Charlotte Scholtes

Charlotte Scholtes

About

19
Publications
4,144
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
349
Citations
Introduction
Dr. Charlotte Scholtes completed her Ph.D. at the University of Claude Bernard Lyon 1, focusing on mitochondrial dynamics and apoptosis in muscle degeneration using C. elegans. She then conducted a postdoctoral fellowship at McGill University's Goodman Cancer Institute, studying the nuclear receptor ERRa and mitochondrial metabolism. In 2024, she joined the CarMeN Laboratory to investigate MAMs and type 2 diabetes and received a grant from the Fondation pour la Recherche Médicale (FRM).
Education
September 2011 - June 2014
Claude Bernard University Lyon 1
Field of study
  • Genetics, Cellular biology and Pathologies
September 2009 - June 2011
Université Bourgogne Europe
Field of study
  • Biology

Publications

Publications (19)
Article
Full-text available
Objectives Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the...
Article
Full-text available
Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular...
Preprint
Objective Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the...
Article
Full-text available
Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues...
Article
Objective Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered t...
Article
Full-text available
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis¹. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile...
Article
Full-text available
Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metaboli...
Article
Full-text available
Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a technique to study protein complexes on chromatin. The protocol below describes specific steps for RIME analysis of the male human-derived prostate cancer cell line LNCaP. This approach can also be applied to other prostate cancer cell lines such as 22Rv1, DU145, and PC3....
Article
Transcriptional regulation of catabolic pathways is a central mechanism by which cells respond to physiological cues to generate the energy required for anabolic pathways, transport of molecules and mechanical work. Nuclear receptors are members of a superfamily of transcription factors that transduce hormonal, nutrient, metabolite and redox signal...
Article
Full-text available
Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insu...
Article
A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independe...
Preprint
Full-text available
Noradrenaline is the primary physiological regulator of adipocyte thermogenesis in response to decreased environmental temperature ¹ . However, the molecular factors and effector pathways that lie downstream of noradrenaline-stimulated thermogenesis are still not fully understood but are purportedly driven by cAMP downstream of β-adrenergic recepto...
Preprint
Full-text available
Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular...
Article
Full-text available
The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we repo...
Article
Full-text available
Reactive oxygen species (ROS) such as superoxide anion (O2•−) and hydrogen peroxide (H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation, or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative eustress) as signaling molecules but also harmful (oxidative distress)...
Article
Full-text available
Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct...
Article
Full-text available
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is of...
Article
Full-text available
The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD) is one of the most comm...

Network

Cited By