Charlotte Lucy O'Brien

Charlotte Lucy O'Brien
  • PhD, University of Bristol
  • Yale University

About

23
Publications
10,932
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,414
Citations
Current institution
Yale University

Publications

Publications (23)
Article
Full-text available
The Oligocene (33.9–23.03 Ma) had warm climates with flattened meridional temperature gradients, while Antarctica retained a significant cryosphere. These may pose imperfect analogues to distant future climate states with unipolar icehouse conditions. Although local and regional climate and environmental reconstructions of Oligocene conditions are...
Preprint
Full-text available
The Oligocene (33.9–23.03 Ma) was characterised by generally warm climates, with flattened meridional temperature gradients while Antarctica retained a significant cryosphere. This makes the Oligocene an imperfect analogue to long-term future climate states with unipolar icehouse conditions. Although local and regional climate and environmental rec...
Article
Full-text available
Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data hav...
Article
Full-text available
Significance The temperature difference between low and high latitudes is one measure of the efficiency of the global climate system in redistributing heat and is used to test the ability of models to represent the climate system through time. Here, we show that the latitudinal temperature gradient has exhibited a consistent inverse relationship wi...
Article
Full-text available
Significance During the Eocene, high-latitude regions were much warmer than today and substantial polar ice sheets were lacking. Indeed, the initiation of significant polar ice sheets near the end of the Eocene has been closely linked to global cooling. Here, we examine the relationship between global temperatures and continental-scale polar ice sh...
Article
Full-text available
We reconstruct sea surface temperatures (SSTs) at Deep Sea Drilling Project Site 608 (42.836°N, 23.087°), north of the Azores Front, and Ocean Drilling Program Site 982 (57.516°N, 15.866°), under the North Atlantic Current, in order to track Miocene (23.1–5.3 Ma) development of North Atlantic surface waters. Mean annual SSTs from TEX86 and UK′37 pr...
Article
Full-text available
Climate sensitivity is a key metric used to assess the magnitude of global warming given 19 increased CO2 concentrations. The geological past can provide insights into climate sensitivity; however, on timescales of millions of years, factors other than CO2 can drive climate, including paleogeographic forcing and solar luminosity. Here, through an e...
Article
Full-text available
Mesozoic oceanic anoxic events (OAEs) were major perturbations of the Earth system, associated with high CO2 concentrations in the oceans and atmosphere, high temperatures, and widespread organic-carbon burial. Models for explaining OAEs and other similar phenomena in Earth history make specific predictions about the role and pattern of temperature...
Article
Full-text available
Climate proxies indicate coupling between changes in atmospheric pCO2, global temperatures, and ice volume over much of the Cenozoic. Evidence has been presented for decoupling of these factors in the Miocene, though the cause of the apparent decoupling was uncertain. Here, we revisit Deep Sea Drilling Program (DSDP) Site 608 (24-9 Ma) in the North...
Article
Full-text available
Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for...
Article
Full-text available
It is well established that greenhouse conditions prevailed during the Cretaceous Period (~ 145–66 Ma). Determining the exact nature of the greenhouse-gas forcing, climatic warming and climate sensitivity remains, however, an active topic of research. Quantitative and qualitative geochemical and palaeontological proxies provide valuable observation...
Article
Full-text available
Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for...
Article
Full-text available
Early Jurassic marine palaeotemperatures have been typically quantified by oxygen-isotope palaeothermometry of benthic and nektonic carbonate and phosphatic macrofossils. However, records of Early Jurassic sea-surface temperatures that can be directly compared with general circulation model simulations of past climates are currently unavailable. Th...
Article
Full-text available
During the period from approximately 150 to 35 million years ago, the Cretaceous–Paleocene–Eocene (CPE), the Earth was in a "greenhouse" state with little or no ice at either pole. It was also a period of considerable global change, from the warmest periods of the mid Cretaceous, to the threshold of icehouse conditions at the end of the Eocene. How...
Article
Brierley et al.1 question our findings of elevated temperatures in the tropical warm pools during the Pliocene2. Focusing specifically on the mid-Pliocene warm period (about 3.3 to 3 million years ago), as framed by Brierley et al., we continue to find evidence for warmer than Holocene temperatures in the western Pacific warm pool in good agreement...
Article
Full-text available
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3–4 °C. Yet, present reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this t...
Article
Full-text available
Constraining past fluctuations in global temperatures is central to our understanding of the Earth's climatic evolution. Marine proxies dominate records of past temperature reconstructions, whereas our understanding of continental climate is relatively poor, particularly in high-latitude areas such as Antarctica. The recently developed MBT/CBT (met...
Data
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this t...
Article
The tropical oceans are thought to have played a major role in the evolution of the Earth's climate since the Pliocene, such that accurately reconstructing tropical sea surface temperatures (SSTs) is an essential part of investigating how the global climate system has evolved over the past 5 Ma. Marine sediments from the tropical South China Sea (S...

Network

Cited By