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Abstract. Artificial spin ices are nanoscale geometrically engineered systems
that mimic the behavior of bulk spin ices at room temperature. We describe the
nanoscale magnetic interactions in a square spin ice lattice by an experimentally
verified model that accounts for the correct shape of the magnetic islands.
Magnetic force microscopy measurements on lithographically fabricated lattices
are compared to Monte Carlo simulations of the reversal process of two lattices
with different lattice spacings. Lattice node statistics and correlations show
significant differences in the reversal mechanism for lattices with different
spacings. The effect of structural variations is also compared for the two lattice
reversals.
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1. Introduction

The origin of magnetic frustration in bulk spin ices such as Ho2Ti2O7 and Dy2Ti2O7 arises from
the fact that the interaction energy is minimized by two-in, two-out arrangements of spins on
a corner-sharing tetrahedral network of magnetic ions [1]. The study of such magnetic spin
frustration has attracted much attention, as it results in remarkable properties, such as zero-
point entropy, and unexpected dynamic properties at low temperature [2–4]. As a result of
magnetic spin frustration, the ground states in these systems are degenerate, and as such it
is interesting to study how the system switches. However, since this behavior is only accessible
at very low temperatures, and the spin–spin interactions cannot be observed or mapped directly
to understand the correlations and formation of such states, there is growing interest in two-
dimensional (2D) artificial spin ices. An artificial spin ice consisting of single-domain islands
patterned in a regular 2D lattice offers significant advantages for the study of frustration
behavior, since the nm scale of the islands allows for direct observations of their magnetization
state and interactions at room temperature using a variety of observation techniques [5–7].
Additionally, lithography patterning provides flexible control of the lattice geometry (e.g.
square, Kagome and triangular) and the shape of the individual islands [8–10].

The main focus of research on artificial spin ices has been on understanding the ground-
state magnetic order. Analyses of the statistics of the different configurations that form at
the nodes between islands, and of correlations within the lattice, were carried out by Wang
et al [11] and Ke et al [10] for spin ice lattices in which the ground state was achieved through
ac demagnetizing protocols. Similar works on connected honeycomb lattices have reported on
correlations in the lattice [8] and on the switching fields of individual islands [12]. Similarly,
the ground state attained by thermalization has been studied to determine the statistical ordering
present in the system [13]. A different approach based on potential theory and the general
stray field approach has also been used to study the remanent states in square spin ices with
varying lattice spacing [7]. Of particular interest has been the observation of monopole and
antimonopole defects, which occur for particular node configurations with a net positive or
negative magnetic moment [5, 6, 12] and which are connected by the so-called ‘Dirac strings’.
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The study of magnetization reversal in artificial spin ices to understand the propagation of
defects such as monopole–antimonopole pairs has received attention only recently. In artificial
Kagome spin ices the reversal was observed to be mediated by Dirac string avalanches and
monopole propagation [5]. However, the analysis was presented for only one specific lattice
spacing. In another work, the reversal was studied as a function of interparticle spacing with a
focus on determining the energy barriers for magnetization switching of individual islands [14],
although the details of the statistics of node formation during the reversal were not presented.
The reversal of a square spin ice lattice of fixed lattice spacing was recently studied by Morgan
et al [15], with the observation of the formation of chains of flipped magnetization as a result of
a magnetic field applied slightly off the lattice diagonal. In addition, all the studies of reversal
reported to date have been for pulsed fields rather than for a continuously varying field.

Along with experimental work on artificial spin ices, considerable efforts have been
directed at the development of interaction models that provide information about the type of
order in the system (short range or long range). One such model based on dipolar interactions
was presented in [16, 17]. Similarly, a study of the effectiveness of demagnetizing protocols
through analysis of node statistics was presented in [18] for square spin ices. Models based on
charge interactions have also been investigated using micromagnetic simulations to understand
the nature of avalanches seen in the mesoscopic spin ice systems [19]. However, most models
assume a Hamiltonian consisting of pure point dipole interactions between the islands without
accounting for the individual island shape. It has been shown previously [6] that the shape of
the individual islands affects the magnetization within the island, thus altering the magnetic
interactions. A recent work combined experimental studies of the coercive fields during
the reversal process as a function of applied field angle, with micromagnetic simulations
using the true island shape [20]. Results were presented for a fixed lattice spacing, and analysis
of the node formation statistics was not included.

In this work, we seek to understand the magnetization reversal process in square artificial
spin ices. We develop a model based on a shape formalism in which we derive an analytical
expression to compute the interaction energy between island pairs taking into account the
actual shape of the island. We then explore the role of defects in the reversal process, their
formation and annihilation versus lattice spacing, and their effect on the order/disorder within
the lattices, aspects that have not previously been studied extensively. Experimental magnetic
force microscopy (MFM) observations of magnetization reversal as a function of lattice spacing
are then compared with Monte Carlo (MC) simulations by means of node statistics and
magnetization pattern correlations.

2. Model for interaction energy

The square lattice exhibits four distinct configurations of islands surrounding a lattice node, as
shown in figure 1; the degeneracy of each node type is indicated by a circled number, resulting
in 16 configurations. The dominant contributions to the interaction energy arise from nearest-
neighbor island interactions, and the pairwise magnetostatic interactions between islands are
computed using the magnetometric tensor field approach, which properly accounts for the
island shape [21]. Traditionally, each island is represented by a single volume dipole and
interactions are described by the standard dipolar tensor. At close proximity, however, shape
effects become important, and must be taken into account. In our approach, we write the
magnetostatic interaction energy between two uniformly magnetized objects of arbitrary shape
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Figure 1. Normalized interaction energy E/2Kd V (Kd = µ0 M2
0/2) versus

normalized lattice parameter a/2L y for four different node configurations
(defined in the inset) and two different island shapes: rectangular prism and
stadium. The purple curves were computed using the dipolar approximation,
whereas the blue (stadia) and orange (prisms) curves use the shape-dependent
interaction energy based on the magnetometric tensor field.

as

E(ρi j) = µ0 M2
0 Vi V j µ̂i :N (ρi j) : µ̂ j , (1)

where : denotes tensor contraction, µ̂i is the unit moment vector of island i , M0 is the saturation
magnetization (identical for all islands), Vi is the island volume andN (ρi j) is the magnetometric
tensor field, defined as the convolution of the shape–shape cross-correlation function and the
dipolar tensor field. In this approach, the magnetization in each island is assumed to be uniform
and is treated as an Ising variable and the shape anisotropy is included in the magnetometric
tensor field via the shape function. Further details of the magnetometric tensor field and a
detailed derivation of the interaction energy are given in the appendix. The energy is written
as a function of the separation vector ρi j = ri − r j , where ri locates the center of mass of
island i . The complete shape information is incorporated into the magnetometric tensor field.
The two shapes considered in this paper, prisms and stadia with dimensions (2L x , 2L y, 2L z),
are shown in figure 1 (inset) for a square lattice with parameter a. The experimental lattice
consists of stadia, but we also present results for the prism shape since it is the closest shape to a
stadium for which a complete analytical interaction energy can be computed. Figure 1 shows the
normalized energy for the independent node configurations as a function of the lattice parameter
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a/2L y; the energy plots were computed using the island dimensions of (L x , L y, L z) =

(100, 40, 10) nm for the prisms and (60, 40, 10) nm for the stadia. It should be noted that the
rounding of the stadium ends allows for a smaller separation distance between stadia compared
to prisms.

Figure 1 shows four energy curves for each node type; the purple curves were computed
using the dipolar approximation; blue curves represent the exact interaction energy for
uniformly magnetized stadia; and orange curves represent the prisms. The interaction energy
depends on the square of the volume of the islands; one of the volume factors is used for
normalization of the energy on the vertical axis, the other one remains. Since the stadium
and prism have different volumes, there are two separate dipolar curves for each shape in the
plots. Both blue and orange curves deviate significantly from the dipolar curves with decreasing
a/2L y , reflecting the importance of island shape. Only two node types have negative energy;
hence, in any stable spin ice lattice made from prisms or stadia, the local node configurations
are expected to be of the types I and II. Both these nodes satisfy the spin ice rule of two-in
and two-out. However, the difference between the two types is that type I node results in a
demagnetized state and type II node results in a saturated magnetization state. Type IV nodes
are energetically unfavorable, whereas type III nodes have zero energy due to pairs of mutually
perpendicular moments. For lattice spacings larger than about 5a, the dipolar approximation
becomes reasonably good, whereas for close separations it underestimates the energy by as
much as a factor of two.

3. Methods

3.1. Experimental

Artificial spin ice samples were fabricated by means of electron beam lithography as square
lattices of NiFe stadia (2L x = 290, 2L y = 130, 2L z = 20 nm), and lattice spacings of a = 390
(L390) and 700 nm (L700) patterned onto the same substrate. In a previous work [6], we
used high-resolution Lorentz transmission electron microscopy to visualize with high spatial
resolution the magnetic structure surrounding magnetic monopole defects and their role in the
demagnetization process for the L390 lattice. We have used MFM to study the dependence
of the magnetization reversal on lattice spacing and defect density. The distance between the
sample and the MFM tip was optimized at 50 nm to avoid superposition of topography on
the magnetic domain images. A commercial variable field module (Asylum Research) was
used to apply and maintain the magnetic field at the desired magnitude during scanning with
minimum interference to the Co-alloy-coated tip. This allowed us to study the reversal process
in a continuous manner as opposed to applying and removing a field pulse and studying the
remanent state. The L390 and L700 lattices were initially saturated by applying a field along
a lattice diagonal, forcing all nodes to be of type II. The field was then reversed and MFM
images of a selected larger area were recorded at intervals of 5 mT. The images were analyzed
digitally to determine the net magnetization within the region of interest, as well as the number
statistics of node types, vortices and edge configurations as a function of the applied field.
Animations showing the magnetization reversal for the L390 and L700 lattices are available in
the supplementary data at stacks.iop.org/NJP/14/075028/mmedia.
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3.2. Simulations

The total energy of the lattice in an in-plane applied field H can be written as

E = µ0 M2
0 V 2

N∑
i=1

µ̂i :
N∑

j=1

N (ρ j i) : µ̂ j − M0V H ·

N∑
i=1

µ̂i , (2)

where N is the total number of islands in the lattice. This expression was implemented in an
MC simulation to study the reversal behavior of the lattice as a function of applied field, H, and
lattice spacing, a. The simulations were carried out for several lattice sizes, and each lattice was
terminated along each edge with elements parallel to the edge, to reduce the effect of the lattice
edges. Free boundary conditions were used, so that edge elements have only three neighbors
instead of four. Simulations were carried out for both the stadium and prism shapes, using either
the dipolar approximation or the full shape-dependent interaction energies. We have assumed a
Gaussian distribution of reversal field strengths for individual elements around a mean Hc, with
standard deviation σ :

Pr(H) = e−
(Hp−Hc)2

2σ2 , (3)

where Hp is the component of the applied field along the long particle axis. This distribution
was employed in the MC algorithm in the form of its cumulative function [22]:

Cr(H) =
1

2

[
1 + erf

(
Hp − Hc

σ
√

2

)]
. (4)

The standard Metropolis algorithm was implemented for individual element reversals. A total of
5000 MC steps (each element is visited once in each MC step) was carried out for each applied
field strength, and various average parameters (energy, net magnetization and lattice node types)
were computed during the final 2500 MC steps at each field level. Increasing the number of
MC steps did not appreciably alter the resulting averages. For the node statistics, all results
were averaged over 24 separate MC runs, initialized with different random number generator
seeds. All simulations were carried out for the following Permalloy parameters and conditions:
saturation magnetization M0 = 7.958 × 10−4 A nm−1 and temperature T = 300 K. The starting
magnetization configuration was always taken to be saturated in the diagonal direction closest
to the applied field direction. Animations showing the results of MC simulations for both the
lattices are available in the supplementary data at stacks.iop.org/NJP/14/075028/mmedia. They
show the node statistics, applied field, net magnetization of the array and the correlation plots
(as described in section 4.3).

4. Results

4.1. Magnetization reversal of interior islands

Figure 2(a) shows the node statistics for all the interior nodes, i.e. the nodes away from the
edges of the lattice, during the experimental magnetization reversal of the L390 (top) and
L700 (bottom) lattices. At the reversal onset, the number of type II nodes, NII, decreases as
expected and the number of type III nodes, which correspond to magnetic monopole defects,
NIII, increases as the reversal proceeds. However, significant differences are observed between
the two lattice reversals: the reversal of L700 is dominated only by type III nodes, whereas
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Figure 2. Statistics for all interior node types during the magnetization reversal
as a function of applied field for the L390 (top row) and L700 (bottom row)
lattices. (a) Experimental, (b) MC simulation using dipolar approximation and
(c) exact energy model.

in L390 the reversal is accompanied by the formation of large numbers of other node types,
particularly type I. These results indicate that in the L390 lattice, the net magnetization is
reduced by the formation of type I nodes, leading to local regions of zero net magnetization,
whereas such regions are not formed in the L700 lattice. Consequently, achieving the ground
state of the square spin ice lattice, i.e. a state consisting of two-in, two-out configurations at
each node and zero net magnetization, becomes more difficult with increasing lattice spacing.
Also, the distribution of node types for the L390 lattice is seen to be narrower as compared to
that for the L700 lattice.

Figures 2(b) and (c) show the averaged results of 24 MC runs for lattices of 32 × 32 stadia
considering only the dipolar energy approximation and using the exact energy of the islands,
respectively. The reversal probability of an individual island was assumed to have a Gaussian
distribution. The mean value for this reversal field and the standard deviation were varied
such that the simulations showed the node counting statistics in reasonable agreement with the
experimental results. The values used for the plots in figures 2(b) and (c) are a mean of 44 mT
and a standard deviation 2.5 mT for the L390 lattice and 65 and 5.5 mT for the L700 lattice,
respectively. For the L390 lattice, there are differences between the node statistics predicted by
the dipolar approximation model and the exact energy model. This can be explained because for
the L390 lattice with a lattice parameter a/2L y = 3, there are significant differences between the
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interaction energies of the node types as computed by using the dipolar approximation and exact
energy (figure 1). For the L700 lattice however, the dipolar approximation and the exact energy
model predict similar node statistics which are in good agreement with the experimental data.
This again can be explained because for the L700 lattice with a lattice parameter a/2L y = 5.3,
there is not much difference between the interaction energies as computed using the dipolar
approximation and exact energy model. The MC simulations also predict a difference in the
reversal behavior for the two lattices. According to the exact energy model, the number of type I
nodes formed during reversal of the L390 lattice is significantly higher than for the L700 lattice,
which agrees with the experimental observations. It should be noted that the MC simulations
account for all the interactions within the lattice, not just the nearest neighbor interactions. For
the L700 lattice, the percentage of various nodes formed during the reversal are quantitatively
close to those observed during the experiments. For the L390 lattice, the predicted percentage
of type III and type I nodes is slightly larger than those observed during the experiments. Our
results show that the dipolar approximation fails to account for the effect of lattice spacing
during the magnetization reversal of spin ices. The exact energy model, however, captures all
the essential features of the experimentally observed reversal process.

The experimental and exact energy model results indicate that magnetization reversal in
the L390 and L700 lattices occurs via different mechanisms. This can be understood in the
following manner: reversal in both lattices is initiated by the formation of type III nodes because
they are easily created from type II nodes by magnetization reversal of only one island. In the
L390 lattice, the reversal then proceeds by propagation of type III nodes or monopole defects.
As these defects move through the lattice, they lead to the creation of type I nodes with local zero
magnetization, leading to an increase in NI. The smaller lattice spacing of L390 leads to stronger
interactions between neighboring islands. Thus, when one island reverses its magnetization, it
forces the neighboring islands to reverse as well, causing a cascading propagation of monopole
defects. In the L700 lattice, due to the larger spacing, the interactions between the neighboring
islands are weaker. The islands reverse independently of each other; although this results in an
increased NIII, there is no propagation of monopole defects and a cascading effect is not seen,
resulting in low NI values.

Further, a Gaussian function was fitted to the experimental node statistics using a curve
fitting program and the mean and sigma of the function were calculated as: the mean and
sigma were determined to be 49 and 3 mT for the L390 lattice and 58 and 8 mT for the L700
lattice. This agrees with the parameters used in simulations where the sigma for the reversal
field in L390 is smaller than that of L700. The differences can be understood by taking into
consideration that all the islands in the experimental lattice are not exactly the same. There
are small structural variations which occur as a result of the patterning process, which affects
the distribution of the reversal fields of the islands. In the L390 lattice reversal, as a result
of the stronger interactions, the structural variations are dominated by the cascading effect,
leading to a narrow distribution of interior nodes. In the L700 lattice, however, since there are
no strong interactions, the variations in the island structure dominate the reversal, leading to a
wider distribution.

4.2. Magnetization reversal of edge islands

We also investigated the statistics of the edge nodes during magnetization reversal. Figure 3(a)
shows the node statistics of the edge nodes formed during the experimental magnetization
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Figure 3. Statistics for the edge node types during the magnetization reversal as
a function of applied field for the L390 (top row) and L700 (bottom row) lattices.
(a) Experimental, (b) MC simulation using dipolar approximation and (c) exact
energy model.

reversal process, and the inset shows the different types of edge nodes. Similar to the results
obtained for the internal nodes, significant differences are observed in the edge nodes formed
during the reversal of the two lattices. In L390, e1 and e3 nodes (shown in the inset of figure 3)
form before the reversal onset of the interior nodes, and their number decreases slowly well
after the interior reversal is complete; for the L700 lattice these edge nodes are formed before
the onset of reversal of the interior nodes, and their reversal is complete before the completion
of the reversal of the interior nodes. In addition, the width of the distribution of edge nodes
for the L390 lattice is significantly broader than that of the L700 lattice, which is opposite to
what is observed for the interior nodes. Figures 3(b) and (c) show the node statistics for the
edge nodes as predicted by the MC simulations using the dipolar approximation model and
using the exact energy model, respectively. The mean and sigma of the Gaussian distribution of
the reversal probability were taken to be the same as those for the interior nodes. The dipolar
approximation model predicts the same reversal behavior for the edge nodes of the L390 and
L700 lattices, which is not what is seen experimentally. However, the exact energy model
predicts a difference in the width of the distributions for the L390 and L700 lattices, which
is qualitatively similar to the experimental observations. It can be noted that the field values
at which onset of reversal of the edge nodes occurs are lower in the experimental data than
those predicted by the exact energy model. This is because the experimental lattice has different
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and close to zero net magnetization (right) for the L390 lattice.

types of edges; two of the edges of the lattice terminate with islands having only three nearest
neighbors, while the remaining two edges terminate with islands having four nearest neighbors.
During the experiments, only one edge terminating with islands having three nearest neighbors
was used for accounting for the reversal statistics.

The differences between the behaviors for edge and interior nodes can be understood from
the fact that the edge nodes have only three interacting islands rather than four. Thus the field
required to reverse the magnetization of one edge island is expected to be smaller than in the
lattice interior, causing the reversal process to initiate at the lattice edges for both the L390
and L700 lattices, in agreement with MFM observations. However, complete reversal of the
edges in L390 does not occur until after all interior nodes have reversed. The widening of the
distribution of the edge nodes is a result of the absence of the cascading effect at the edges
combined with more structural variations in the islands along the edges. In the L700 lattice,
since there is no strong correlation between the islands, the edge islands reverse in the same
manner as the interior islands, i.e. in a random, uncorrelated way. Thus the edge reversal begins
and ends at slightly lower field values as compared to the interior nodes. The mean and sigma
for the experimental distribution of edge nodes was determined by fitting a Gaussian function as
46 and 12 mT for the L390 lattice and 31 and 6 mT for the L700 lattice. Comparing these values
with those for the interior nodes, it can be seen that for the L390 lattice, the mean reversal field
is almost the same for interior and edge islands but the sigma is larger for the edge islands. For
the L700 lattice, the mean reversal field for the edge islands is approximately half of the interior
islands, but sigma is approximately the same.

4.3. Visualization of lattice correlations

It is also important to understand the type of order (long range or short range) that develops
during the magnetization reversal of the spin ice lattices, and this can be determined by analysis
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of the lattice correlations. We have used a Fourier transform-based method to visualize these
correlations during the magnetization reversal, similar to methods used in surface magnetization
characterization [23]. In this method, binary magnetization maps were generated from the
simulations as well as from experimental MFM images in which the islands were assigned white
color if the magnetization of that island was pointing along the positive x- or y-direction and
black color if it was pointing along the negative x- or y-direction. A 2D correlation plot was then
computed from these binary images using Fourier transforms. Figure 4 shows the simulated and
experimental plots at different field values during reversal of the L390 lattice. In the saturated
state (field applied along the diagonal) the plots show peaks (bright regions) at regular intervals
extending throughout Fourier space, indicating perfect correlation in the saturated lattice. As
the field strength decreases towards zero, these sharp peaks begin to disappear because the
correlation length decreases as other node types are formed. Of particular importance is the
correlation plot at close to zero net magnetization: two clear correlation peaks are present in
the direction of the applied field (along the diagonal) which indicate positive correlation and are
indicative of stronger interactions in the lattice and a finite correlation length. The experimental
plot shows a few more peaks because it does not correspond to the exact point of the net
magnetization going to zero in the lattice. Similar plots computed for the L700 lattice show the
absence of any peaks, indicating that the magnetization reversal process in this lattice occurs in
a more random manner with an almost zero correlation length.

5. Summary

We have developed a model for the magnetostatic interactions in square artificial spin ices based
on the correct shapes of the individual islands. This model was then used in MC simulations
to understand the experimentally observed magnetization reversal. Both experiments and
exact-energy simulations indicate that the reversal mechanism depends on lattice spacing. In
closely spaced lattices, the reversal occurs primarily by the formation and propagation of
monopole defects via a cascading effect that leads to the formation of local regions of zero
net magnetization. For lattices with larger lattice spacing, monopole defects are formed during
reversal, but there is no propagation and reversal occurs randomly throughout the lattice. We
have shown that the model based on a dipolar approximation for interaction energy fails to
account for these differences in reversal mechanism. We have also studied the reversal of
the edge islands and compared it with the reversal of the interior islands. In closely spaced
lattices, the structural variations in the experimental lattices do not strongly affect the reversal
behavior of the interior islands but do affect the reversal of edge islands. In a lattice with larger
spacing, the reversal of both the interior and edge islands is equally affected by such structural
imperfections.
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Appendix. Derivation of interaction energy

The magnetostatic interaction energy between two uniformly magnetized objects of arbitrary
shapes can be written as

E(ρi j) = µ0 M2
0 Vi V j µ̂i :N (ρi j) : µ̂ j , (A.1)

where µ̂i is the unit magnetic moment vector of island i , M0 is the saturation magnetization
(taken to be identical in both islands), Vi is the island volume and N (ρi j) is the magnetometric
tensor field. The energy is written as a function of the separation vector ρi j = ri − r j between the
two islands, where ri is the position vector of the center of mass of island i . The magnetometric
tensor field is defined by the convolution of the overlap function C(ρi j) and the standard dipolar
interaction tensor D(ρi j). The overlap function depends on the shape of individual islands as
described by their shape function, D(r), which equals 1 inside the shape and 0 elsewhere. The
overlap function is computed as a cross-correlation C(ρi j) = Di(r) ⊗ D j(−r)/Vi V j , where ⊗

denotes the convolution product. When the shape function and its Fourier transform, the shape
amplitude D(k), are known analytically, the overlap function can sometimes be expressed
analytically. For more complex shapes, the magnetometric tensor field must be computed
numerically, to obtain the interaction energy (A.1).

The geometries considered in this paper are shown in figure 1(inset). For each case, there
are two interaction types to be considered: between pairs of islands (1)–(1) and (2)–(2) and
between pairs of type (1)–(2). Due to the square symmetry of the lattice, interactions of the
type (1)–(1) and (2)–(2) are energetically equivalent. The shape amplitudes D(k) are needed
for the computation of the overlap function; for a rectangular prism, (p), with edge lengths
(2L x , 2L y, 2L z) along the Cartesian axes, the shape amplitude is given by [24]

D(p)(k) = V sinc(L xkx) sinc(L yky) sinc(L zkz), (A.2)

where V = 8L x L y L z is the volume and sinc(x) = sin(x)/x . For the stadium shape (s) in the
same orientation, with lengths (2(L x + L y), 2L y, 2L z), the shape amplitude is given by

D(s)(k) =
4L2

y

kx
sinc(kz L z)

∫ +L y

−L y

dy cos(yky) sin
(

kx

[√
L2

y − y2 + L x

])
. (A.3)

The y-integral does not have a simple analytical solution, so that the magnetometric tensor field
for the stadium shapes requires a numerical approach. For the rectangular prisms, however, the
computations can be carried out analytically.

The interaction energy for (1)–(1) prism island pairs (with uniform magnetization along
the x-direction) is given by

Ē (1)−(1)(ρ) =

∫ ∫ ∫
d3r C(r)Dxx(ρ − r). (A.4)

Normalizing the coordinates by the length of the island, 2L x , and introducing two dimensionless
parameters, τy ≡ L y/L x and τz ≡ L z/L x , the overlap function and the dipolar tensor can be
written as

C(ρ̄x , ρ̄y, 0) = 8L3
xτz C(1)−(1)(ρ̄x , ρ̄y) with

C(1)−(1)(ρ̄x , ρ̄y) ≡ (1 − |ρ̄x |)(τy − |ρ̄y|)
(A.5)

and

Dxx(ρ̄x − x̄, ρ̄y − ȳ, 0 − z̄) =
1

32π L3
x

−2(ρ̄x − x̄)2 + (ρ̄y − ȳ)2 + z̄2

((ρ̄x − x̄)2 + (ρ̄y − ȳ)2 + z̄2)5/2
, (A.6)
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where ρ̄ = ρ/L x . Substituting the terms back into equation (A.4), integrating over z and
denoting p2

= (ρ̄x − x̄)2 + (ρ̄y − ȳ)2 and q = (ρ̄y − ȳ)2
− 2(ρ̄x − x̄)2, the final expression for the

prism interaction energy of type (1)–(1) can be written as

Ē (1)−(1)
xx (ρ̄x , ρ̄y, 0) =

4L3
xτ

2
z

π

∫ +1

−1
dx̄

∫ +τy

−τy

dȳ C(1)−(1)(x̄, ȳ)
2qτ 2

z + p2(3q + τ 2
z )

3p4(p2 + τ 2
z )3/2

. (A.7)

Similarly, for the type (1)–(2) prism interaction, with the type (2) elements uniformly
magnetized along the y-direction, the overlap function can be determined as (in normalized
coordinates)

C(ρ̄x , ρ̄y, 0) = 2τz L3
x C

(1)−(2)(ρ̄x , ρ̄y), (A.8)

with

C(1)−(2)(ρ̄x , ρ̄y) ≡

(
|
1 + τy

2
− ρ̄x | + |

1 + τy

2
+ ρ̄x | − |

1 − τy

2
+ ρ̄x | − |

1 − τy

2
− ρ̄x |

)
×

(
|
1 + τy

2
− ρ̄y| + |

1 + τy

2
+ ρ̄y| − |

1 − τy

2
+ ρ̄y| − |

1 − τy

2
− ρ̄y|

)
,

and the relevant dipolar tensor element as

Dxy(ρ̄x − x̄, ρ̄y − ȳ, −z̄) = −
3

32π L3
x

(ρ̄x − x̄)(ρ̄y − ȳ)

[(ρ̄x − x̄)2 + (ρ̄y − ȳ)2 + z̄2]5/2
. (A.9)

After integrating over z, the interaction energy for type (1)–(2) prisms is given by

Ē (1)−(2)
xy (ρ̄x , ρ̄y, 0) = −

L3
xτ

2
z

π

∫ (1+τy)/2

−(1+τy)/2
dx̄

∫ (1+τy)/2

−(1+τy)/2
dȳ C(1)−(2)(ρ̄x , ρ̄y)

s(3p2 + 2τ 2
z )

p4(p2 + τ 2
z )3/2

, (A.10)

with s = (ρ̄x − x̄)(ρ̄y − ȳ). While the integrals (A.7) and (A.10) can be carried out analytically,
they do not represent any numerical problems since the arguments are well behaved inside the
finite integration domain. The interaction energies can be computed for any relative position
vector ρ for which the prisms do not overlap; the denominators of equations (A.7) and (A.10)
do not vanish for any such positions.

© US Government.
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