
Charles Lin- Massachusetts General Hospital
Charles Lin
- Massachusetts General Hospital
About
293
Publications
48,279
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
34,128
Citations
Current institution
Publications
Publications (293)
Despite rapid advances in diagnostic and imaging technologies, a method for noninvasive monitoring of the immune system does not exist. The standard white blood cell count (WBCC), a key clinical measure for assessing patients' health, requires drawing blood, which poses inherent risks for secondary infection and anemia in vulnerable patient populat...
The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We...
Background
Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute...
We present a miniature oblique back-illumination microscope (mOBM) for imaging the microcirculation of human oral mucosa, enabling real-time, label-free phase contrast imaging of individual leukocytes circulating in the bloodstream, as well as their rolling and adhesion on vascular walls—the initial steps in leukocyte recruitment that is a hallmark...
Macrophages/monocytes, the primary contributors to chronic inflammation in degenerated retinas, orchestrate intricate immune responses. They remain enigmatic in their local coordination and activation mechanisms. Innovations in experimental systems enable real-time exploration of immune cell interactions and temporal dimensions in response. In prec...
Background:
Retinal degeneration is a disease affecting the eye, which is an immune-privileged site because of its anatomical and physiological properties. Alterations in retinal homeostasis-because of injury, disease, or aging-initiate inflammatory cascades, where peripheral leukocytes (PL) infiltrate the parenchyma, leading to retinal degenerati...
We present a miniature oblique back-illumination microscope (mOBM) for imaging the microcirculation of human oral mucosa, enabling real-time, label-free phase contrast imaging of leukocyte rolling and adhesion, the initial steps in leukocyte recruitment that is a hallmark of inflammation. Imaging cell motion can provide new diagnostic information (...
In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsi...
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues tha...
Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional...
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a properly orchestrated physiologic response. Thus, modern approaches to dissect physiologic mechanism would benefit from an ability to identify specific cell types in live tissues an...
The bone marrowBone marrow (BM) has traditionally been a difficult tissue to access because it is embedded deep within the bone matrix. It is home to the hematopoietic stemHematopoietic stem (HSC)cellsStem cells (HSCsHematopoietic stems (HSCs)) that give rise to all blood cells in the body. It is also the site of origin for malignant blood cells su...
Thymic atrophy and the progressive immune decline that accompanies it is a major health problem, chronically with age and acutely with immune injury. No solution has been defined. Here we demonstrate that one of the three mesenchymal cell subsets identified by single-cell analysis of human and mouse thymic stroma is a critical niche component for T...
Tissue function depends on proper cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcri...
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood–brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues facilitate intersystem communication. Cerebrospinal fluid (CSF), which interfaces with the glymphatic system and thereby drains the b...
We have developed a new technique for micron scale resolution cross-sectional imaging in biological systems called Optical Coherence Tomography (OCT) 1,2 In OCT, low-coherence optical interferometry 3,4 is used to resolve the position of reflective or optical backscattering sites within a sample. Two-dimensional tomographic images of a thin, optica...
Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ’s microvasculature is unknown. Her...
Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during “osteocytogenesis” is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals u...
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood-brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues, particularly dural lymphatic vessels that allow cerebrospinal fluid outflow, facilitate intersystem communication. Here we observe t...
Advances in intravital microscopy (IVM) have enabled the studies of cellular organization and dynamics in the native microenvironment of intact organisms with minimal perturbation. The abilities to track specific cell populations and monitor their interactions have opened up new horizons for visualizing cell biology in vivo, yet the success of stan...
Conditional creER-mediated gene inactivation or gene induction has emerged as a robust tool for studying gene functions in mouse models of tissue development, homeostasis, and regeneration. Here, we present a method to conditionally induce cre recombination in the mouse calvarial bone while avoiding systemic recombination in distal bones. To test o...
Osteocytes use an elaborate network of dendritic connections to control bone remodeling. Some osteoblasts embed within mineralized bone matrix, change shape, and become osteocytes. The molecular circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7, a gene linked to rare and commo...
The fate of hematopoietic stem cells (HSCs) in the bone marrow can be directed by microenvironmental factors including extracellular calcium ion concentration (T h can vary significantly with bone remodeling, but the local e around individual HSCs in vivo remains unknown. Here we developed an intravital ratiometric imaging approach to quantify the...
Background
Natural killer T (NKT) cells are unconventional T cells that bridge innate and adaptive immunity. NKT cells have been implicated in the development of atopic dermatitis (AD).
Objective
We aimed to investigate the role of NKT cells in AD development, especially in skin.
Methods
Global proteomic and transcriptomic analyses were performed...
Acute myeloid leukemia (AML) is a high remission, high relapse fatal blood cancer. Although mTORC1 is a master regulator of cell proliferation and survival, its inhibitors have not performed well as AML treatments. To uncover the dynamics of mTORC1 activity in vivo, fluorescent probes are developed to track single cell proliferation, apoptosis and...
Recently reported biomaterial-based approaches toward prevascularizing tissue constructs rely on biologically or structurally complex scaffolds that are complicated to manufacture and sterilize and challenging to customize for clinical applications. In the current work, a prevascularization method for soft tissue engineering that uses a non-pattern...
The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions1,2. It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice t...
Sickle cell disease (SCD) is a monogenic red blood cell (RBC) disorder with high morbidity and mortality. Here we report for the first time the impact of SCD on the bone marrow (BM) vascular niche, which is critical for hematopoiesis. In SCD mice, we find a disorganized and structurally abnormal BM vascular network of increased numbers of highly to...
We present methods for visualize unlabeled cells in the mouse calvarial bone marrow and lymph node by perfusing the interstitial space with cell-impermeable dyes and visualizing by negative contrast.
Circulating tumor cells (CTCs) are of great interest in cancer research because of their crucial role in hematogenous metastasis. We recently developed "diffuse in vivo flow cytometry" (DiFC), a preclinical research tool for enumerating extremely rare fluorescently labeled CTCs directly in vivo . In this work, we developed a green fluorescent prote...
Previous studies have shown that post-natal skeletal stem cells expressing Paired-related homeobox 1 (PRX1 or PRRX1) are present in the periosteum of long bones where they contribute to post-natal bone development and regeneration. Our group also identified post-natal PRX1 expressing cells (pnPRX1+ cells) in mouse calvarial synarthroses (sutures) a...
Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3...
Circulating tumor cells (CTCs) are of great interest in cancer research, but methods for their enumeration remain far from optimal. We developed a new small animal research tool called “Diffuse in vivo Flow Cytometry” (DiFC) for detecting extremely rare fluorescently-labeled circulating cells directly in the bloodstream. The technique exploits near...
We recently developed Diffuse in vivo Flow Cytometry (DiFC), a new pre-clinical research tool for enumerating extremely rare fluorescently-labeled circulating cells directly in vivo. In this paper, we developed a green fluorescent protein (GFP) compatible version of DiFC, and used it to non-invasively monitor the circulating tumor cell (CTC) burden...
Circulating tumor cells (CTCs) are of great interest in cancer research, but methods for their enumeration remain far from optimal. We developed a new small animal research tool called Diffuse in vivo Flow Cytometry (DiFC) for detecting extremely rare fluorescently- labeled circulating cells directly in the bloodstream. The technique exploits near-...
Differential interference contrast (DIC) microscopy is a powerful technique for imaging phase objects in transparent samples but does not work with scattering samples. This Letter, to the best of our knowledge, describes a new technique for obtaining DIC-like phase-gradient images in scattering media based on differential detection of forward-scatt...
Rationale:
Inflammatory stress induced by exposure to bacterial lipopolysaccharide (LPS) causes hematopoietic stem cell (HSC) expansion in the bone marrow niche, generating a cellular immune response. As an integral component of the hematopoietic stem cell niche, the bone marrow vasculature regulates the production and release of blood leukocytes,...
The transition of hematopoiesis from the fetal liver (FL) to the bone marrow (BM) is incompletely characterized. We demonstrate that the Wiskott-Aldrich syndrome verprolin-homologous protein (WAVE) complex 2 is required for this transition, as complex degradation via deletion of its scaffold Hem-1 causes the premature exhaustion of neonatal BM hema...
Histomorphometry and Micro-CT are commonly used to assess bone remodeling and bone microarchitecture. These approaches typically require separate cohorts of animals to analyze 3D morphological changes and involve time-consuming immunohistochemistry preparation. Intravital Microscopy (IVM) in combination with mouse genetics may represent an attracti...
Cofocal dive through an in vitro engineered vascular network. HUVECs red, human bone marrow MSCs green.
Confocal video showing DiD-labeled white blood cells flowing through an engineered vascular network in a mouse.
Here we report and review the investigation of bone microenvironment in vivo with harmonic generation microscopy. Excited by an infrared femtosecond laser, the second harmonic generation images can reveal the bone structures and boundaries. The third harmonic generation images can reveal the osteocytes, connecting canaliculi, and granular bone marr...
The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327-334, 2014). Recent efforts...
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immune reaction/inflammation, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most...
Background:
Candida albicans is a dimorphic fungus to which humans are exposed early in life and by adulthood it is part of the mycobiome of skin and other tissues. Neonatal skin lacks resident memory T (TRM) cells, but in adults the C. albicans skin test is a surrogate for immunocompetence. Young adult mice raised under SPF conditions are naive t...
Osteocytes remodel their surrounding perilacunar matrix and canalicular network to maintain skeletal homeostasis. Perilacunar/canalicular remodeling is also thought to play a role in determining bone quality. X-linked hypophosphatemia (XLH) is characterized by elevated serum fibroblast growth factor 23 (FGF23) levels, resulting in hypophosphatemia...
Osteocytes are the most abundant cell in the bone, and have multiple functions including mechanosensing and regulation of bone remodeling activities. Since osteocytes are embedded in the bone matrix, their inaccessibility makes in vivo studies problematic. Therefore, a non-invasive technique with high spatial resolution is desired. The purpose of t...
Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platf...
Generation of functional hematopoietic stem and progenitor cells (HSPCs) from human pluripotent stem cells (PSCs) has been a long-sought-after goal for use in hematopoietic cell production, disease modeling, and eventually transplantation medicine. Homing of HSPCs from bloodstream to bone marrow (BM) is an important aspect of HSPC biology that has...
Postnatal cells expressing PRX1 (pnPRX1(+)) present with qualities of skeletal stem cells are identified in the calvaria and axial skeleton. Here we characterize the location and functional capacity of the calvarial pnPRX1(+) cells. We found that pnPRX1(+) reside exclusively in the calvarial suture niche and decrease in number with age. They are di...
There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detectio...
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femt...
Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factor...
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PG...
Human mesenchymal stem cells (MSCs) hold great promise in cellular therapeutics for skeletal diseases but lack expression of E-selectin ligands that direct homing of blood-borne cells to bone marrow. Previously, we described a method to engineer E-selectin ligands on the MSC surface by exofucosylating cells with fucosyltransferase VI (FTVI) and its...
Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenanc...
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also...
Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplan...