Charu Ramakrishnan

Charu Ramakrishnan
  • MS, M.Phil.
  • Stanford University

About

200
Publications
59,582
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,261
Citations
Current institution
Stanford University
Additional affiliations
April 1998 - present
Stanford University
January 1992 - December 1995

Publications

Publications (200)
Article
Full-text available
The central amygdala (CeA) plays a crucial role in defensive and appetitive behaviours. It contains genetically defined GABAergic neuron subpopulations distributed over three anatomical subregions, capsular (CeC), lateral (CeL), and medial (CeM). The roles that these molecularly- and anatomically-defined CeA neurons play in appetitive behavior rema...
Preprint
Full-text available
Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief. While mu opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the pos...
Conference Paper
Neuronal activity robustly drives glioma progression, mediated through paracrine and synaptic neuron-to-glioma interactions. Recent research has focused on glutamatergic and GABAergic neurons, while the impact of neuromodulatory neuron subpopulations and their long-range projections remain unexplored. Here, we explore the glioma-promoting effects o...
Article
A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of their functional capabilities. By coupling monosynaptic rabies tracing with intersectional genetic targeting in male and female mice, we found that VTA VGluT2...
Preprint
Full-text available
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In D...
Article
Full-text available
The parasubthalamic nucleus (PSTN) is activated by refeeding after food deprivation and several PSTN subpopulations have been shown to suppress feeding. However, no study to date directly addressed the role of PSTN neurons activated upon food access in the control of ensuing food consumption. Here we identify consumption latency as a sensitive beha...
Preprint
Full-text available
The central amygdala (CeA) plays a crucial role in defensive and appetitive behaviours. It contains genetically defined GABAergic neuron subpopulations distributed over three anatomical subregions, capsular (CeC), lateral (CeL), and medial (CeM). The roles that these molecularly- and anatomically-defined CeA neurons play in appetitive behavior rema...
Preprint
Full-text available
Behavioral states such as sleep and wake are highly correlated with specific patterns of rhythmic activity in the cortex. During low arousal states such as slow wave sleep, the cortex is synchronized and dominated by low frequency rhythms coordinated across multiple regions. Although recent evidence suggests that GABAergic inhibitory neurons are ke...
Preprint
Full-text available
Ventral tegmental area (VTA) glutamatergic neurons participate in reward, aversion, drug-seeking, and stress. Subsets of VTA VGluT2+ neurons are capable of co-transmitting glutamate and GABA (VGluT2+VGaT+ neurons), transmitting glutamate without GABA (VGluT2+VGaT- neurons), or co-transmitting glutamate and dopamine (VGluT2+TH+ neurons), but whether...
Preprint
Full-text available
The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate...
Article
Full-text available
Endocannabinoid (eCB)–mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, an...
Preprint
Full-text available
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and mal-adaptive behaviors induced by severe threats and is expressed in limbic circuit...
Preprint
Full-text available
Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience.However, the mechanisms by which VGLUT2/dV...
Article
Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astroc...
Article
Full-text available
With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pa...
Article
Full-text available
Animals must continually evaluate stimuli in their environment to decide which opportunities to pursue, and in many cases these decisions can be understood in fundamentally economic terms. Although several brain regions have been individually implicated in these processes, the brain-wide mechanisms relating these regions in decision-making are uncl...
Article
Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the...
Article
Full-text available
Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli. Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. In this study, we established that three genetic...
Article
KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced...
Preprint
Full-text available
A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA as well as functionally signals rewarding and aversive outcomes. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of the functional capabilities of these neurons. To identify the inputs to VTA VGluT2+VGaT+ neuro...
Article
Full-text available
Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1–3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3–8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there coul...
Article
Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal...
Preprint
Full-text available
The parasubthalamic nucleus (PSTN) is responsive to refeeding after food deprivation and PSTN subpopulations can suppress feeding. However, no study directly addressed the role of PSTN neurons activated upon food access resumption. Here we show that the ensemble of refeeding-activated PSTN neurons massively increases the latency to initiate refeedi...
Preprint
Full-text available
The ability to record, stimulate, and modify brains of living animals would unlock numerous research opportunities and create potential clinical interventions, but it is difficult to interface with a living neural network without damaging it. We previously reported a novel approach to building neural interfaces, namely: genetically programming cell...
Preprint
Full-text available
Multicellular biological systems, most notably living neural networks, exhibit highly complex physical organization properties that pose challenges for building cell-specific and biocompatible interfaces. We developed a novel approach to genetically program cells to chemically assemble artificial structures that modify the electrical properties of...
Preprint
Full-text available
Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli. Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. Here, we establish that three genetic dopamine s...
Preprint
The rich repertoire of skilled mammalian behavior is the product of neural circuits that generate robust and flexible patterns of activity distributed across populations of neurons. Decades of associative studies have linked many behaviors to specific patterns of population activity, but association alone cannot reveal the dynamical mechanisms that...
Preprint
Full-text available
The KCR channelrhodopsins are recently-discovered light-gated ion channels with high K ⁺ selectivity, a property that has attracted broad attention among biologists– due to intense interest in creating novel inhibitory tools for optogenetics leveraging this K ⁺ selectivity, and due to the mystery of how this selectivity is achieved in the first pla...
Article
Full-text available
Dopamine signaling from the ventral tegmental area (VTA) plays critical roles in reward-related behaviors, but less is known about the functions of neighboring VTA GABAergic neurons. We show here that a primary target of VTA GABA projection neurons is the ventral pallidum (VP). Activity of VTA-to-VP-projecting GABA neurons correlates consistently w...
Article
Full-text available
Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular,...
Preprint
Striatal dopamine released from the axons of midbrain dopamine neurons has been linked to a wide range of functions, including movement control and reward-based learning. Recent studies have reported functional signaling differences between axons and somas of dopamine neurons, suggesting that local modulation controls dopamine release and calling i...
Article
Opioid analgesics mimic endogenous opioid peptide function in nociceptive neural circuits by engaging mu opioid receptor (MOR) signaling, resulting in antinociception and pain relief. The ventrolateral periaqueductal gray (vlPAG) is a hub of nociceptive and endogenous opioid signaling in the brain. However, much remains unknown regarding opioid pep...
Article
With concurrent global epidemics of opioid use and chronic pain disorders, there is a critical need to identify, target, observe and manipulate specific cell populations in the peripheral and central nervous systems expressing the mu-opioid receptor (MOR). To gain long-term access to neural cells types and circuits involved in modulating pain, anal...
Article
Pain is an unpleasant emotional experience driven by the transformation of sensory neural signals into affective-cognitive information in cortical regions, including the anterior cingulate cortex (ACC). Opioid action in the ACC ameliorates aspects of the aversive quality of pain through mu opioid receptors (MOR). We hypothesized that MOR-expressing...
Article
Full-text available
ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsin...
Article
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1⁺) populations and identified 1,415 genes expressed differentially between s...
Article
Full-text available
Can direct stimulation of primate V1 substitute for a visual stimulus and mimic its perceptual effect? To address this question, we developed an optical-genetic toolkit to 'read' neural population responses using widefield calcium imaging, while simultaneously using optogenetics to 'write' neural responses into V1 of behaving macaques. We focused o...
Article
Significance Cell classes are the building blocks for the central nervous system. It is widely believed that major neuronal classes have been identified in the retina, although some types in the amacrine cell class have not been fully characterized. Here, we describe a retinal interneuron that does not fit into any existing retinal cell class, and...
Article
Full-text available
The basolateral amygdala (BLA) plays essential roles in behaviors motivated by stimuli with either positive or negative valence, but how it processes motivationally opposing information and participates in establishing valence-specific behaviors remains unclear. Here, by targeting Fezf2-expressing neurons in the BLA, we identify and characterize tw...
Article
Full-text available
Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson’s disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that...
Article
The lateral hypothalamic area (LHA) regulates feeding- and reward-related behavior, but because of its molecular and anatomical heterogeneity, the functions of defined neuronal populations are largely unclear. Glutamatergic neurons within the LHA (LHAVglut2) negatively regulate feeding and appetitive behavior. However, this population comprises tra...
Preprint
Full-text available
ChRmine, a recently-discovered bacteriorhodopsin-like cation-conducting channelrhodopsin, exhibits puzzling properties (unusually-large photocurrents, exceptional red-shift in action spectrum, and extreme light-sensitivity) that have opened up new opportunities in optogenetics. ChRmine and its homologs function as light-gated ion channels, but by p...
Article
In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reac...
Article
Full-text available
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access s...
Article
Full-text available
Significance Dopamine (DA) and serotonin (5-HT) release in the nucleus accumbens (NAc) influence motivated behaviors, yet the mechanisms by which they modulate NAc activity are unclear. Here, we report that DA selectively reduced excitatory postsynaptic currents (EPSCs) from paraventricular thalamus (PVT) inputs, whereas 5-HT reduced EPSCs from PVT...
Article
Full-text available
The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and com...
Preprint
Full-text available
Can direct stimulation of primate V1 substitute for a visual stimulus and mimic its perceptual effect? To address this question, we developed an optical-genetic toolkit to "read" neural population responses using widefield calcium imaging, while simultaneously using optogenetics to "write" neural responses into V1 of behaving macaques. We focused o...
Article
Full-text available
Achieving temporally precise, noninvasive control over specific neural cell types in the deep brain would advance the study of nervous system function. Here we use the potent channelrhodopsin ChRmine to achieve transcranial photoactivation of defined neural circuits, including midbrain and brainstem structures, at unprecedented depths of up to 7 mm...
Preprint
Full-text available
Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. Although there is growing evidence that astrocytes modulate synaptic excitation, the extent to which astrocytes modulate inhibition remains unknown. Additionally, tools that can selectively activate native G protein signaling pathways in astrocy...
Article
Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during v...
Article
The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the dir...
Article
Full-text available
Ventral tegmental area (VTA) neurons play roles in reward and aversion. We recently discovered that the VTA has neurons that co-transmit glutamate and GABA (glutamate-GABA co-transmitting neurons), transmit glutamate without GABA (glutamate-transmitting neurons), or transmit GABA without glutamate (GABA-transmitting neurons). However, the functions...
Article
The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and...
Preprint
Full-text available
Neurons in the CNS are distinguished from each other by their morphology, the types of the neurotransmitter they release, their synaptic connections, and their genetic profiles. While attempting to characterize the retinal bipolar cell (BC) input to retinal ganglion cells (RGCs), we discovered a previously undescribed type of interneuron in mice an...
Article
Full-text available
Neurons undergo nanometer-scale deformations during action potentials, and the underlying mechanism has been actively debated for decades. Previous observations were limited to a single spot or the cell boundary, while movement across the entire neuron during the action potential remained unclear. Here we report full-field imaging of cellular defor...
Article
From genetics to material to behavior Introducing new genes into an organism can endow new biochemical functions or change the patterns of existing functions, but extending these manipulations to structure at the tissue level is challenging. Combining genetic engineering and polymer chemistry, Liu et al. directly leveraged complex cellular architec...
Article
Full-text available
Unlike the sensory thalamus, studies on the functional organization of the midline and intralaminar nuclei are scarce, and this has hindered the establishment of conceptual models of the function of this brain region. We investigated the functional organization of the paraventricular nucleus of the thalamus (PVT), a midline thalamic structure that...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Brain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and ast...
Article
Full-text available
There is growing evidence that interneurons (INs) orchestrate neural activity and plasticity in corticoamygdala circuits to regulate fear behaviors. However, defining the precise role of cholecystokinin-expressing INs (CCK INs) remains elusive due to the technical challenge of parsing this population from CCK-expressing principal neurons (CCK PNs)....
Poster
In primates, visual perception is likely to be mediated by large populations of V1 neurons organized into multiple overlaid topographic maps. The distributed and topographic nature of V1’s representations raises the possibility that in some tasks, downstream areas that decode V1 signals in order to mediate perception could combine V1 signals at the...
Article
Full-text available
Neuropathic pain can be a debilitating condition with both sensory and affective components, the underlying brain circuitry of which remains poorly understood. In the present study, a basolateral amygdala (BLA)–prefrontal cortex (PFC)–periaqueductal gray (PAG)–spinal cord pathway was identified that is critical for the development of mechanical and...
Preprint
Calcium imaging has rapidly developed into a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of new principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon (2P) imaging, however, cann...
Preprint
Full-text available
Neurons undergo nanometer-scale deformations during action potentials, and the underlying mechanism has been actively debated for decades. Previous observations were limited to a single spot or the cell boundary, while movement across the entire neuron during the action potential remained unclear. We report full-field imaging of cellular deformatio...
Article
Full-text available
Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine...
Article
Full-text available
Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter populati...
Article
Brain circuit visualization and manipulation How are behaviorally relevant representations of the outside world initiated and manifested in the mammalian brain? Marshel et al. combined a channelrhodopsin with an improved holographic stimulation technique to examine activity in the mouse visual cortex, including its deep layers. Optogenetic stimulat...
Preprint
Full-text available
Brain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and ast...
Article
To decipher dynamic brain information processing, current genetically encoded calcium indicators (GECIs) are limited in single action potential (AP) detection speed, combinatorial spectral compatibility, and two-photon imaging depth. To address this, here, we rationally engineered a next-generation quadricolor GECI suite, XCaMPs. Single AP detectio...
Article
Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here, we test the feasibility of a focal stimulation approach using stimulated emission depletion/reversible saturable...
Article
Full-text available
Distinct but partially overlapping subsets of neurons in the orbitofrontal cortex of mice respond to feeding and/or social stimuli and, when optogenetically stimulated at single-cell resolution, specifically regulate reward-seeking behaviours.
Presentation
395.08 / EE12 Retinal Circuitry http://www.abstractsonline.com/pp8/index.html#!/4649/presentation/24588
Article
Humans have remarkable scale-invariant visual capabilities. For example, our orientation discrimination sensitivity is largely constant over more than two orders of magnitude of variations in stimulus spatial frequency (SF). Orientation-selective V1 neurons are likely to contribute to orientation discrimination. However, because at any V1 location...
Article
Full-text available
Midbrain dopamine (DA) neurons have diverse functions that can in part be explained by their heterogeneity. Although molecularly distinct subtypes of DA neurons have been identified by single-cell gene expression profiling, fundamental features such as their projection patterns have not been elucidated. Progress in this regard has been hindered by...
Article
Full-text available
The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However...
Article
Full-text available
Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore...
Preprint
Full-text available
Achieving reversible, temporally specific inhibition of motor neurons has the potential to revolutionize treatment of disorders marked by muscle hyperactivity. Current treatment strategies are inadequate – surgical interventions are irreversible and pharmaceutical interventions have off-target effects. Optogenetic strategies for inhibiting muscle a...
Preprint
Full-text available
Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here we propose a novel focal stimulation approach using STED/RESOLFT-like illumination, whereby switchable light-gated...
Article
Transcriptome mapping in the 3D brain RNA sequencing samples the entire transcriptome but lacks anatomical information. In situ hybridization, on the other hand, can only profile a small number of transcripts. In situ sequencing technologies address these shortcomings but face a challenge in dense, complex tissue environments. Wang et al. combined...
Article
Full-text available
Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the...
Article
Full-text available
Experience-driven synaptic plasticity in the lateral amygdala is thought to underlie the formation of associations between sensory stimuli and an ensuing threat. However, how the central amygdala participates in such a learning process remains unclear. Here we show that PKC-δ-expressing central amygdala neurons are essential for the synaptic plasti...
Article
The quiescence of adult neural stem cells (NSCs) is regulated by local parvalbumin (PV) interneurons within the dentate gyrus (DG). Little is known about how local PV interneurons communicate with distal brain regions to regulate NSCs and hippocampal neurogenesis. Here, we identify GABAergic projection neurons from the medial septum (MS) as the maj...
Article
Full-text available
Water deprivation produces a drive to seek and consume water. How neural activity creates this motivation remains poorly understood. We used activity-dependent genetic labeling to characterize neurons activated by water deprivation in the hypothalamic median preoptic nucleus (MnPO). Single-cell transcriptional profiling revealed that dehydration-ac...
Article
Full-text available
Author summary Episodic memories relate positive or negative experiences to environmental context. The neurophysiological mechanisms of this connection, however, remain unknown. Hippocampal place cells represent location, but it is unclear if they encode only the spatial representation of the environment or if they are also processing information a...
Data
Differential navigation in continuous T-maze task. (A) Navigation trajectory from the preference group of animals (n = 10) during the last training session (left panels) and during the probe (middle panels). The right panels show the respective time rate maps, where darker grey represents pixels with longer dwell time. The numbers on the right show...
Data
Evaluation of the center of mass spatial location during the probe. (A) Three sample place cells recorded from the reward loop of the training sessions (reward loop cells) from three representative animals. Upper panels show the animal trajectory with spikes, marked with colored dots and their color-coded firing rate map (right) from the last train...

Network

Cited By