped search area, and resource sharing, are
adopted to maximize the overall system performance.
Our accelerator is ten times more area-speed efficient
than FSBMA architectures and provides better coding
performance than the MPEG-4 reference software.

Table 4. Comparison of ME architectures under the specification of D1 30 fps H[−4, +63] V[−2, +31].

Architecture 8-Parallel GEA 512-PE 1-D array 1024-PE 1-D array 2048-PE 1-D array

Gate count 98 K 448 K 896 K 1792 K

Working frequency 70 MHz 166 MHz 83 MHz 42 MHz

SRAM size 13,312 Kbytes 13,312 Kbytes 13,312 Kbytes 13,312 Kbytes

SRAM bandwidth 1,842 Mbytes/sec 6,142 Mbytes/sec 6,059 Mbytes/sec 6,090 Mbytes/sec

Bus bandwidth 71 Mbytes/sec 71 Mbytes/sec 71 Mbytes/sec 71 Mbytes/sec

Functionality Integer ME, Half ME, AP Mode,
Lagrangian MB mode decision

Integer ME (FSBMA) Integer ME (FSBMA) Integer ME (FSBMA)

316 Huang et al.

5. Conclusion

Motion estimation engine is usually the most impor-
tant module in a typical video encoder. It spends the
longest run-time in software and demands the largest
area/bandwidth in hardware. In this paper, we made
a detailed study of block matching algorithms and ar-
chitectures during the past two decades. Also, our new
development was proposed to illustrate the advantages
of algorithmic and architectural co-design, which is the
trend for VLSI implementation of ME engine to pro-
vide high performance and cost effective video coding
systems.

References

1. Information Technology—Coding of Moving Pictures and As-
sociated Audio for Digital Storage Media at up to about 1.5
Mbit/s—Part 2: Video, ISO/IEC 11172-2, 1993.

2. Information Technology—Generic Coding of Moving Pictures
and Associated Audio Information: Video, ISO/IEC 13818-2
and ITU-T Recommendation H.262, 1996.

3. Information Technology—Coding of Audio-Visual Objects—
Part 2: Visual, ISO/IEC 14496/2, 1999.

4. Video Codec for Audiovisual Services at p × 64 Kbit/s, ITU-T
Recommendation H.261, Mar. 1993.

5. Video Coding for Low Bit Rate Communication, ITU-T Rec-
ommendation H.263, Feb. 1998.

6. Joint Video Team, Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification, ITU-
T Recommendation H.264 and ISO/IEC 14496/10 AVC, May
2003.

7. J. Jain and A. Jain, “Displacement Measurement and its Appli-
cation in Internal Image Coding,” IEEE Trans. Commun., vol.
COM-29, no. 12, 1981, pp. 1799–1808.

8. T. Koga, K. linuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Mo-
tion compensated interframe coding for video conferencing,”
in Proc. Nat. Telecommun. Conf., 1981, pp. C9.6.1–C9.6.5.

9. R. Srinivasan and K.R. Rao, “Predictive Coding based on Effi-
cient Motion Estimation,” IEEE Trans. Commun., vol. COM-
33, no. 8, 1985, pp. 888–896.

10. S. Kappagantula and K.R. Rao, “Motion Compensated Inter-
frame Image Prediction,” IEEE Trans. Commun., vol. COM-
33, no. 9, 1985, pp. 1011–1015.

11. M. Ghanbari, “The Cross Search Algorithm for Motion Es-
timation,” IEEE Trans. Commun., vol. 38, no. 7, 1990, pp.
950–953.

12. L.G. Chen, W.T. Chen, Y.S. Jehng, and T.D. Chiueh, “An Effi-
cient Parallel Motion Estimation Algorithm for Digital Image
Processing,” IEEE Trans. Circuits Syst. Video Technol., vol. 1,
no. 4, 1991, pp. 378–385.

13. M.J. Chen, L.G. Chen, and T.D. Chiueh, “One-dimensional
full Search Motion Estimation Algorithm for Video Coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 5, 1994,
pp. 504–509.

14. R. Li, B. Zeng, and M.L. Liou, “A New Three-step Search
Algorithm for Block Motion Estimation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 4, no. 4, pp. 438/442, Aug. 1994.

15. L.M. Po and W.C. Ma, “A Novel Four-step Search Algorithm
for Fast Block Motion Estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 3, 1996, pp. 313–317.

16. L.K. Liu and E. Feig, “A Block-based Gradient Descent Search
Algorithm for Block Motion Estimation in Video Coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 4, 1996,
pp. 419–422.

17. J.Y. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, “A
Novel Unrestricted Center-biased Diamond Search Algorithm
for Block Motion Estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 8, no. 4, 1998, pp. 369–377.

18. S. Zhu and K.K. Ma, “A New Diamond Search Algorithm for
Fast Block-matching Motion Estimation,” IEEE Trans. Image
Processing, vol. 9, no. 2, 2000, pp. 287–290.

19. A.M. Tourapis, O.C. Au, M.L. Liou, G. Shen, and I. Ahmad,
“Optimizing the mpeg-4 Encoder - advanced Diamond Zonal
search,” in Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’00),
2000, pp. 674–677.

20. A.M. Tourapis, O.C. Au, and M.L. Liu, “Highly Efficient Pre-
dictive Zonal Algorithms for Fast Block-matching Motion Es-
timation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12,
no. 10, 2002, pp. 934–947.

21. V. Christopoulos and J. Cornelis, “A Center-biased Adaptive
Search Algorithm for Block Motion Estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 10, no. 3, 2000, pp. 423–
426.

22. O.T.C. Chen, “Motion Estimation using a One-Dimensional
Gradient Descent Search,” IEEE Trans. Circuits Syst. Video
Technol., vol. 10, no. 4, 2000, pp. 608–616.

23. C.H. Cheung and L.M. Po, “A Novel Cross Diamond Search
Algorithm for Fast Block Motion Estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 12, no. 12, 2002, pp. 1168–
1177.

24. Y.W. Huang, S.Y. Ma, C.F. Shen, and L.G. Chen, “Predictive
Line Search: An Efficient Motion Estimation Algorithm for
mpeg-4 Encoding Systems on Multimedia Processors,” IEEE
Trans. Circuits and Syst. Video Technol., vol. 13, no. 1, 2003,
pp. 111–117.

25. C.W. Lam, L.M. Po, and C.H. Cheung, “A Novel Kite-
Cross-diamond Search Algorithm for Fast Video Coding and
Videoconferencing Applications,” in Proc. of IEEE Int. Conf.
Acoust., Speech, and Signal Processing (ICASSP’04), 2004,
pp. 365–368.

26. S. Zhu and K.K. Ma, “A New Diamond Search Algorithm for
Fast Block Matching Motion Estimation,” in Proc. of IEEE Int.
Conf. Image Processing (ICIP’97), 1997, pp. 292–296.

27. M. Bierling, “Displacement Estimation by Hierarchical Block
Matching,” in Proc. of SPIE Visual Commun. Image Processing
(VCIP’88), 1988, pp. 942–951.

28. A. Zaccarin and B. Liu, “Fast Algorithms for Block Motion
Estimation,” in Proc. of IEEE Int. Conf. Acoust., Speech, and
Signal Processing (ICASSP’92), 1992, pp. 449–452.

29. B. Liu and A. Zaccarin, “New Fast Algorithms for the Esti-
mation of Block Motion Vectors,” IEEE Trans. Circuits Syst.
Video Technol., vol. 3, no. 2, 1993, pp. 148–157.

30. Y. Wang, Y. Wang, and H. Kuroda, “A Globally Adaptive Pixel-
decimation Algorithm for Block-motion Estimation,” IEEE

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 317

Trans. Circuits Syst. Video Technol., vol. 10, no. 6, 2000, pp.
1006–1011.

31. H. Gharavi and M. Mills, “Block Matching Motion Estimation
Algorithms - New Results,” IEEE Trans. Circuits Syst., vol.
37, no. 5, 1990, pp. 649–651.

32. M.J. Chen, L.G. Chen, T.D. Chiueh, and Y.P. Lee, “A New
Block-matching Criterion for Motion Estimation and its Im-
plementation,” IEEE Trans. Circuits Syst. Video Technol., vol.
5, no. 3, 1995, pp. 231–236.

33. M.J. Chen, “Predictive Motion Estimation Algorithms for
Video Compression,” J. of St. John’s St. Mary Institute of Tech-
nol., vol. 15, 1997, pp. 197–214.

34. J.S. Kim and R.H. Park, “A Fast Feature-based Block Matching
Algorithm using Integral Projections,” IEEE J. Select. Areas
Commun., vol. 10, no. 5, 1992, pp. 968–979.

35. K. Sauer and B. Schwartz, “Efficient Block Motion Estimation
using Integral Projections,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, no. 5, 1996, pp. 513–518.

36. B. Natarajan and V. Bhaskaran, “Low-complexity Block-based
Motion Estimation via one-bit Transforms,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 7, no. 4, 1997, pp. 702–706.

37. J.H. Luo, C.N. Wang, and T. Chiang, “A Novel All-binary
Motion Estimation (ABME) with Optimized Hardware Archi-
tectures,” IEEE Trans. Circuits Syst. Video Technol., vol. 12,
no. 8, 2002, pp. 700–712.

38. Z.L. He, C.Y. Tsui, K.K. Chan, and M.L. Liou, “Low-power
VLSI Design for Motion Estimation using Adaptive Pixel trun-
cation,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no.
5, 2000, pp. 669–678.

39. C.H. Hsieh, P.C. Lu, J.S. Shyn, and E.H. Lu, “Motion Estima-
tion Algorithm using Interblock Correlation,” IEE Electron.
Lett., vol. 26, no. 5, 1990, pp. 276–277.

40. S. Zafar, Y.Q. Zhang, and J.S. Baras, “Predictive Block Match-
ing Motion Estimation for TV Coding—Part I: Inter-block
Prediction,” IEEE Trans. Broadcast., vol. 37, no. 3, 1991, pp.
97–101.

41 Y.Q. Zhang and S. Zafar, “Predictive Block-matching Motion
Estimation for TV Coding—Part II: Inter-frame Prediction,”
IEEE Trans. Broadcast., vol. 37, no. 3, 1991, pp. 102–105.

42. M.C. Chen and A.N. Willson J., “A Logarithmic-time Adaptive
Block Matching Algorithm in Estimating Large Displacement
Motion Vectors,” in Proc. of IEEE Multimedia Commun. Video
Coding Symp., 1995.

43. J. Chalidabhongse and C.C.J. Kuo, “Fast Motion Vector Esti-
mation using Multiresolution-Spatio-Temporal Correlations,”
IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 3, 1997,
pp. 477–488.

44. D. Tzovaras, M.G. Strintzis, and H. Sahinolou, “Evaluation of
Multiresolution Block Matching Techniques for Motion and
Disparity Estimation,” Signal Processing: Image Commun.,
vol. 6, 1994, pp. 56–67.

45. J.H. Lee, K.W. Lim, B.C. Song, and J.B. Ra, “A Fast Multi-
resolution Block Matching Algorithm and its VLSI Archi-
tecture for Low Bit-rate Video Coding,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 11, no. 12, 2001, pp. 1289–
1301.

46. J.H. Lee and N.S. Lee, “Variable Block Size Motion Estimation
Algorithm and its Hardware Architecture for H.264,” in Proc.
of IEEE Int. Symp. Circuits Syst. (ISCAS′04), 2004, pp. 740–
743.

47. W. Li and E. Salari, “Successive Elimination Algorithm for
Motion Estimation,” IEEE Trans. Image Processing, vol. 4,
no. 1, 1995, pp. 105–107.

48. X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel Succes-
sive Elimination Algorithm for Block Matching Motion Esti-
mation,” IEEE Trans. Image Processing, vol. 9, no. 3, 2000,
pp. 501–504.

49. M. Brunig and W. Niehsen, “Fast Full-search Block Matching,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, 2001,
pp. 241–247.

50. C. Zhu, W.S. Qi, and W. Ser, “A New Successive Elimination
Algorithm for Fast Block Matching in Motion Estimation,” in
Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS′04), 2004, pp.
733–736.

51. C.J. Duanmu, M.O. Ahmad, and M.N.S. Swamy, “8-bit Partial
Sum of 16 Luminance Values for Fast Block Motion Estima-
tion,” in Proc. of IEEE Int. Conf. Multimedia Expo (ICME′03),
2003, pp. 689–692.

52. Digital Video Coding Group, ITU-T recommendation H.263
software implementation, Telenor R’D, 1995.

53. C.K. Cheung and L.M. Po, “Normalized Partial Distortion
Search Algorithm for Block Motion Estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 10, no. 3, 2000, pp. 417–
422.

54. J.N. Kim and T.S. Choi, “A Fast Full-search Motion-estimation
Algorithm using Representative Pixels and Adaptive Matching
Scan,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no.
7, 2000, pp. 1040–1048.

55. K. Lengwehasatit and A. Ortega, “Probabilistic Partial-
distance Fast Matching Algorithms for Motion Estimation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, 2001,
pp. 139–152.

56. A. Hatabu, T. Miyazaki, and I. Kuroda, “Optimization of
Decision-timing for Early Termination of SSDA-based Block
Matching,” in Proc. of IEEE Int. Conf. Acoust., Speech, and
Signal Processing (ICASSP’03), 2003, pp. 533–536.

57. Y.S. Chen, Y.P. Huang, and C.S. Fuh, “Fast Block Matching
Algorithm based on the Winner-update Strategy,” IEEE Trans.
Image Processing, vol. 10, no. 8, 2001, pp. 1212–1222.

58. I.M. Pao and M.T. Sun, “Modeling Dot Coefficients for Fast
Video Encoding,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 9, no. 4, 1999, pp. 608–616.

59. D.S. Turaga and T. Chen, “Estimation and Mode Decision for
Spatially Correlated Motion Sequences,” IEEE Trans. Circuits
Syst. Video Technol., vol. 11, no. 10, 2001, pp. 1098–1107.

60. J. Xin, M.T. Sun, and V. Hsu, “Diversity-based fast block mo-
tion estimation,” in Proc. of IEEE Int. Conf. Multimedia Expo
(ICME’03), 2003, pp. 525/528.

61. P.L. Tsai, S.Y. Huang, C.T. Liu, and J.S. Wang, “Computation-
aware Scheme for Software-based Block Motion Estimation,”
IEEE Trans. Circuits and Syst. Video Technol., vol. 13, no. 9,
2003, pp. 901–913.

62. Y.W. Huang, B.Y. Hsieh, T.C. Wang, S.Y. Chien, S.Y. Ma, C.F.
Shen, and L.G. Chen, “Analysis and Reduction of Reference
Frames for Motion Estimation in MPEG-4 AVC/JVT/H.264,”
in Proc. of IEEE Int. Conf. Acoust., Speech, and Signal Pro-
cessing (ICASSP’03), 2003, pp. 145–148.

63. H.Y.C. Tourapis and A.M. Tourapis, “Fast Motion Estimation
Within the H.264 Codec,” in Proc. of IEEE Int. Conf. Multi-
media Expo (ICME’03), 2003, pp. 517–520.

318 Huang et al.

64. Y.K. Tu, J.F. Yang, Y.N. Shen, and M.T. Sun, “Fast Variable
Block Motion Estimation using Merging Procedure with an
Adaptive Threshold,” in Proc. of IEEE Int. Conf. Multimedia
Expo (ICME’03), 2003, pp. 789–792.

65. W.I. Choi, B. Jeon, and J. Jeong, “Fast Motion Estimation with
Modified Diamond Search for Variable Motion Block Sizes,”
in Proc. of IEEE Int. Conf. Image Processing (ICIP’03), 2003,
pp. 371–374.

66. X. Li, E.Q. Li, and Y.K. Chen, “Fast Multi-frame Motion Esti-
mation Algorithm with Adaptive Search Strategies in H.264,”
in Proc. of IEEE Int. Conf. Acoust., Speech, and Signal Pro-
cessing (ICASSP’04), 2004, pp. 369–372.

67. Z. Zhou and M.T. Sun, “Fast Vaiable Block-size Motion Esti-
mation Algorithms based on Merge and Split Procedures for
H.264/MPEG-4 AVC,” in Proc. of IEEE Int. Symp. Circuits
Syst. (ISCAS’04), 2004, pp. 725–728.

68. M.J. Chen, Y.Y. Chiang, H.J. Li, and M.C. Chi, “Effi-
cient Multi-frame Motion Estimation Algorithms for MPEG-4
AVC/JVT/H.264,” in Proc. of IEEE Int. Symp. Circuits Syst.
(ISCAS’04), 2004, pp. 737–740.

69. C.H. Kuo, M. Shen, and C.C.J. Kuo, “Fast inter-prediction
mode decision and motion search for H.264,” in Proc. of IEEE
International Conference on Multimedia and Expo, 2004.

70. P. Yang, Y.W. He, and S.Q. Yang, “An Unisymmetrical-
cross Multi-Resolution Motion Search Algorithm for MPEG-4
AVC/H.264 coding,” in Proc. of IEEE International Confer-
ence on Multimedia and Expo, 2004.

71. Y. Su and M.T. Sun, “Fast Multiple Reference Frame Motion
Estimation for H.264,” in Proc. of IEEE International Confer-
ence on Multimedia and Expo, 2004.

72. S.Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ:
Prentice Hall, 1988.

73. T. Komarek and P. Pirsch, “Array Architectures for Block
Matching Algorithms,” IEEE Trans. Circuits Syst., vol. 36,
no. 2, 1989, pp. 1301–1308.

74. L.D. Vos and M. Stegherr, “Parameterizable VLSI Architec-
tures for the Full-search Block-matching Algorithm,” IEEE
Trans. Circuits Syst., vol. 36, no. 2, 1989, pp. 1309–1316.

75. K.M. Yang, M.T. Sun, and L. Wu, “A Family of VLSI De-
signs for the Motion Compensation Block-matching Algo-
rithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2, 1989, pp.
1317–1325.

76. C.H. Hsieh and T.P. Lin, “VLSI Architecture for Block-
matching Motion Estimation Algorithm,” IEEE Trans. Circuits
Syst. Video Technol., vol. 2, no. 2, 1992, pp. 169–175.

77. Y.S. Jehng, L.G. Chen, and T.D. Chiueh, “An Efficient and
Simple VLSI Tree Architecture for Motion Estimation Algo-
rithms,” IEEE Trans. Signal Processing, vol. 41, no. 2, 1993,
pp. 889–900.

78. C.Y. Chen, Y.W. Huang, T.C. Shen, and L.G. Chen, “Analysis
and Architecture Design of Variable Block Size Motion Esti-
mation for Video Coding Systems,” IEEE Trans. Circuits and
Syst. I, 2004 (submitted).

79. S.F. Chang, J.H. Hwang, and C.W. Jen, “Scalable Array Archi-
tecture Design for Full Search Block Matching,” IEEE Trans.
Circuits Syst. Video Technol., vol. 5, no. 4, 1995, pp. 332–343.

80. H. Yeo and Y.H. Hu, “A Novel Modular Systolic Array Archi-
tecture for Full-search Block Matching Motion Estimation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 5, 1995,
pp. 407–416.

81. Y.K. Lai and L.G. Chen, “A Data-interlacing Architecture with
two-Dimensional Data-reuse for Full-search Block-matching
Algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 8,
no. 2, 1998, pp. 124–127.

82. Y.H. Yeh and C.Y. Lee, “Cost-effective VLSI Architectures
and Buffer Size Optimization for Full-search Block Matching
Algorithms,” IEEE Trans. VLSI Syst., vol. 7, no. 3, 1999, pp.
345–358.

83. J.C. Tuan, T.S. Chang, and C.W. Jen, “On the Data Reuse and
Memory Bandwidth Analysis for Full-search Block-matching
VLSI Architecture,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 1, 2002, pp. 61–72.

84. Mei-Yun Hsu, Scalable module-based architecture for MPEG-
4 BMA motion estimation, Master Thesis, National Taiwan
Univ., 2000.

85. C.H. Chou and Y.C. Chen, “A VLSI Architecture for Real-time
and Flexible Image Template Matching,” IEEE Trans. Circuits
Syst., vol. 36, no. 2, 1989, pp. 1336–1342.

86. V.L. Do and K.Y. Yun, “A Low-power VLSI Architecture for
Full-search Block-matching Motion Estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 4, 1998, pp. 393–
398.

87. A. Hanami, S. Scotzniovsky, K. Ishihara, T. Matsumura, S.
I. Takeuchi, H. Ohkuma, K. Nishigaki, H. Suzuki, M. Kaza-
yama, T. Yoshida, and K. Tsuchihashi, “A 165-GOPS Motion
Estimation Processor with Adaptive Dual-array Architecture
for High Quality Video-encoding Applications,” in Proc. of
IEEE Custom Integrated Circuits Conf. (CICC’98), 1998, pp.
169–172.

88. J.F. Shen, T.C. Wang, and L.G. Chen, “A Novel Low-power
Full Search Block-matching Motion Estimation Design for
H.263+,” IEEE Trans. Circuits Syst. Video Technol., vol. 11,
no. 7, 2001, pp. 890–897.

89. N. Roma and L. Sousa, “Efficient and Configurable Full-search
Block-matching Processors,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 12, pp. 1160/1167, Dec. 2002.

90. Y.W. Huang, T.C. Wang, B.Y. Hsieh, and L.G. Chen, “Hard-
ware Architecture Design for Variable Block Size Motion es-
timation in MPEG-4 AVC/JVT/ITU-T H.264,” in Proc. of
IEEE Int. Symp. Circuits Syst. (ISCAS’03), 2003, pp. 796–
799.

91. H.M. Jong, L.G. Chen, and T.D. Chiueh, “Parallel Architec-
tures for 3-step Hierarchical Search Block-matching Algo-
rithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no.
4, 1994, pp. 407–416.

92. S. Dutta and W. Wolf, “A Flexible Parallel Architecture
Adopted to Block-matching Motion Estimation Algorithms,”
IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 1, 1996,
pp. 74–86.

93. H.D. Lin, A. Anesko, and B. Petryna, “A 14-GOPS Pro-
grammable Motion Estimator for H.26 × Video Coding,” IEEE
J. Solid-State Circuits, vol. 31, no. 11, 1996, pp. 1742–
1750.

94. S.C. Cheng and H.M. Hang, “A Comparison of Block-
matching Algorithms Mapped to Systolic-array Implementa-
tion,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 5,
1997, pp. 741–757.

95. M. Mizuno, Y. Ooi, N. Hayashi, J. Goto, M. Hozumi, K. Fu-
ruta, A. Shibayama, Y. Nakazawa, O. Ohnishi, S. Y. Zhu, Y.
Yokoyama, Y. Katayama, H. Takano, N. Miki, and Y. Senda,

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 319

“A 1.5-W Single-chip MPEG-2 MP@ML Video Encoder with
Low Power Motion Estimation and Clocking,” IEEE J. Solid-
State Circuits, vol. 32, no. 11, 1997, pp. 1807–1816.

96. M. Takahashi, M. Hamada, T. Nishikawa, H. Arakida, T. Fujita,
F. Hatori, S. Mita, K. Suzuki, A. Chiba, T. Terazawa, F. Sano, Y.
Watanabe, K. Usami, M. Igarashi, T. Ishikawa, M. Kanazawa,
T. Kuroda, and T. Furuyama, “A 60-mW MPEG-4 Video Codec
using Clustered Voltage Scaling with Variable Supply-voltage
Scheme,” IEEE J. Solid-State Circuits, vol. 33, no. 11, 1998,
pp. 1772–1780.

97. V.G. Moshnyaga, “A New Computationally Adaptive Formu-
lation of Block-matching Motion Estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 11, no. 1, 2001, pp. 118–
124.

98. S.C. Hsia, “VLSI Implementation for Low-complexity Full-
search Motion Estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 7, 2002, pp. 613–619.

99. S. Kawahito, D. Handoko, Y. Tadokoro, and A. Matsuzawa,
“Low Power Motion Vector Estimation using Iterative Search
Block-matching Methods and a High-speed Non-destructive
CMOS Sensor,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 12, 2002, pp. 1084–1092.

100. C.D. Vleeschouwer, T. Nilsson, K. Denolf, and J. Bor-
mans, “Algorithmic and Architectural Co-design of a Motion-
estimation Engine for Low-power Video Devices,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 12, 2002,
pp. 1093–1105.

101. W.M. Chao, C.W. Hsu, Y.C. Chang, and L.G. Chen, “A Novel
Motion Estimator Supporting Diamond Search and Fast full
Search,” in Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’02),
2002, pp. 492–495.

102. W.M. Chao, T.C. Chen, Y.C. Chang, C.W. Hsu, and L.G. Chen,
“Computationally Controllable Integer, Half, and Quarter-pel
Motion Estimator for MPEG-4 Advanced Simple Profile,” in
Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’03), 2003, pp.
788–791.

103. Y.W. Huang, S.Y. Chien, B.Y. Hsieh, and L.G. Chen, “Global
Elimination Algorithm and Architecture Design for Fast Block
Matching Motion Estimation,” IEEE Trans. Circuits and Syst.
Video Technol., vol. 14, no. 6, 2004, pp. 898–907.

104. A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G.J. Sul-
livan, “Performance Comparison of Video Coding Standards
using Lagragian Coder Control,” in Proc. of IEEE Interna-
tional Conference on Image Processing, 2002.

Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He re-
ceived the B.S. degree in electrical engineering and the Ph.D. degree
in electronics engineering from National Taiwan University, Taipei,
in June 2000 and December 2004, respectively. He joined Medi-

aTek, Inc., Hsinchu, Taiwan, in 2004, where he develops integrated
circuits related to video coding systems. His research interests in-
clude video segmentation, moving object detection and tracking,
intelligent video coding technology, motion estimation, face detec-
tion and recognition, H.264/AVC video coding, and associated VLSI
architectures.
yuwen@video.ee.ntu.edu.tw

Ching-Yeh Chen was born in Taipei, Taiwan, in 1980. He received
the B.S. degree from the Department of Electrical Engineering, Na-
tional Taiwan University, Taipei, Taiwan, in 2002. He currently is
pursuing the Ph.D. degree at the Graduate Institute of Electronics En-
gineering, National Taiwan University. His research interests include
intelligent video signal processing, global/local motion estimation,
scalable video coding, and associated VLSI architectures.
cychen@video.ee.ntu.edu.tw

Chen-Han Tsai received the B.S. degree in electrical engineering
from National Taiwan University in 2002. Now he is working toward
the Ph.D. degree in the Graduate Institute of Electronics Engineering,
National Taiwan University. His major research interests include
face detection and recognition, motion estimation, H.264/AVC video
coding, digital TV systems, and related VLSI architectures.
phenom@video.ee.ntu.edu.tw

Chun-Fu Shen received the B.S. and M.S. degrees in electrical
engineering from National Taiwan University in 1996 and 1998, re-
spectively. After two years of military service, he joined VIVOTEK,
Inc., Taipei County, Taiwan, in 2000. He developed many video cod-
ing systems and IP camera products on DSP platforms and ASICs.

320 Huang et al.

His major research interests include JPEG, H.263, MPEG-4, and
H.264/AVC coding systems, network camera SOC, and embedded
systems.
sor@vivotek.com

Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He re-
ceived the B.S., M.S., and Ph.D. degrees in electrical engineering
from National Cheng Kung University, in 1979, 1981, and 1986,
respectively. He was an instructor (1981–1986), and an associate
professor (1986–1988) in the Department of Electrical Engineer-
ing, National Cheng Kung University. In the military service during
1987 and 1988, he was an associate professor in the Institute of Re-
source Management, Defense Management College. From 1988, he
joined the Department of Electrical Engineering, National Taiwan
University. During 1993 to 1994 he was a visiting consultant of DSP
Research Department, AT&T Bell Lab, Murray Hill. In 1997, he
was the visiting scholar of the Department of Electrical Engineer-
ing, University, of Washington, Seattle. Currently, he is a professor

of National Taiwan University. From 2004, he is also the executive
vice president and the general director of Electronics Research and
Service Organization (ERSO) in the Industrial Technology Research
Institute (ITRI). His current research interests are DSP architecture
design, video processor design, and video coding systems.
Dr. Chen is a Fellow of IEEE. He is also a member of the honor
society Phi Tau Phi. He was the general chairman of the 7th VLSI
Design CAD Symposium. He was also the general chairman of
the 1999 IEEE Workshop on Signal Processing Systems: Design
and Implementation. He has served as the associate editor of IEEE
Transactions on Circuits and Systems for Video Technology since
1996, the associate editor of IEEE Transactions on VLSI Systems
since 1999, the associate editor of Journal of Circuits, Systems, and
Signal Processing since 1999, and the guest editor of Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology
since 2001. Now he is also the associate editor of IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing
and the associate editor of Proceedings of the IEEE.
Dr. Chen received the Best Paper Awards from ROC Computer So-
ciety in 1990 and 1994. From 1991 to 2005, he received Long-Term
(Acer) Paper Awards annually. In 1992, he received the Best Paper
Award of the 1992 Asia-Pacific Conference on Circuits and Systems
in VLSI design track. In 1993, he received the Annual Paper Award
of Chinese Engineer Society. In 1996, he received the Outstand-
ing Research Award from National Science Council (NSC) and the
Dragon Excellence Award from Acer. He was elected as the IEEE
Circuits and Systems Distinguished Lecturer from 2001–2002.
lgchen@cc.ee.ntu.edu.tw

