
OM-pd: API between PureData and OM-Sharp

MODALIDADE: COMUNICAÇÃO

SUBÁREA: Composição e Sonologia

Charles K. Neimog
Universidade de São Paulo

charlesneimog@outlook.com

Rodolfo Coelho de Souza
Universidade de São Paulo

rcoelho@usp.br

OM-pd: API between PureData and OM-Sharp

Abstract. This communication will present a library capable of integrating OM-Sharp
and PureData. There are two goals: The first is to allow the processing of large amounts
of data using the visual language (BRESSON et al., 2017) of OM-Sharp (OM) and the
offline mode of PureData. The second is to bring PureData's audio possibilities to OM.

Keywords: OM-Sharp, PureData, BigData, Visual Programming.

 OM-pd: API entre PureData e OM-Sharp

Resumo. Esta comunicação apresentará uma biblioteca capaz de integrar OM-Sharp e
PureData. Existem dois objetivos: O primeiro é permitir o processamento de grandes
quantidades de dados utilizando a linguagem visual (BRESSON et al., 2017) do OM-
Sharp (OM) e o modo offline do PureData. A segunda é trazer para o OM as
possibilidades de áudio do PureData.

Palavras-chave. OM-Sharp, PureData, BigData, Linguagem Visual.

Introduction

One of the great features of the OM’s family (OpenMusic and OM-Sharp) is that

they implement most of the Lisp language. Due to this feature, we believe that the OM family

is a helpful tool to work with scripts and automatize repetitive works, and because of that, it

can be used to build large musical structures using math, draws, scores, graphs, and other

representations to control audio parameters.

However, there are some problems with OM. The most perceptible is that Lisp – the

programming language in which OM is built – is not a fast language for audio processing, and

the community is decreasing, so neural synthesis, for example, is not widely implemented.

Thus, the possibility of making scripts/patches for big musical data processing and some

audio approaches is not fully available in the OM environment.

Such as OM-Sox (with SoX), OM-Chroma (Csound), and others, OM-pd (with

PureData) tries to solve this by building one bridge (API) between Pd and OM. The approach

was initially based on Padovani's repository (https://github.com/zepadovani/pd-python_NRT),

which is an example of how it is possible to use PureData in the command line with Python.

We understand that one of the primary purposes of using PD in command-line mode is to

allow the processing a large amount of data. The problem is that it is usually used with textual

languages (as in the Python code shown in figure 1). OM-pd tries to bring this kind of

possibility into the visual programming environment of OM and PD.

Next, we will present how the library works and some of its possible applications.

OM-pd

The OM-pd has few objects, they are: pd~, wsl-pd~ (just for Windows), pd-open-

patches, pd-kill (useful when we do something wrong in multithreading tasks), pd-list-patches

(special box), pd-mk-line, and pd-multithreading.

The pd~, wsl-pd~, and pd-mk-line objects work similarly. They build command lines

that will run Pd. Pd~ is the main object, wsl-pd~ will run Pd for Linux on the Windows

Figure 1: Padovani's example of using PureData and Python. It generates 50 aleatoric sinusoids.

Source: Figure of authors, code from prof. José H. Padovani.

https://github.com/zepadovani/pd-python_NRT

machine (sometimes it is challenging to compile some objects for Windows), and pd-mk-line

will build pure-data classes that need to be used with pd-multithreading object, for

multithreading processing (It allows to allocate more computer resources, the processing is

faster). These three objects have one required inlet and seven optional inlets. The required

inlet is the patch defined using the pd-define-patch or pd-list-patches object. The seven

optional inlets are sound-in (pathname of some audio input), sound-out (pathname of output

audio), var (a list of variables and values for audio manipulation), GUI (open or not the

Graphical User Interface of PureData), offline (run or not in offline mode), verbose (show or

not information), and thread (run or not in a threaded mode, OM ‘tell’ PD to execute without

the wait for it finish).

Next, we will present some simple examples: First, we want to build one sinusoid

controlling the frequency using OM#. It will happen with this patch in figure 2.

In this case (figure 2), we use the inlet patch (always required) – it is highly

recommended not to use spaces character in patch pathname folders and names – the sound-

out inlet, the var inlet, and the offline inlet – in OM#, you can use the ‘+’ in the object to add

inlets, when you click on the inlet created you can choose (in pd~ object) between sound-out,

sound-in, var, GUI, offline, thread, and verbose. The patch pathname will be specified using

the object file-chooser, and the object pd-define-patch will define some configurations to use

in the pd~ object (the use of pd-define-patch is not required). In the second inlet, we have the

path where the sinusoid will be saved, and the third inlet is where we choose the sinusoid’s

frequency, in this case, 483. Note that we need a list of lists (a list of numbers: (1 2 3 4 5); a

list of lists of numbers ((1 2) (1 2) (1 2))) and not just a list in this inlet. In the fourth inlet, we

specify that we want PureData to synthesize the sinusoid the fastest possible (offline mode).

Figure 2 - Example of patch in OM-Sharp.

Source: Figure of authors.

On the PureData side, we have the patch in figure 3. To build a sinusoid, the part

inside the red square is complex. Nevertheless, it will be the same for all similar processes

(when we want to synth some audio using OM parameters without manipulating a pre-

existing sample). It happens because it must deal with the exact order of the audio in

PureData. To work correctly:

1. It has to turn on the DSP.

2. Specify the audio file path (this is sent by OM through the sound-out inlet, in

PureData, we receive it using the ‘r outfile’ object).

3. Start the recording.

4. Play the sinusoid (2 seconds in this patch, note that the .wav file will have 2s. The

process is much faster).

5. Stop the recording.

6. Exit from PureData (this is an essential part when we are using the OM-pd).

Figure 3 - Patch in PureData to build sinusoid.

Source: Figure of authors.

Another example is to change the patch to build a note using SoundFont. First, we

must load the SoundFont (using loadbang) and add some note-in/off to else/sfont~. All the

similar processes will happen with the same structure.

Figure 4 - The patch builds a SoundFont note.

Source: Figure of authors.

The patches presented can work in multithreading. For that, we need to change the

OM patch, as represented in figure 5. In this case, for example, we build 40 samples of 2

seconds in about 10 seconds.

Figure 5 - The patch builds 40 samples using sfont~ in multhreading.

Source: Figure of authors.

One second way to work with OM-pd is to manipulate samples. Here one sample

will be spatialized. It is possible to use the patch of figure 6 in OM and figure 7 in PureData.

In pd~ object, we have (left to right):

1. The patch is in the first inlet.

2. The pathname of the audio that will be manipulated (sound-in).

3. Where the audio manipulated by PureData will be saved (sound-out).

4. The list of parameters and values (var).

5. The offline mode is true (offline).

6. The verbose mode is true (verbose).

In OM, it is essential to note that the parameters azimuth and elevation are part of

one list with the variable's name followed by the value (a list of lists). These values will be

received in PureData using the r object and the variable's name. The variable azimuth, for

example, is received using the object r + azimuth (r azimuth).

Figure 6 - OM patch to generate audio spacialization.

Source: Figure of authors.

Figure 7 - OM patch to generate audio spacialization.

Source: Figure of authors.

Note that we add the r infile in the PD patch. This object will receive the pathname of

the audio that will be spatialized (second inlet in OM patch). It will open the audio and then

play it (this order is done using t b a). OM-pd will always send the input file for last.

Therefore, we must load all settings before the infile (we suppose that with the infile, you will

load the audio, play it, and use the bang outlet of readsf~ to stop the recording and exit of

PureData). To load settings is possible to use the loadbang object or the receive (r) with the

om-loadbang argument (r om-loadbang).

The third possibility is to use real-time. In this mode will be possible to record (to use

in OM) or hear. One example is making a PD patch to play the data-track (a bi-dimensional

representation of data), like in figure 8. Here, the data-track organizes sounds of one score

and sends data using the Open Sound Control (OSC) protocol to PureData. An excerpt from

the example below is available at: https://bit.ly/ANPPOM2022.

Figure 8 - Render Score using the Orchidea samples and PureData.

Source: Figure of authors.

Another example is to render spatializations using the 3DC (three-dimensional space

graph in OM) and the IEM Plugin Suite and vstplugin~ from the University of Graz (Austria).

This process could be helpful when we want to hear or render trajectories generated by some

math process in OM. The difference between running Pd by itself is that we can load audio

files and specify configurations inside OM without changing the interface (OM to PureData).

https://bit.ly/ANPPOM2022

The patch of figure 9 works similarly to OM-Spat (EINBOND et al., 2021) from Ircam, and it

is free and OpenSource tools (IEM plugins are free and OpenSource too). An audio example

is available at Example - Figure 9 (in https://bit.ly/ANPPOM2022).

Figure 9 - 3DC class in OM-Sharp. It will control the spacialization parameters in PureData.

Source: Figure of authors.

We presented the three possible ways to work with OM-pd, the synthesis using OM

parameters, the offline and faster manipulation of one pre-existent sample, and the real-time

render of audio data.

Use Pd for Linux in Windows

There are objects and tools developed in Unix Systems (Linux and macOS). In some

cases, it is hard to compile them for Windows. Examples are nn~ (CAILLON; ESLING,

2021), wavae encoder~ and decoder~, ddsp~, and others. With Windows 10/11, it is possible

to use these tools without changing the workflow through the Windows Subsystem for Linux

(WSL). It requires running four lines of PowerShell commands available in

https://github.com/charlesneimog/OM-pd and changing the pd~ object to wsl-pd~ object. In

the backend, what happens is that wsl-pd~ will run the version of PureData inside a Linux

virtual machine, enabling the use of these objects for offline processing without spending time

discovering how to compile it for Windows. The link shows audio examples of OM-pd

https://bit.ly/ANPPOM2022
https://github.com/charlesneimog/OM-pd

working with WSL using the nn~ (in PureData) object and a Berimbau model

(https://bit.ly/ANPPOM2022).

Potential applications

OM-pd helps the organization of large structures in acousmatic music using OM

tools and libraries (for example, OM-Chaos, OM-Combine, and OM-Alea). At the same time,

it provides methods for audio manipulation in OM, like VST plugins, easy multithreading,

and all tools developed for PureData.

It may be effective for educational applications. With Orchidea-Sol and OM-CKN,

for example, it will be possible to render samples using extended techniques (see the piece

Ideias Roubadas II in https://soundcloud.com/charlesneimog/ideias-roubadas-ii). It should

help, with some more implementations, young composers to hear how music will sound using

extended techniques, bringing students closer to these sounds.

In underdeveloped countries where it is challenging to acquire tools like Spat (or

OM-Spat), it will be possible to use, for example, IEM Suite Plugins (free and OpenSource

tool) that can provide similar services (used in figure 9) with OM.

Finally, the library is mainly developed for composers dealing with large amounts of

data by reducing the need for textual programming. In unmethodical tests, for example, it has

no time difference between using pedalboard (https://github.com/spotify/pedalboard)

(Spotify) in Python or OM-pd and PureData for VST audio manipulation. So, we understand

that OM-pd allows us to use the fast processing power and the excellent visual programming

tools simultaneously, adding to PureData the easy way to make scripts in the OM. Moreover,

it can automate tasks using traditional tools like scores (voices, polys, and chords) and bi and

three-dimensional representations (3dc and bpf), which seems ideal for compositions that use

large amounts of data.

The library is available at https://github.com/charlesneimog/OM-pd/.

References

https://bit.ly/ANPPOM2022
https://soundcloud.com/charlesneimog/ideias-roubadas-ii
https://github.com/spotify/pedalboard
https://github.com/charlesneimog/OM-pd/

BRESSON, Jean; BOUCHE, Dimitri; CARPENTIER, Thibaut; SCHWARZ, Diemo;
GARCIA, Jérémie. Next-generation Computer-aided Composition Environment: A New
Implementation of OpenMusic. In: PROCEEDINGS OF THE INTERNATIONAL
COMPUTER MUSIC CONFERENCE 2017, Shanghai, China. Anais... Shanghai: [s.n.], 253-
8 (p.), 2017. Disponível em: https://dblp.org/db/conf/icmc/icmc2017.html. Acesso em: 30 de
jun. 2022.

CAILLON, Antoine; ESLING, Philippe. RAVE: A variational autoencoder for fast and high-
quality neural audio synthesis. [S. l.], 2021. DOI: 10.48550/ARXIV.2111.05011. Disponível
em: https://arxiv.org/abs/2111.05011. Acesso em: 22 jun. 2022.

GARCIA, Jérémie; BOUCHE, Dimitri; BRESSON, Jean. Timed Sequences: A Framework for
Computer-Aided Composition with Temporal Structures. In: TENOR 2017, 3RD
Internacional Conference on Technologies for Music Notation and Representation. A.
Coruña: [s.n.], 131-6 (p.), 2017. Disponível em: https://hal.archives-ouvertes.fr/hal-01484077.
Acesso em: 22 jun. 2022.

https://hal.archives-ouvertes.fr/hal-01484077
https://arxiv.org/abs/2111.05011
https://dblp.org/db/conf/icmc/icmc2017.html

	Introduction
	OM-pd

