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Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecu-
lar imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomog-
raphy (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans
and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and
abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD),
and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate
the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET
to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to
explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imag-
ing in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive pre-
clinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
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Introduction
Neurodevelopmental disorders (NDDs) are, according to the
DSM-5 (American Psychiatric Association, 2013), a broad group
of complex neurologic and psychiatric disorders, including intel-
lectual disability (ID), autism spectrum disorder (ASD), and
attention deficit hyperactivity disorder (ADHD; Thapar et al.,
2017). Globally, the prevalence numbers of NDDs are highly
variable and sparse for individuals living in low-income and
middle-income countries (Francés et al., 2022). In general, the
prevalence of ID, ASD, and ADHD, ranges from 0.6% to 1.4%,
0.7% to 3%, and 5% to 11%, respectively (Francés et al., 2022;
Yang et al., 2022). Since people with NDDs often suffer from

multiple comorbidities, like behavioral disturbances, epi-
lepsy, and cognitive impairments, they represent a major
public health problem (Thapar et al., 2017).

NDDs result from disturbances in the development of the
central nervous system caused by environmental (e.g., trauma,
infection, metabolic disorders) or genetic factors (Ismail and
Shapiro, 2019). These disturbances are thought to occur at early
stages of brain development, when the brain is still highly plastic
and modifiable (Mohammadi-Nejad et al., 2018). We hypothe-
size that the abnormalities will continue to evolve as the imma-
ture brain develops into a mature brain. Therefore, it is crucial to
study brain development in the immature brain and to follow
brain development into adulthood in a noninvasive way. While
in humans this process takes .18 years, rodent models have the
advantage of reaching a mature adult brain in only three months
(Flurkey et al., 2007). This makes rodent models ideal for study-
ing disease mechanisms and assessing treatment response.

Imaging has been proposed as a powerful tool for the study of
neurodevelopment. Structural imaging has been used in people
with NDDs (Del Casale et al., 2022; Firouzabadi et al., 2022).
However, structural imaging generally does not reveal abnormal-
ities in brain volumetric parameters, and when abnormalities are
found, they often do not correlate with neurodevelopmental out-
comes (Green et al., 2019). Functional and molecular imaging
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techniques, on the other hand, could provide a bridge between
functional and molecular neurodevelopmental abnormalities
and outcome.

Resting-state functional magnetic resonance imaging (rs-
fMRI) can be used to follow the development of functional net-
works without the need for active participation of the subject
during scanning (Fröhlich, 2016). This makes rs-fMRI the per-
fect imaging technique to study intrinsic brain function in
infants and animal models. Rs-fMRI detects blood oxygenation
level-dependent (BOLD) signals from volume elements (voxels)
of the whole brain at rest, currently with a temporal resolution of
0.5–2 s within a 5- to 10-min scan period. Spontaneous low-fre-
quency fluctuations (LFFs) in these BOLD signals are an indirect
marker of changes in neuronal activity (Biswal et al., 1995). The
correlations between the spontaneous LFFs of different voxels
can thereby identify their functional connectivity (FC; Biswal et
al., 1995; Fröhlich, 2016). In the absence of external stimuli,
FC networks are referred to as resting-state networks (RSNs;
Fröhlich, 2016).

Positron emission tomography (PET) is a molecular imaging
technique that uses different radiotracers to detect biochemical
and physiological changes, based on the quantification of the
local tracer concentration (Kumar and Chugani, 2008). Changes
in oxygen consumption, glucose consumption, cerebral blood
flow (CBF), receptor densities, neurotransmitter levels, and cere-
bral protein synthesis can all be detected by PET, and these
changes are thought to correlate with structural and functional
maturation of different brain regions (Kumar and Chugani,
2008).

Both rs-fMRI and PET imaging are translational techni-
ques that can be applied to both human and (transgenic)
small-animal models in a (pre)clinical setting. In this review,
we provide an overview of the current knowledge on neurode-
velopment derived from rs-fMRI and PET data in healthy
human and rodent models. We also give examples of how
these two techniques have been used to study abnormal neu-
rodevelopment in both models in specific NDDs (ID with or
without epilepsy including genetic syndromes, ASD, and ADHD)
and address the limitations of current studies.

Extrapolating Timing of Brain Development from
Rodent Models to Humans
Rodent models are often used as proxies for human biological
processes. When using rodent models in neurodevelopmental
research, the ability to extrapolate the timing of brain develop-
ment from rodents to humans is critical (Clancy et al., 2007b).
Compared with humans, rodents have a shorter lifespan and,
therefore neurodevelopment takes place in a shorter period of
time. After an average gestation period of 19d in mice and 22d

in rats, rodents are born with less mature brains than full-term
infants (Clancy et al., 2001). Consequently, the critical period for
synaptogenesis in human fetuses starts already in utero, whereas
in rodents it occurs completely ex utero during the first three
postnatal weeks (Semple et al., 2013). It has been suggested that
approximately around postnatal day (P)7 to P13, the rat brain
reaches a stage of development equivalent to that of a full-term
human newborn in terms of white matter development and
axonal outgrowth (Boksa, 2010; Semple et al., 2013; Fig. 1). In
rodents, neurogenesis is complete by around P15, whereas in
humans it can continue until 2.5 years of age (Semple et al.,
2013). Myelination peaks at around P20 in rodents and between
two and five years of age in humans, and continues into adult-
hood (Semple et al., 2013; Nishiyama et al., 2021). In addition,
a rodent brain reaches 90–95% of its adult weight between P21
and P28. A similar plateau is reached in humans at two to three
years of age (Semple et al., 2013). Although it is an oversimplifi-
cation to translate developmental milestones by age between
species using a linear scale, the first and second halves of rodent
gestation and the first postnatal week roughly correspond to
the first, second, and third trimesters of human pregnancy,
respectively (Clancy et al., 2007a). Overall, the period from fetal
age to three years of age is known to be the most important for
brain development in humans, with rapid synaptogenesis, den-
dritic growth, myelination, and development of white matter
fiber tracts, whereas in rodents this period encompasses the
first three postnatal weeks.

Functional Connectivity Networks Using Resting-
State Functional MRI Provide Insight into
Normal Brain Development
Rs-fMRI in normally developing humans
Rs-fMRI studies in children before the age of three have signifi-
cantly increased our knowledge of the maturation of FC during
this important period of brain development (Gao et al., 2017;
Mohammadi-Nejad et al., 2018). Therefore, we focus mainly on
the FC changes detected by rs-fMRI during this period and relate
these changes to neurodevelopmental milestones (Fig. 2).

From 20weeks of gestation until birth
The earliest rs-fMRI studies were performed in utero on healthy
human fetuses between 20 and 26 weeks of gestation. They
showed the presence of immature RSNs and interhemispheric
(long-range) FC (Schöpf et al., 2012; Thomason et al., 2013;
Jakab et al., 2014; van den Heuvel et al., 2018). This is fol-
lowed by a period of expansion, leading to an increase in the
proportion and strength of interhemispheric and intrahemi-
spheric (e.g., between frontal and temporal lobes) FC, and in

Figure 1. Comparison of neurodevelopmental age between humans and mice. Simplified schematic overview of corresponding neurodevelopmental stages in humans and rodents. Data
obtained from: Boksa (2010), Clancy et al. (2007a), Nishiyama et al. (2021), and Semple et al. (2013).

8276 • J. Neurosci., December 6, 2023 • 43(49):8275–8293 Millevert et al. · rs-fMRI and PET to Study Human and Rodent Neurodevelopment



short-range connections (e.g., within frontal and parietal
lobes; Thomason et al., 2013; Jakab et al., 2014). Interestingly,
fetuses with a mean gestational age of 33 weeks that have
higher FC between the motor network and regions support-
ing motor function, will develop motor skills more rapidly in
infancy. Moreover, in the same fetuses, reduced FC between
the motor network and anterior cingulate, insula, and lateral
cerebellar regions was also associated with advanced motor
skills at fourmonths of age (Thomason et al., 2018). Both
findings support the idea that an earlier FC formation, as well
as more active and earlier specialization are associated with
faster neurodevelopment.

The neonatal period
At term birth, some primary cortical networks, such as the soma-
tosensory, motor, and auditory networks, are functionally
synchronized and resemble adult-like topologies soon after birth
(Fransson et al., 2007; Lin et al., 2008; Doria et al., 2010; Smyser
et al., 2010; Alcauter et al., 2014; Toulmin et al., 2015). Higher-
order networks, on the other hand, are only primitively present
at birth (Table 1; Doria et al., 2010; Gao et al., 2013; Alcauter et
al., 2014). These primitive higher-order networks already have
an important prognostic value, as early connections between
these networks in preterm born infants are predictive of cogni-
tive outcome at term equivalent age (Della Rosa et al., 2021). For
example, higher FC strength between the medial prefrontal cor-
tex [part of the default-mode network (DMN)] and the executive
control network in newborns is associated with higher cognitive
scores at sixmonths of age (Della Rosa et al., 2021). Few thala-
mocortical connections, e.g., between the thalamus and the pri-
mary sensorimotor cortex and between the thalamus and the
salience network, are also established in newborns (Alcauter
et al., 2014; Toulmin et al., 2015). The latter may be important
for the neonate, as the salience network guides selective atten-
tion, and the thalamus serves as a relay station for critical eva-
luation of different events (Gao et al., 2017). Finally, the
amygdala shows FC with other brain regions, and the specific
profile of these neonatal connections has been shown to be pre-
dictive of emerging anxiety and cognitive development at
sixmonths of age (Graham et al., 2016). In summary, the neo-
natal brain exhibits a balance between long-range connections
and a high degree of local connectivity, termed “small-world”
topology (Graham et al., 2021).

The first two years of life
Primary networks undergo little refinement and increase in vol-
ume and strength during the first two years of life (Gao et al.,
2015). Higher-order networks and thalamocortical FC, on the
other hand, undergo major changes with expansion of long-
range FC, followed by further strengthening and refinement
(Gao et al., 2013; Alcauter et al., 2014). This refinement leads to a
significant reduction in short-range FC and the creation of long-

range shortcuts (Gao et al., 2011). It is also known as func-
tional specialization and enables global and efficient infor-
mation transfer (Gao et al., 2011). For example, the DMN is
well synchronized by one year of age, and that has an adult-
like topology by two years of age (Gao et al., 2009). Like the
DMN, the salience network develops relatively early, reflect-
ing the rapid emergence of self-awareness in the first year of
life (Alcauter et al., 2015). This is thought to lay the founda-
tion for the development of other higher-order networks
(Alcauter et al., 2015). The executive control network, on the
other hand, is still in an immature state at one year of age
(Gao et al., 2015).

From the age of one year, networks begin to interact, and
these network interactions are thought to be essential for normal
neurodevelopment. For example, the DMN is anticorrelated
with the dorsal attention network (DAN), part of the task-posi-
tive network (TPN), and this anticorrelation is further strength-
ened during maturation (Gao et al., 2013). Thalamus-salience
connections also develop, and the strength of this FC can signifi-
cantly predict working memory performance and intelligence
quotient (IQ; Alcauter et al., 2014). Next, FC transitions to
asymmetry in language regions (inferior frontal gyrus and
superior temporal gyrus). The rate of this transition in infants
has been shown to predict language outcomes at four years of
age (Emerson et al., 2016).

Overall, rs-fMRI studies show that the first two years of life
are critical for brain development, as it is during this period that
the higher-order networks develop, and that strengthening, func-
tional specialization and interaction of the formed RSNs takes
place.

From three years of age to adulthood
By three years of age, the basic functional networks are in place,
after which neurodevelopment is mainly characterized by reor-
ganization, “fine-tuning,” plasticity, and remodeling of the estab-
lished networks (Gilmore et al., 2018). Small-world topology
does not change significantly from childhood to adulthood in
terms of path length (l) and clustering coefficient (g ; Fair et al.,
2009; Supekar et al., 2009). Nevertheless, the architecture of RSN
connectivity is changing. They become more lateralised and
form additional connections with other networks (Fair et al.,
2007; Kelly et al., 2009). Functional specialization, characterized
by a decrease in short-range FC and an increase in long-range
FC, continues into adulthood (Fair et al., 2007, 2009; Kelly et al.,
2009). This leads not only to an increase in overall FC strength,
but also to an increase in global and local network efficiency
(Fan et al., 2021).

In particular higher-order networks undergo a prolonged pe-
riod of developmental maturation into adulthood (C.L. Li et al.,
2019). For example, despite the relatively early formation of
the DMN, regions within the DMN, particularly between the
medial prefrontal cortex and the posterior cingulate cortex,

Figure 2. Timeline of development of functional connectivity in the human brain as derived from rs-fMRI from 20weeks of gestation until adulthood. FC: functional connectivity.
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are only sparsely functionally connected during the first dec-
ade (Fair et al., 2008; Kelly et al., 2009; Supekar et al., 2010).
These FCs develop into a cohesive, interconnected network
by adulthood (Fair et al., 2008; Kelly et al., 2009; Supekar et
al., 2010). Overall FC increases from childhood to adulthood
following a nonlinear asymptotic growth curve shape, the so-
called functional maturation curve. This can be used to make
accurate predictions about an individual’s brain maturity
(Dosenbach et al., 2010).

In summary, primary cortical networks generally develop
before higher-order networks, but the critical neurodevelopmen-
tal period for each network differs between different networks
(Gao et al., 2017). The formation of the basic RSNs occurs from
the third trimester of pregnancy until three years of age. During
this period, RSNs and network interactions have been shown to
predict neurodevelopmental outcomes at later ages. Thereafter,
RSNs strengthen and become functionally specialized, enabling
efficient information processing.

Rs-fMRI in normally developing rodents
In the mid-2000s, several research groups have successfully per-
formed rs-fMRI in rodents (Lu et al., 2006, 2007; Williams et al.,
2006; Pawela et al., 2008; Zhao et al., 2008). They demonstrated
the presence of brain networks in adult rats, including the pri-
mary somatosensory network, and the visual network, suggesting
that BOLD fluctuations are conserved across species (Lu et al.,
2007; Pawela et al., 2008; Zhao et al., 2008). Subsequent studies
confirmed the presence of FC in (young) adult mice (Mechling
et al., 2014; Stafford et al., 2014). They showed that several FC

networks, including the somatosensory network, the visual net-
work, and the DMN, as well as the “small-world topology,” could
be identified in mice, and that these networks were highly trans-
latable to human networks (Table 1; Mechling et al., 2014;
Stafford et al., 2014).

Zoratto et al. (2018) performed rs-fMRI in anesthetized
Wistar rats during the juvenile period at P21–P25, P28–P32,
and P35–P39. They showed an increase in FC between the
three time periods, particularly between the hippocampus and
striatum (Zoratto et al., 2018). Another study characterized
the developmental changes in FC from juvenile (P30) to adult
(P70–P90) age in awake rats (Ma et al., 2018). A region-of-in-
terest based FC analysis showed similar results to humans;
first, the overall adult FC pattern was already present at juve-
nile age, but, to some extent, FC was still changing, especially
between P30 and P49. Second, the maturation time of differ-
ent RSNs differed between regions. Third, the authors demon-
strated a decrease in interhemispheric FC between homotopic
counterparts during neurodevelopment. This phenomenon
indicates functional specialization. Functional specialization
was further supported by a decrease in short-range FC, and an
increase in long-range FC during development from juvenile
to adult age (Ma et al., 2018). In conclusion, neurodevelop-
ment continues at a slow pace during the juvenile period, with
findings similar to those described in humans (Fair et al.,
2007, 2009; Kelly et al., 2009). As the overall whole-brain FC
pattern is largely established by juvenile age, imaging at earlier
stages of development would provide more critical informa-
tion regarding neurodevelopment.

Table 1. Information about function, development, and resting-state functional connectivity alterations of higher-order networks derived from resting-stage fMRI
studies in humans and rodents

Higher order networks Function

Anatomical brain regions involved in

humans

Anatomical brain regions involved in

rodents Development of higher-order in humans

NDDs in which altered FC of higher-order

networks has been reported

Default-mode network

(DMN)

Task-negative network; daydreaming, mind-

wandering, internal evaluation, retriev-

ing memories, theory of mind

Medial prefrontal cortex, anterior/posterior

cingulate cortex, precuneus, retrosple-

nial cortex, and inferior parietal cortex

(angular gyrus), entorhinal cortex, para-

hippocampal gyrus

Prefrontal, orbitofrontal and prelimbic cor-

tex, cingulate cortex, retrosplenial cor-

tex, parietal and temporal association

cortex, entorhinal cortex, hippocampus

� Primitive at birth

� Synchronized at 1 year

� From 1 year anticorrelation with DAN

� Adult-like topology at 2 years

� FC strengthening until adulthood

ID 1/� epilepsy (Ibrahim et al., 2014; Ofer

et al., 2018), ASD (Uddin et al., 2013;

Washington et al., 2014; Zerbi et al.,

2018), ADHD (Castellanos et al., 2008;

Uddin et al., 2008; Fair et al., 2010; Qiu

et al., 2011; S.M. Huang et al., 2016)

Salience network Identifying key biological and cognitive

events and redirecting attention, inter-

cepting feelings associated with reward,

and recruiting other networks to con-

tribute to complex functions (e.g., social

behavior, communication, and self-

awareness)

Anterior insula and anterior cingulate cortex,

amygdala, ventral striatum, substantia

nigra, and ventral tegmental region

Anterior insula and anterior cingulate cortex,

ventral striatum

� Primitive at birth

� FC with thalamus at birth

� Synchronized at 1y

Down syndrome (Pujol et al., 2015), ASD

(Uddin et al., 2013; Zerbi et al., 2018;

Oldehinkel et al., 2019), ADHD

(C. Wang et al., 2018)

Lateral visual network Visual association area, feature extraction,

shape recognition and face perception

Peristriate area (lateral part of occipital

lobe), lateral and superior occipital

gyrus

Occipital, parietal and retrosplenial cortex No developmental rs-fMRI data available ASD (Uddin et al., 2013; Oldehinkel et al.,

2019)

Dorsal attention net-

work (DAN)

Task-positive network; sustained, and volun-

tary (top-down) guided reorientation of

attention to locations or features

Intraparietal sulcus, and lateral frontal cor-

tex (frontal eye fields)

/ � Primitive at 1 year

� Synchronized at 3 years

� FC strengthening until adulthood

ADHD (Posner et al., 2013)

Ventral attention net-

work (VAN)

Task-positive network; detects salient or

unexpected stimuli and redirects atten-

tion toward these stimuli (bottom-up),

inhibited during focused attention (top-

down)

Temporo-parietal junction (inferior parietal

lobule/superior temporal gyrus), and

ventral frontal cortex (inferior frontal

gyrus/middle frontal gyrus), often more

lateralized in the right hemisphere

/ � Primitive at 1 year

� Synchronized at 3 years

� FC strengthening until adulthood

ADHD (Marcos-Vidal et al., 2018)

Executive control

network

Cognitive control network, performance of

high-level cognitive tasks, rule-based

problem solving and decision-making,

working memory

Dorsolateral prefrontal cortex and the lateral

posterior parietal cortex

Lateral cortical network: frontal association

cortex (prefrontal cortex 1 secondary

motor cortex), primary motor cortex

� Primitive at 1 year

� Synchronized at 3 years

� FC strengthening until adulthood

Down syndrome (Pujol et al., 2015), ADHD

(C. Wang et al., 2018)

ADHD: attention deficit hyperactivity disorder; ASD: autism spectrum disorder; FC: functional connectivity; ID: intellectual disability; NDDs: neurodevelopmental disorders.
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Three Molecular Imaging with PET Provides
Insight into Normal Brain Development
PET studies in normally developing humans
PET studies of neurodevelopment in the healthy pediatric popu-
lation are rare because of the need for ionizing radiation. The
high number of dividing neural progenitor cells makes the devel-
oping brain vulnerable to stressors, including ionizing radiation
(Verreet et al., 2015). Indeed, exposure to high doses of ionizing
radiation in utero has been shown to cause neurodevelopmental
abnormalities in humans and rodents (Verreet et al., 2015;
Pasqual et al., 2020). The embryonic period has been identified
as the most vulnerable period in both species (Verreet et al.,
2015; Pasqual et al., 2020). However, evidence for adverse effects
of low doses (,100 mGy) on global cognitive function or specific
cognitive subdomains in humans is limited or inconsistent
(Pasqual et al., 2020).

Glucose metabolism
Brain maturation is thought to be associated with regional
changes in cerebral metabolism (Kinnala et al., 1996). 2-Deoxy-
2[18F]-fluoro-D-glucose ([18F]-FDG) PET allows the visualiza-
tion and quantification of cerebral glucose metabolism (H.T.
Chugani and Phelps, 1986). Studies using [18F]-FDG PET in
normal neurodevelopment have only been performed in chil-
dren with other disorders that are not thought to interfere with
normal development, such as a history of suspected hypoxic-is-
chemic brain injury (Kinnala et al., 1996), extracranial malig-
nancy (London and Howman-Giles, 2014, 2015), epilepsy (H.T.
Chugani and Phelps, 1986; H.T. Chugani et al., 1987; Van
Bogaert et al., 1998; Trotta et al., 2016; Pilli et al., 2019), or deaf-
ness (Kang et al., 2004). Earlier studies quantified the local cere-
bral metabolic rate of glucose (H.T. Chugani and Phelps, 1986;
H.T. Chugani et al., 1987; Kinnala et al., 1996), whereas more
recent studies calculated standard uptake values (SUV) of [18F]-
FDG (London and Howman-Giles, 2014; Barber et al., 2018) or
used statistical parametric methods (Van Bogaert et al., 1998; Kang
et al., 2004; London and Howman-Giles, 2015; Trotta et al., 2016).

During the neonatal period, glucose metabolism is higher
in subcortical than in cortical structures, and then gradually
increases to reach adult levels by twoyears of age (H.T. Chugani
and Phelps, 1986; H.T. Chugani et al., 1987; Kinnala et al., 1996).
H.T. Chugani et al. (1987) also included older individuals (5 d
to 15 years). They showed that glucose metabolism continues to
increase, exceeding adult values by more than twofold at three years
of age. The rate of glucose metabolism then remains stable until

approximately nine years of age, after which it declines and returns
to adult levels by the end of the second decade (Fig. 3; H.T.
Chugani et al., 1987). In contrast, more recent studies have calcu-
lated SUVs, and have shown a progressive increase in [18F]-
FDG uptake in different brain regions into adulthood
(London and Howman-Giles, 2014; Barber et al., 2018). The
SUV is the dimensionless ratio of the image-derived radioac-
tivity concentration to a normalization factor, typically the
injected dose of radioactivity divided by body weight (S.C.
Huang, 2000). It is a semiquantitative measure of brain metab-
olism that is subject to many variables (e.g., body composition
and dose to scan time; Barber et al., 2018). The calculation of
the glucose metabolic rate takes into account other factors
such as the arterial plasma glucose concentration (S.C. Huang,
2000). Therefore, the calculation of the glucose metabolic rate
is theoretically more accurate. It is intuitively also highly likely
that the metabolic rate is high in the first decade and then
declines, as this may reflect rapid brain maturation and growth
followed by more efficient signaling because of myelination and
synaptic pruning.

Some studies used statistical parametric mapping to calculate
the regional glucose metabolism adjusted for global activity (Van
Bogaert et al., 1998; Kang et al., 2004; Trotta et al., 2016). Kang et
al. (2004) included deaf children aged 1–15 years. The authors
showed a linear increase in adjusted glucose metabolism with
age in the frontal lobes (Kang et al., 2004). The other two studies
included participants aged 6–38 years (Van Bogaert et al., 1998)
and 6–50 years (Trotta et al., 2016). They showed that adjusted
metabolic glucose metabolism followed a nonlinear inverted
U-shaped pattern in the thalamus, anterior cingulate cortex, and
dorsolateral prefrontal cortex, with the highest increase mainly
before the age of 30. This was followed by a linear increase in the
hippocampus and regions of the cerebellum (Van Bogaert et al.,
1998; Trotta et al., 2016). In conclusion, while the absolute glu-
cose metabolism values are highest in the first years of life and
then tend to decrease, the adjusted glucose metabolism values
continue to increase in most brain regions, especially up to the
age of 30. The latter shows that brain maturation continues well
into adulthood.

One study has shown that cortical glucose metabolism also
becomes increasingly asymmetric during adolescence (Pilli et al.,
2019). However, other studies have shown little or no asymmetry
between contralateral brain regions (London and Howman-Giles,
2014; Barber et al., 2018). Asymmetric [18F]-FDG uptake may also
be sex-specific, as the rate of increase and absolute values of FDG
uptake differ between females and males (Kang et al., 2004).

Figure 3. Normal brain metabolism from birth until adulthood derived from [18F]-FDG PET: conflicting results between older and more recent studies. The blue line represents the mean local
cerebral metabolic rate of glucose in the whole brain, derived from studies published before 2000 (H.T. Chugani and Phelps, 1986; H.T. Chugani et al., 1987; Kinnala et al., 1996). The red line
represents the mean maximum standard uptake value (SUV) in different brain regions, derived from studies published between 2014 and 2018 (London and Howman-Giles, 2014; Barber et al.,
2018). The horizontal line with large and small dots represents the adult values of mean local cerebral metabolic rate of glucose and SUV, respectively.
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Cerebral blood flow
CBF rates can be used as a surrogate measure of local energy
demand, as the two are closely related (Kumar and Chugani,
2008). Few studies have used PET to assess CBF in normal devel-
oping children using either the inhalation method with C15O2 or
injection with H2

15O (the gold standard; Altman et al., 1988;
Takahashi et al., 1999; Andersen et al., 2019). In the neonatal pe-
riod, CBF values are low but variable. Andersen et al. (2019)
measured whole brain CBF in four healthy children within the
first 3 d of life. CBF rate in these children ranged from 15 to 22.2
ml/100 g/min (mean: 17.8 ml/100 g/min; Andersen et al., 2019).
In another study, CBF values ranged from 13 to 55 ml/100 g/min
(mean: 23.6 ml/100 g/min) in five term born healthy neonates
aged 3–14d (Altman et al., 1988). Takahashi et al. (1999) calcu-
lated the ratio of CBF to that in adults, and showed that CBF is
low at birth, and increases during development until approxi-
mately eight years of age. More specifically, between three and
eight years of age, CBF values peak at 140% to 175% of adult
values. After eight years of age, CBF decreases and reaches adult
levels during adolescence (Takahashi, 1999). Interestingly, this
pattern follows the same trend as the developmental pattern of
glucose metabolism determined by H.T. Chugani and Phelps
(1986).

By analogy, arterial spin labeling MRI is able to quantify CBF.
Unlike H2

15O PET, this technique can be used noninvasively and
without the need for an ionizing tracer, as it uses magnetically la-
beled arterial blood water protons as an endogenous tracer
(Ferré et al., 2013). This technique has also been used to demon-
strate an increase in CBF during the first years of life (Z. Wang et
al., 2008; Kim et al., 2018; Paniukov et al., 2020).

Overall, PET studies to assess CBF are scarce. The few studies
that have been performed have shown highly variable CBF values
during the neonatal period and an increase in CBF during the
first decade of life. These findings have been confirmed by arte-
rial spin labeling MRI.

Neurotransmitters
PET can also be used to visualize and measure different neu-
rotransmitters using specific radiotracers (Sander and Hesse,
2017). GABA is a major inhibitory neurotransmitter, that
plays a critical role in brain development and in physiologi-
cal processes such as memory, attention, and stress reactivity
(Andersson et al., 2019). Changes in GABAA neurotransmis-
sion in response to sensory stimuli are thought to lead to
synaptic plasticity (Kumar and Chugani, 2008; Andersson et
al., 2019). This hypothesis is supported by two [11C]-fluma-
zenil (FMZ) PET studies performed in children with a his-
tory of epilepsy, which is not thought to interfere with
normal development. They showed that GABAA receptor
density increases rapidly during the first two years of life,
eventually exceeding adult levels (D.C. Chugani et al., 2001;
H.T. Chugani et al., 2013). In the following years, GABAA re-
ceptor density decreases by 25% to 50% to reach adult levels
between 14 and 17.5 years in subcortical regions, and between
18 and 22 years in cortical regions (D.C. Chugani et al., 2001).
Interestingly, during the first three postnatal months, GABAA

receptor binding patterns resemble those of neonatal glucose
metabolism pattern, with higher tracer binding in subcortical
than in cortical regions (H.T. Chugani et al., 2013).

Glutamate is the major excitatory neurotransmitter that plays
a role in brain development and function and binds to several
receptors. One of these receptors is the metabotropic glutamate
receptor 5 (mGluR5), a receptor involved in neuronal proliferation

and differentiation (Jansson and Åkerman, 2014). The tracer
[18F]�3-fluoro-5-[(pyridin-3-yl) ethynyl]benzonitrile (FPEB)
binds to mGluR5. Two [18F]-FPEB PET studies have found a
decreasing availability of mGluR5 from young adult to older
age (Leurquin-Sterk et al., 2016; Mecca et al., 2021). So far, no
[18F]-FPEB PET studies have been performed in a healthy popu-
lation during early neurodevelopment.

Dopamine is involved in the motivational component of
reward-motivated behavior, motor control, and control of hor-
mone release, and is therefore thought to be a driving factor in
adolescent behavior (Wahlstrom et al., 2010). The earliest dopa-
mine PET study was conducted in children aged 10 years (Jucaite
et al., 2010). In this study, the authors showed a decrease in brain
D1 receptor binding from 10 to 30 years of age, most pronounced
in the cerebral cortex (Jucaite et al., 2010). The decrease in brain
dopamine D1 and D2 receptor binding with age from adulthood
has also been demonstrated in PET studies using the tracers [11C]-
SCH23390, 3-N-[11C]-methylspiperone ([11C]-NMSP), and [11C]-
raclopride (Wong et al., 1984; Suhara et al., 1991; Y. Wang et al.,
1998; Larsen et al., 2020). In conclusion, the availability of both
mGluR5 and dopamine receptors decreases with advancing age.
PET studies performed during the first decade of life would pro-
vide critical information on the importance of these receptors dur-
ing brain maturation.

Serotonin plays an important role in neuronal proliferation,
migration, and development (Kumar and Chugani, 2008). In
utero serotonin depletion leads to microcephaly, delayed neuro-
genesis, and disruption of synaptic connectivity in sensory corti-
ces (Kumar and Chugani, 2008). Serotonin has indeed been
shown to be a driver of neurodevelopment (D.C. Chugani et al.,
1999). Using of a[11C]methyl-L-tryptophan (AMT) PET, it has
been shown that the capacity for serotonin synthesis of children
between the ages of two and five years of age with normal neuro-
development is twice that of adults. This is followed by a decline
toward adult levels between the ages of 5 and 14 years. In addi-
tion, serotonin levels decline to adult levels earlier in girls than in
boys, corresponding to an earlier onset of puberty (D.C. Chugani
et al., 1999).

In conclusion, a few isolated PET studies have shown that
cerebral glucose metabolism, CBF, GABAA receptor density and
serotonin synthesis are higher during the first decade of life and
exceed adult levels, after which they decline. This underlines the
importance of the first years of life for brain development. In
addition, both glucose metabolism and GABAA receptor density
are higher in subcortical regions than in cortical regions during
the neonatal period. Further PET studies using different radio-
tracers in the healthy population are warranted to provide addi-
tional molecular longitudinal in vivo information on normal
neurodevelopment.

PET studies in normally developing rodents
To our knowledge, four longitudinal [18F]-FDG PET studies
have been performed in rats from adolescence to adulthood
(Choi et al., 2015; Jiang et al., 2018, 2020; Xue et al., 2022).
Consistent with human studies (London and Howman-Giles,
2014; Barber et al., 2018), [18F]-FDG SUV increased in the stria-
tum from two (juvenile) to four (adult) months of age (Jiang et
al., 2018). Choi et al. (2015) showed that in awake male rats
adjusted glucose metabolism increased in the frontal lobes from
5 (juvenile) to 10 (young adult) weeks of age, and then decreased
in the left frontal cortex from 10 to 15weeks of age. Interestingly,
this nonlinear inverted U-shaped pattern resembles the
adjusted glucose metabolism pattern detected in humans from
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6 to 50 years of age (Trotta et al., 2016). However, not all findings
in rats were similar to the human situation. While an increase in
adjusted glucose metabolism activity in the thalamus and cere-
bellum was observed in human adolescents (Van Bogaert et al.,
1998; Trotta et al., 2016), rats showed a decrease in both brain
regions between 5 and 10weeks of age (Choi et al., 2015).

Three of the four longitudinal studies examined metabolic
correlations (connections) between brain regions (Choi et al.,
2015; Jiang et al., 2020; Xue et al., 2022). The first found signifi-
cantly increased metabolic connectivity between the retrosplenial
cortex, medial prefrontal cortex, and motor cortices from 5 to
10/15weeks of age. Additionally, increased energy efficiency,
defined as the ratio of metabolic connectivity strength to normal-
ized FDG uptake of each brain region, was found in the retro-
splenial cortex and medial prefrontal cortex with increasing age
(Choi et al., 2015). This increased energy efficiency was also
demonstrated by Jiang et al. (2020).

A small-world topology was found in two-month-old (adoles-
cent) rats (Jiang et al., 2020). Xue et al. (2022) found no change in
normalized path length from adolescence (twomonths) to adult-
hood (18months) in rats (Xue et al., 2022). Both of these findings
are similar to the rs-fMRI findings in humans (Fair et al., 2009;
Supekar et al., 2009). In contrast, Jiang et al. (2020) found a
decrease in normalized path length (l ), and an increase in the
small-world index from two to ninemonths of age in rats, indicat-
ing more efficient information transfer between long-distance
nodes (Jiang et al., 2020). However, they only included six rats.

In summary, most rodent [18F]-FDG PET studies show
increased adjusted glucose metabolism, increased metabolic
connectivity, and increased energy efficiency from juvenile to
adult age, and these findings are similar to the human situa-
tion. However, two studies also found results that were incon-
sistent with the human situation (Choi et al., 2015; Jiang et al.,
2020). Small sample sizes and differences in methodology may
explain these discrepancies. Further studies comparing the
healthy human and rodent populations are warranted to
determine the full translational validity of rodent neurodeve-
lopmental PET studies.

rs-fMRI and PET as Tools to Study Abnormal
Early Brain Development
In the next section, we discuss rs-fMRI and PET studies in peo-
ple with specific NDDs, namely, ID (with or without epilepsy),
ASD, and ADHD (Tables 1 and 2).

Intellectual disability with or without epilepsy
Rs-fMRI and PET in humans with intellectual disability with or
without epilepsy
ID is defined as deficits in intellectual and adaptive function-
ing with an onset during the developmental period (American
Psychiatric Association, 2013). ID can be part of a syndrome,
for example Down syndrome and Fragile X syndrome, and all
ID syndromes have an increased susceptibility to developing
epilepsy (Robertson et al., 2015). Here, we discuss how rs-
fMRI and PET have been used to study ID. To our knowledge,
no study has used both techniques simultaneously in the same
patient population.

Angelman syndrome and Prader–Willi syndrome are both
characterized by ID and result from a deletion of a maternal
or paternal imprinted region on chromosome 15q11-q13, a
region encoding the GABAA receptor subunit genes GABRB3,
GABRA5, and GABRG3 (Hogart et al., 2007). In adults with

Prader–Willi syndrome (19.9–29.6 years), a significantly lower
[11C]-FMZ binding was observed in the frontal cortex, tempo-
ral cortex, cingulate, and insula compared with controls, dem-
onstrating that the deleted GABR genes result in a reduced
number of GABAA receptors (Lucignani et al., 2004). Indeed,
in a 19-year-old patient with Angelman syndrome caused by a
pathogenic variant in UBE3A, [11C]-FMZ binding was higher
in the frontal, parietal, hippocampal, and cerebellar regions
than in Angelman syndrome patients (two to six years) with a
maternal 15q11-q13 deletion (Holopainen et al., 2001).

Fragile X syndrome is a genetic disorder associated with ID
(Telias, 2019). Both GABA and glutamate are thought to play
a role in the pathogenesis of Fragile X syndrome, as evidenced
by several in vitro studies (Telias, 2019). Indeed, significant
reductions in brain GABAA and mGluR5 receptors have been
demonstrated in adults with Fragile X syndrome using PET
imaging (D’Hulst et al., 2015; Mody et al., 2021; Braši�c et al.,
2022).

Down syndrome, also known as trisomy 21, is caused by a
third copy of chromosome 21, and is characterized by ID and
dysmorphic features (Gardiner et al., 2010). Down syndrome has
been studied using rs-fMRI, and these studies have generally
shown a mixed pattern of both hyperconnectivity and hypocon-
nectivity (Pujol et al., 2015; Wilson et al., 2019; Csumitta et al.,
2022). Pujol et al. (2015) studied young adults (18–32 years) with
Down syndrome and showed a pattern of increased FC of the
ventral brain system (the amygdala/anterior temporal region,
and the ventral aspect of both the anterior cingulate and frontal
cortices) associated with emotional processes, motivation, and
learning, and decreased FC of the dorsal brain system (dorsal
prefrontal and anterior cingulate cortices, and posterior insula)
associated with executive functions. Interestingly, both patterns
were negatively correlated with communication skills scores,
suggesting that the pattern of FC changes as a whole may serve
as a biomarker of neurodevelopmental dysfunction (Pujol et al.,
2015). Csumitta et al. (2022) argued that it is difficult to separate
neurodevelopmental abnormalities from possible age-related
neurodegeneration in adults with Down syndrome, and per-
formed rs-fMRI in children, adolescents, and young adults
(7–23 years) with Down syndrome. They found a widespread
increase in FC. In addition to a younger study population,
the authors suggest a different data analysis (e.g., no global
signal regression) to be a possible reason for the discrepancy
with the study by Pujol et al. (2015; Csumitta et al., 2022).

Some genetic syndromes, such as Dravet syndrome and Rett
syndrome, are characterized by an initial normal neurodevelop-
ment followed by a neurodevelopmental arrest or regression
(Haginoya et al., 2018; Liao, 2019). This maturational arrest has
also been observed using [18F]-FDG PET and may reflect a devel-
opmental regression of brain networks (Haginoya et al., 2018;
Kumar et al., 2018; Villemagne et al., 2002). For example, while
the glucose metabolism patterns were still normal in children
with Dravet syndrome under the age of three years, a pro-
found reduction in glucose uptake was observed in the cortex
of older patients (Haginoya et al., 2018; Kumar et al., 2018).
Next, an infantile glucose pattern, characterized by relatively
increased glucose metabolism in the frontal cortex and cere-
bellum and decreased glucose metabolism in the occipital
cortex, was observed in 3- to eight-year-old children with
Rett syndrome (Villemagne et al., 2002). Yoshikawa et al.
(1991), on the other hand, used C15O2 PET to demonstrate
that the ratio of frontal to temporal CBF was lower than the
normal age-matched ratio in children with Rett syndrome
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aged 3–18 years (Yoshikawa et al., 1991). Villemagne et al.
(2002) propose that mitochondrial dysfunction is the under-
lying cause of the uncoupling between brain glucose utiliza-
tion and CBF in Rett syndrome (Villemagne et al., 2002).

In.90% of cases, Rett syndrome is caused by pathogenic var-
iants in the X-linked gene MECP2 (Liao, 2019). This disorder is
known to lead to defects in the dopaminergic neurotransmitter
system. Indeed, a significant reduction in dopamine 2 recep-
tors in the striatum has been demonstrated in patients with
Rett syndrome (15–32 years) using [11C]-NMSP PET (Wong
et al., 2018).

People with ID often have epilepsy, and vice versa (Snoeijen-
Schouwenaars et al., 2021). One subpopulation is developmental
and epileptic encephalopathy (DEE), a severe condition in which
cognitive function is affected by both the epilepsy and the under-
lying (mostly genetic) cause (Scheffer and Liao, 2020). While
many studies have investigated FC changes in the context of epi-
lepsy (Abela et al., 2014; Moody et al., 2021), a more limited
number of studies have investigated the association between FC
and cognitive impairment in this patient population (Paldino et
al., 2017). In a case report of a five-year-old DEE patient with
progressive loss of developmental milestones, suppressed sponta-
neous BOLD fluctuations and a pervasive lack of normal FC
were observed. Remarkably, following corpus callosotomy sur-
gery, recovery of FC was demonstrated in concordance with the
development of new skills (Pizoli et al., 2011). Furthermore, in
children with childhood epilepsy with centrotemporal spikes (7–
13 years), abnormal FC organization within the DMN was
shown to correlate with cognitive and socio-emotional de-
velopment (Ofer et al., 2018). Similarly, in children with
focal intractable epilepsy (8–17 years), increased FC within

the DMN was associated with higher scores for working memory
scores, whereas stronger anticorrelation between the DMN and the
salience network was associated with higher IQ scores (Ibrahim et
al., 2014). Finally, some studies have shown an association between
FC patterns and intelligence in children, adolescents, and adults
with focal epilepsy (Qin et al., 2020; Songjiang et al., 2021; Struck
et al., 2021).

Children with epileptic spasms syndrome also often, but not
always, have neurodevelopmental delay (Arai et al., 2023). In this
population, [18F]-FDG PET has been shown to be a powerful
predictive tool, when performed at the right time (Itomi et al.,
2002). In a cohort of children with cryptogenic epileptic spasms
syndrome, [18F]-FDG PET performed threemonths after ini-
tial therapy was more useful for prognostication than [18F]-
FDG PET performed at the onset of spasms (Itomi et al., 2002).
Children with cortical hypometabolism on PET threemonths
after the start of therapy had a significantly higher rate of de-
velopmental delay at a later age (three to eight years). In addi-
tion, a favorable neurodevelopmental outcome was more likely
if PET at the onset of epileptic spasms showed abnormalities
that were not present on follow-up PET threemonths later
(Itomi et al., 2002). Another study confirmed these results
(Natsume et al., 2014).

In conclusion, neurotransmitter PET studies have demon-
strated their utility in revealing the effects of the underlying
genetic defect on neurotransmitters, which may be of interest in
the development and evaluation of novel therapeutics. [18F]-
FDG PET and rs-fMRI findings correlate strongly with cognitive
development. The use of both imaging techniques to assess and
especially predict neurodevelopmental outcomes in specific ID
syndromes requires further investigation.

Table 2. Overview of different PET tracers used to study glucose and neurotransmitters in neurodevelopmental disorders

Tracer Tracer binding NDDs in which molecular changes have been reported

Glucose main source of energy for the brain, critical for brain
functions, such as memory and learning, and precursor for
neurotransmitter synthesis

[18F]-FDG Rett syndrome (Villemagne et al., 2002), Dravet syndrome
(Haginoya et al., 2018; Kumar et al., 2018; Ricobaraza et
al., 2019), ID 1/� epilepsy (Itomi et al., 2002; Natsume
et al., 2014), ASD (Rumsey et al., 1985; Haznedar et al.,
1997; Haznedar et al., 2006; H.T. Chugani et al., 2007;
Dilber et al., 2013; Chivate et al., 2016; Anil Kumar et al.,
2017; Mitelman et al., 2018), ADHD (Zametkin et al., 1990;
Ernst et al., 1994; Ha et al., 2020)

GABA major inhibitory neurotransmitter, excitatory effects dur-
ing development, critical role in brain development and in
physiological processes such as memory, attention, and
stress reactivity

[11C]-FMZ GABAA Prader–Willi syndrome (Lucignani et al., 2004), Angelman
syndrome (Holopainen et al., 2001), Fragile X syndrome
(D’Hulst et al., 2015; Horder et al., 2018)

[11C]-Ro15-4513 GABAA a5 ASD (Mendez et al., 2013)
Glutamate major excitatory neurotransmitter, critical for brain
development and function

[18F]-FPEB mGluR5 Fragile X syndrome (Braši�c et al., 2021; Mody et al., 2021;
Afshar et al., 2022; Braši�c et al., 2022), ASD (Fatemi et al.,
2018; Cai et al., 2019; Braši�c et al., 2021)

Dopamine neurotransmitter, involved in the motivational com-
ponent of reward-motivated behavior, motor control, and
control of hormone release

[11C]-NMSP D2 dopamine receptor Rett syndrome (Wong et al., 2018)
[11C]-raclopride D2/D3 dopamine receptor Rett syndrome (Wong et al., 2018), ADHD (Rosa-Neto et al.,

2005; Volkow et al., 2007b; Brown et al., 2011)
[11C]-WIN-35428 Dopamine transport ASD (Nakamura et al., 2010)
[11C]-cocaine Dopamine transport ADHD (Volkow et al., 2007b)
[11C]-altropane Dopamine transport ADHD (Spencer et al., 2007)
[11C]-FLB457 D2/D3 dopamine receptor ASD (Murayama et al., 2022)
[18F]-DOPA L-DOPA analogue ASD (Nieminen-von Wendt et al., 2004), ADHD (Ernst et al.,

1998; Ludolph et al., 2008)
L-[11C]-DOPA L-DOPA analogue ADHD (Forssberg et al., 2006)
[11C]-PE2I Dopamine transport ADHD (Jucaite et al., 2005)

Serotonin [5-hydroxytryptamine (5-HT)] role in neuronal prolif-
eration, migration, and development, role in mood, emo-
tions, appetite and digestion, precursor of melatonin (role
in sleep-wake cycle)

a[11C]-AMT Tryptophan (precursor) ASD (D.C. Chugani et al., 1997; Chandana et al., 2005)
[11C](1)McN-5652 Serotonin receptor ASD (Nakamura et al., 2010)
[18F]-setoperone Serotonin receptor ASD (Beversdorf et al., 2012)

ADHD: attention deficit hyperactivity disorder; ASD: autism spectrum disorder; ID: intellectual disability; mGluR5: Metabotropic glutamate receptor subtype 5; NDDs: neurodevelopmental disorders.
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rs-fMRI and PET in rodent models of intellectual disability with
or without epilepsy
To the best of our knowledge, no rs-fMRI study has been per-
formed in a rodent model of ID. However, three PET imaging
studies have been conducted in juvenile and adult rodent models
of ID, namely in Dravet syndrome, Fragile X syndrome, and Rett
syndrome (Wong et al., 2018; Ricobaraza et al., 2019; Afshar et
al., 2022). Two showed results similar to those in humans
(Wong, 2018; Afshar, 2022). In the first, longitudinal [18F]-FPEB
PET imaging was performed in a mouse model of Fragile X syn-
drome [FMR1 knock-out (KO) mice] at juvenile and adult ages
(Afshar et al., 2022). This study confirmed the reduced availabil-
ity of mGluR5 throughout the brain. The second study used PET
with [11C]-NMSP in humans (15–32 years) and [11C]-raclopride
in mice with MECP2-related Rett syndrome (7–10weeks) to
assess and compare D2 dopamine receptor binding in both spe-
cies. This combined human-rodent study demonstrated a signifi-
cant reduction in striatal D2 dopamine receptors in the striatum
in both species, suggesting that the MECP2-deficient mice are an
appropriate and highly translational model to study dopaminer-
gic deficits in Rett syndrome (Wong et al., 2018).

The third study showed results that appear to contradict those
found in humans. An overall increase in glucose uptake was
observed in a mouse model of Dravet syndrome (one to eight
months; Ricobaraza et al., 2019), while children older than
three years with Dravet syndrome have reduced cortical glu-
cose uptake (Haginoya et al., 2018; Kumar et al., 2018). The
authors suggested that the influence of anti-seizure medica-
tion in patients and different normalization methods could be
a possible explanation for these conflicting results (Ricobaraza
et al., 2019). We argue that the mismatch in neurodevelop-
mental stage between humans and mice may also contribute
to the difference in results.

In summary, while there is some promising evidence for the
translatability of PET imaging results from rodent models of ID
to humans, further studies using rs-fMRI and PET in age-
matched and genotype-matched monogenic rodent models and
humans are warranted to support this hypothesis further.

Autism spectrum disorder
rs-fMRI and PET in humans with ASD
Individuals with ASD have persistent deficits in social communica-
tion and interaction combined with restricted, repetitive behaviors
that are evident before the age of three years (American Psychiatric
Association, 2013). A large number of studies have used rs-fMRI
or PET to investigate changes in individuals with ASD (for rs-
fMRI review, see Rane et al., 2015; Hull et al., 2016; Picci et al.,
2016; for PET review, see Zürcher et al., 2015; Kowalewska et al.,
2022; X. Li et al., 2021; Tan et al., 2022).

Many, but not all, rs-fMRI studies have shown long-range cor-
tico-cortical hypoconnectivity, combined with cortico-subcortical
hyperconnectivity (Delmonte et al., 2013; Di Martino et al., 2014;
Cerliani et al., 2015; Oldehinkel et al., 2019). For example, FC is
increased between sensorimotor and subcortical or cerebellar net-
works, while FC is decreased between visual association, somato-
sensory, and motor networks (Oldehinkel et al., 2019). These FC
alternations are thought to reflect impaired visual-motor and mul-
tisensory integration (Oldehinkel et al., 2019).

FC abnormalities have also been reported within various pri-
mary and higher-order networks. In general, increased FC has
been found within the motor, visual, DMN, and salience net-
works (Uddin et al., 2013; Washington et al., 2014). These find-
ings have been associated with more severe autistic traits (Uddin

et al., 2013; Washington et al., 2014; Oldehinkel et al., 2019).
Uddin et al. (2013) showed that the FC pattern of the salience
network was the most important discriminator of the presence/
absence of ASD, and that this pattern could also predict re-
stricted and repetitive behavior scores (Uddin et al., 2013).

[18F]-FDG PET studies in individuals with ASD show con-
flicting results. Glucose metabolism patterns of global increase
(Rumsey et al., 1985), local decrease in temporal lobes (H.T.
Chugani et al., 2007; Dilber et al., 2013), anterior cingulate cortex
(Haznedar et al., 1997) or striatum and thalamus (Haznedar et
al., 2006), and mixed patterns (Chivate et al., 2016; Anil Kumar
et al., 2017; Mitelman et al., 2018) have all been demonstrated in
children or adults with ASD. Next, multiple studies have shown
a lower CBF in the temporal lobes of children with ASD com-
pared with controls (Zilbovicius et al., 2000; Boddaert et al.,
2002; Duchesnay et al., 2011). Duchesnay et al. (2011) found that
the pattern of right superior temporal sulcus hypoperfusion
combined with left postcentral area hyperperfusion predicted of
ASD with 88% accuracy. In addition, CBF in the superior tempo-
ral sulcus is negatively correlated with more severe autistic traits
(Gendry Meresse et al., 2005).

Few PET studies have investigated possible neurotransmitter
disturbances in ASD, looking at GABAA, mGluR5, serotonin,
and dopamine. Some studies have found no significant differen-
ces in GABAA (a5; Horder et al., 2018; Fung et al., 2021), 5-HT2
serotonin (Girgis et al., 2011), and D1 or D2/3 dopamine recep-
tor availability (Kubota et al., 2020; Schalbroeck et al., 2021a, b)
between individuals with ASD and controls. Others have shown
decreased GABAA a5 receptor binding (Mendez et al., 2013),
increased mGluR5 expression (Fatemi et al., 2018; Braši�c et al.,
2021), decreased serotonin synthesis (D.C. Chugani et al., 1997;
Chandana et al., 2005) and 5-HT2 receptor binding (Nakamura
et al., 2010; Beversdorf et al., 2012), increased striatal presynaptic
dopamine synthesis (Nieminen-vonWendt, 2004), and increased
dopamine transporter binding (Nakamura et al., 2010) in adults
with ASD. These findings have been correlated with more severe
autistic traits (Nakamura et al., 2010; Fatemi et al., 2018; Kubota
et al., 2020). Interestingly, Murayama et al. (2022) performed
both [11C]-FLB457 PET and rs-fMRI in individuals with ASD.
They found reduced extrastriatal D2/D3 receptor availability in
ASD compared with controls, and the reduction was most pro-
nounced in the thalamus. These lower levels correlated with a
lower FC between the thalamus and superior temporal sulcus, and
between the cerebellum and medial occipital cortex (Murayama et
al., 2022).

Fragile X syndrome is a NDD characterized by ID, but it is
also the leading genetic cause of ASD. More than a third of the
people with Fragile X syndrome also have ASD (Telias, 2019).
Remarkably, the reduced GABAA and mGluR5 receptor binding
detected in adults with Fragile X could not be replicated in more
heterogeneous cohorts of adults with ASD (D’Hulst et al., 2015;
Horder et al., 2018; Braši�c et al., 2021, 2022; Mody et al., 2021).
This finding suggests that the neurotransmitter dysfunctional is a
gene-specific finding, rather than being a general pattern seen in
all people with ASD.

In conclusion, the results of the rs-fMRI and PET studies in
ASD are often inconsistent and inconclusive. Differences in the
age of participants is one factor that could influence the results,
as functional and molecular brain patterns change during develop-
ment. First, FC abnormalities have been shown to already emerge
before the onset of clinical symptoms, as early as sixmonths of
age, and may predict the diagnosis of ASD (Emerson et al., 2017).
Second, some abnormalities emerge or progress after the onset of
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ASD symptoms (Washington et al., 2014). Finally, both PET and
rs-fMRI studies have shown delayed maturation patterns in young
children with ASD, which eventually develop into a normal pat-
tern at a later age (Zilbovicius et al., 1995; D.C. Chugani et al.,
1999; Nebel et al., 2014). We argue that other possible factors con-
tributing to the inconsistencies include the often small number of
participants, the clinical heterogeneity of ASD, and differences in
study design and study population.

rs-fMRI and PET in rodent models of ASD
Rodent studies typically model specific monogenic forms of ASD
(Hulbert and Jiang, 2016). This circumvents the problem of clini-
cal and etiological heterogeneity that is present in many of the
human cohort studies. Indeed, a comparison of 16 different
transgenic mouse models of ASD showed that all individual
models were characterized by distinct, spatially distributed FC
changes, and that there was no abnormal FC pattern that was
common to all etiologies (Zerbi et al., 2021). This finding argues
against the existence of a specific resting-state FC-based bio-
marker for ASD (Zerbi et al., 2021). For example, longitudinal
rs-fMRI assessment was performed at juvenile (�P34), young-
adult (�P58), and adult (�P112) ages in two different transgenic
mouse models of ASD. They showed reduced FC between sen-
sory-processing areas from juvenile to adult age in the fmr1 KO
mice compared with controls, whereas reduced FC in the DMN,
salience network, and hippocampal areas became apparent only
between adolescence and adulthood in the contactin-associated
protein 2 KO (Cntnap2 KO) mice. Interestingly, the timing of
the abnormal FC coincides with the expression profile of both
genes (Zerbi et al., 2018). In adult Cntnap2 KO mice, hypocon-
nectivity between DMN nodes was shown to be associated with
reduced social behavior (Liska et al., 2018). Administration of
oxytocin to Cntnap2 KO mice normalized FC patterns and res-
cued social deficits, illustrating the potential use of rs-fMRI-
based biomarkers to assess treatment effects in the context of
neurodevelopmental dysfunction (Choe et al., 2022).

Adult Shank3B KO mice are a widely used model of ASD.
The mouse model showed reduced prefrontal FC, and this
reduction was associated with impaired social communication
(Pagani et al., 2019). Second, increased subcortical mGluR5 re-
ceptor availability was observed in this mouse model (Cai et al.,
2019). Both findings were similar to those seen in studies
of humans with ASD, although here the increased mGluR5

receptor availability was found in cortical brain regions
(Fatemi et al., 2018; Braši�c et al., 2021). To the best of our
knowledge, neither imaging study has ever been performed
in the specific subset of individuals with pathogenic variants
in the SHANK3 gene, precluding a direct comparison with
the human situation.

In another study, the availability of GABAA and GABAA a5
subunits was measured by autoradiography using the tracers
[11C]-FMZ and [11C]-Ro15-4513 in three different adult ASD
mouse models (Cntnap2 KO, Shank3B KO, 16p11.2 deletion;
Horder et al., 2018). GABAA and GABAA a5 subunit availability
did not differ from wild-type controls in any of the mouse mod-
els, similar to what has been shown with PET imaging in hetero-
geneous cohorts of adults with ASD using the same tracers
(Horder et al., 2018).

Few studies have demonstrated the translational value of
rodent rs-fMRI studies to the human ASD situation. Reduced
prefrontal FC and reduced long-range FC synchronization
between prefrontal and associative cortical areas were found in
both children with 16p11.2 deletion and in adult 16p11.21/�

mice (Bertero et al., 2018). One study compared FC findings in
awake children with neurofibromatosis type 1 because of a hetero-
zygous pathogenic variant in the NF1 gene with awake, head-fixed
Nf11/� adult mice (Shofty et al., 2019). Although not performed at
the same developmental stage, reduced FC in the cingulate cortex,
and increased cortico-striatal FC were observed in both models
(Shofty et al., 2019).

In summary, various transgenic mouse models of ASD have
confirmed the presence of aberrant patterns of molecular and
functional brain development. These patterns are conserved
across species, although hypoconnectivity appears to be more
prominent in mouse models, whereas within-network hypercon-
nectivity patterns are more commonly described in humans.
Importantly, abnormalities in ASD detected by rs-fMRI and PET
are etiology dependent, highlighting the importance of using ho-
mogeneous study populations in both rodent and human imag-
ing studies.

Attention deficit hyperactivity disorder
Rs-fMRI and PET in humans with ADHD
ADHD is an NDD characterized by hyperactivity-impulsivity
and/or inattention (American Psychiatric Association, 2013). In
rs-fMRI studies, a delay in the maturation of higher-order net-
works such as the DMN is a consistent finding (Castellanos et al.,
2008; Uddin et al., 2008; Fair et al., 2010; Qiu et al., 2011). This
delay in maturation is supported by several studies showing
hypoconnectivity within the DMN, and a reduced anticorrela-
tion between the DMN and the executive control network/DAN
in children, adolescents, and adults with ADHD (Castellanos et
al., 2008; Uddin et al., 2008; Fair et al., 2010; Qiu et al., 2011; Sun
et al., 2012; Hoekzema et al., 2014; Marcos-Vidal et al., 2018).
The reduced anticorrelation has been suggested to explain inat-
tention, as activation of the DMN would interfere with sustained
attention (Posner et al., 2014).

Hypoconnectivity has also been described in other higher-
order networks of people with ADHD. Wang et al. (2018) inves-
tigated the effects of the single-nucleotide polymorphism (SNP)
rs3746544 of the synaptosomal-associated protein 25 (SNAP25)
gene, which confers a high risk for ADHD, on brain FC and on
working memory capacity. They found hypoconnectivity in the
anterior cingulate cortex (salience network) and in the right dor-
solateral prefrontal cortex (executive control network) in chil-
dren carrying the rs3746544T allele in a homozygous state (C.
Wang et al., 2018). These findings correlated with poor working
memory performance (C. Wang et al., 2018). In addition to
reduced prefrontal FC, reduced glucose metabolism in the
prefrontal cortex has been shown in individuals with ADHD
(Zametkin et al., 1990; Ernst et al., 1994). These findings, to-
gether with the fact that the prefrontal cortex encompasses
both the DMN and the executive control network, suggest that
the prefrontal cortex plays an important role in the pathoge-
nesis of ADHD.

Changes in FC in other networks have shown more contra-
dictory results. For example, FC in the cortico-striatal network
has been shown to be both increased (Tian et al., 2008; Costa
Dias et al., 2013; Sanefuji et al., 2017) and decreased (Cao et al.,
2009; Mills et al., 2012; Posner et al., 2013; Hong et al., 2015) in
people with ADHD. These inconsistent findings may be because
of the subtype of ADHD included in the study. For example,
Sanefuji et al. (2017) found hyperconnectivity within the cortico-
striatal network only in individuals with the hyperactive/impulsive
subtype. Furthermore, the nigro-striatal network is a dopaminergic
circuit (del Campo et al., 2013). The presence or absence of prior
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exposure to methylphenidate (a norepinephrine–dopamine reup-
take inhibitor) may therefore also influence imaging results. Indeed,
treatment with methylphenidate has an impact on imaging findings,
as it has been shown to decrease striatal dopamine receptor binding
(Rosa-Neto et al., 2005; Volkow et al., 2007b; del Campo et al.,
2013), decrease subcortical dopamine synthesis (Ludolph,
2008), and increase regional CBF in the cerebellar vermis
(Schweitzer et al., 2003) in people with ADHD. It is therefore
important to consider the treatment status of patients when
interpreting the results of rs-fMRI and PET studies.

Because dopamine plays a critical role in the motivational
component of reward-motivated behavior and in the control of
mood and movement, dopamine dysfunction has been impli-
cated in the pathogenesis of ADHD (Volkow et al., 2011).
However, to date, there is no consensus on the dopamine meta-
bolic pattern in ADHD. The tracers [18F]-DOPA/[18F]-FDOPA/
L-[11C]-DOPA, [11C]-PE2I/[11C]-cocaine/[11C]-altropane, and
[11C]-raclopride can be used to measure the integrity of the pre-
synaptic dopamine system, dopamine transport (DAT), and do-
pamine D2/D3 receptor binding, respectively. Several studies
suggest reduced presynaptic dopamine function, particularly in
subcortical regions (Forssberg et al., 2006; Ludolph et al., 2008),
midbrain (Ludolph et al., 2008), and prefrontal cortex (Ernst et
al., 1998), regardless of treatment status. However, an older study
failed to find presynaptic dopamine differences in the subcortex
or prefrontal cortex, and found a nonsignificant increase in mid-
brain dopamine synthesis in adolescent ADHD patients, even
when treated with a psychostimulant (Ernst et al., 1999). In addi-
tion, different studies have found inconsistent results regarding
the availability of D2/D3 receptors in people with ADHD com-
pared with controls. One study reported a decrease in D2/D3 re-
ceptor availability (Volkow et al., 2007b), whereas other studies
showed no differences (Jucaite et al., 2005; del Campo et al.,
2013) or even an increase (Rosa-Neto et al., 2005). Finally, differ-
ent studies have shown conflicting results regarding DAT expres-
sion. In adults with ADHD, one study found higher DAT in the
right caudate nucleus (Spencer et al., 2007) and another found
lower DAT in the left caudate nucleus and nucleus accumbens
(Volkow et al., 2007a) compared with healthy controls. These
differences have been explained by differences in the 5’DAT
(SLC6A3) haplotype (Drgon et al., 2006), the degree of methyla-
tion of the DAT1 promoter (Wiers et al., 2018), and medication
status (Fusar-Poli et al., 2012).

Not only treatment status or ADHD subtype, but also sex
seems to influence imaging results. For example, glucose metabo-
lism has been shown to be lower in females with ADHD, whereas
[18F]-DOPA uptake has been shown to be lower in males with
ADHD (Zametkin et al., 1993; Ernst et al., 1994, 1998).

In summary, similar to ASD, ADHD is a very heterogeneous
disorder, and variable imaging results may be because of differences
in study design, treatment status, and clinical heterogeneity. However,
several studies point toward common disease mechanisms, includ-
ing delayed maturation of higher-order networks, prefrontal hypo-
connectivity, and prefrontal glucose hypometabolism.

rs-fMRI and PET studies in rodent models of ADHD
ADHD is a complex but highly heritable NDD, influenced by
multiple genetic, social, and environmental factors (Al-Mubarak
et al., 2020). ADHD is thought to be a polygenic rather than a
monogenic disorder, so transgenic rodent models of ADHD are
limited. To date, three mouse models of ADHD have been used in
rs-fMRI and/or PET studies (Brown et al., 2011; S.M. Huang et al.,
2016; Poirier et al., 2017; Zoratto et al., 2017; Ha et al., 2020).

Zoratto et al. (2017) applied rs-fMRI to the Naples-High-
Excitability (NHE) rat model, a model with phenotypic features
similar to the inattentive ADHD subtype. This rat model showed
reduced FC between the prefrontal cortex, dorsal striatum, and
hippocampus at adult age (Zoratto et al., 2017). In contrast, the
six-week-old spontaneously hypertensive (SHR) rat model, a
model with phenotypic features similar to the hyperactive/impul-
sive ADHD subtype, showed stronger cortico-striato-thalamo-
cortical connections compared with controls (S.M. Huang et al.,
2016). Poirier et al. (2017) also found evidence for a stronger cor-
tico-stratal network in awake six-week-old SHR rats. Using indi-
vidual component analysis (ICA), they showed a component
consisting of the medial striatum and ventromedial prefrontal
cortex in the SHR rats, a component that was not found in the
control strains (Poirier et al., 2017). The inconsistent findings
between the two rat models (NHE vs SHR) are similar to what
has been demonstrated in humans and may be because of the dif-
ferent subtypes of ADHD (Sanefuji et al., 2017).

Next, and in contrast to what has been described in humans
with ADHD (Castellanos et al., 2008; Uddin et al., 2008; Fair et
al., 2010; Qiu et al., 2011), the SHR rat model showed hypercon-
nectivity within the DMN (S.M. Huang et al., 2016).

Ha et al. (2020) used the same SHR rat model to investigate
the metabolic connections using [18F]-FDG PET at four and
sixweeks of age. The authors showed delayed maturation of lim-
bic and (sub)cortical connections together with reduced right
fronto-striatal connections at sixweeks of age. The latter is
inconsistent with the study by S.M. Huang et al. (2016), which
may be because of a different imaging technique (awake [18F]-
FDG PET vs rs-fMRI under anesthesia) or selection of animals
[only phenotypically positive rats were selected in the study by
Ha et al. (2020)].

Another rodent model of ADHD is the neurofibromatosis
type 1 (NF1) mouse model, which has been shown to have
attentional deficits. Using [11C]-raclopride PET imaging, this
mouse model showed higher striatal dopamine D2 receptor
binding at adult age compared with wild-type controls (Brown
et al., 2011). Upon initiation of methylphenidate, striatal [11C]-
raclopride binding was restored to wild-type levels (Brown
et al., 2011). Although there are still discrepancies between stud-
ies regarding D2 receptor availability in people with ADHD, all
studies have shown that methylphenidate reduces the D2 recep-
tor binding (Rosa-Neto et al., 2005; Volkow et al., 2007b; del
Campo et al., 2013).

In conclusion, rodent models of ADHD have demonstrated
their usefulness in investigating the pathomechanisms of ADHD.
Very careful phenotyping is however required as findings need to
be correlated with the correct subtype of ADHD in humans.

Future challenges and opportunities
Rodent models as standardized models for heterogeneous human
study populations
rs-fMRI and PET studies have been shown to be useful for non-
invasively and longitudinally studying neurodevelopment, pre-
dicting neurodevelopmental outcomes, and evaluating the effects
of therapy in both human and rodent models. To date, there is a
paucity of functional and molecular imaging studies performed
in humans before the age of two years, the critical period of neu-
rodevelopment. This may be because of ethical considerations
such as the need for sedation, and, in the case of PET imaging,
the use of radioactive tracers. In addition, small sample sizes, het-
erogeneous study populations (e.g., variability in age, treatment,
phenotype, and etiology), and differences in imaging protocols

Millevert et al. · rs-fMRI and PET to Study Human and Rodent Neurodevelopment J. Neurosci., December 6, 2023 • 43(49):8275–8293 • 8285



and data analysis techniques have led to variable and sometimes
conflicting results.

Transgenic rodent models could be used to circumvent these
difficulties. They have comparable stages of brain development to
humans, and they have a high translational potential when
applied to the corresponding human monogenic disorder, rather
than to the general NDD population. Careful etiological stratifica-
tion of study populations is therefore warranted. In this way,
rodent models offer an opportunity to study disease mechanisms
and therapeutic response to (novel) treatments in a more standar-
dized manner, and to select the most relevant imaging modalities
that could later be applied in humans. Since PET and rs-fMRI
may provide complementary information about neurodevelop-
ment or neurodevelopmental abnormalities, studies using both
techniques simultaneously would be beneficial. To cover the criti-
cal period of neurodevelopment, this would imply that the imag-
ing techniques should be applied to rodents of less than three
weeks old. To our knowledge, only three rs-fMRI and PET studies
have been performed in rodents during this period, possibly
because of technical and practical considerations (Radonjic et al.,
2013; Guadagno et al., 2018; López-Picón et al., 2019). These
studies have shown that the developing brain is vulnerable to
harmful environmental factors during the perinatal period and
that the subsequent neurodevelopmental abnormalities can be
detected at an early age using rs-fMRI and PET (Radonjic et al.,
2013; Guadagno et al., 2018).

Challenges of small-animal rs-fMRI during the first three
postnatal weeks: difficulties related to small size and influences
on BOLD signals.

There are several challenges to performing rs-fMRI in infant
rodents. First, the small rodent must be able to be fixed in the
MRI scanner, but the standard equipment available is typically
designed for adult rodents. One solution is to use a mouse bed
for rat pups, or to adapt the mouse bed for mouse pups so that
the mouse is stabilized in the scanner.

Second, there is uncertainty about the effects of the anesthesia
on infant rodents, which may differ from those in older animals.
It is well known that the depth of anesthesia and the pharmaco-
logical effects of different anesthetics influence BOLD signals,
and hence FC patterns (Grandjean et al., 2014). While the com-
bination of vasodilating low-dose isoflurane and intravenous
medetomidine is currently the standard approach, Guadagno et
al. (2018) chose to use ,2% isoflurane in P18 rat pups and
adjusted the dose based on oxygenation and respiratory rate
(642breaths/min for P18 rats). This anesthesia protocol would
result in suppressed FC, but the authors argued that it was suffi-
cient to perform a seed-based analysis (Guadagno et al., 2018).
To avoid the confounding factor of anesthesia, methods to per-
form rs-fMRI in awake (young) adult rodents have been explored
(Becerra et al., 2011). However, preschool children would also
need to be sedated to perform rs-fMRI, and the translational
potential of imaging results from infant rodents to infants may
be higher if the depth of anesthesia is similar.

Finally, hemodynamic responses may differ at different ages,
which would result in different BOLD signals affecting the FC quan-
tification (Colonnese et al., 2008; Kozberg et al., 2013). Colonnese
et al. (2008) investigated differences in BOLD responses after
forepaw stimulation in rats of different ages (P10–P12, P13–P15,
P20–P30, and adult; Colonnese et al., 2008). The earliest BOLD
response was observed in P13 rats. Subsequently, the BOLD sig-
nal amplitude increased and the time to peak decreased with age.
The authors stated that the BOLD changes were caused by
growth and acceleration of the hemodynamic response, mainly

because of the developmental up-regulation of carbonic anhy-
drase activity, and by the maturation of FC patterns from P13 to
adulthood. In addition, both the presence of adult-like vascular
density from P10–P17, and the gap-junction coupling of astro-
cytes (critical for neurovascular coupling) around P11 may con-
tribute to the appearance of the BOLD response around P13.
Despite the differences in the BOLD response, the authors dem-
onstrated the effectiveness of fMRI in defining patterns of FC in
developing rodents from P13 onwards (Colonnese et al., 2008).
When performing rs-fMRI in infants and young children, the
same factors that may influence the hemodynamic response
should be considered.

Challenges of small-animal PET imaging during the first
three postnatal weeks: the effects, mode of administration, and
uptake of the radiotracer.

There are also some technical and practical considerations
when using PET imaging in the first three postnatal weeks. First,
the procedure involves exposure to ionizing radiation (;25 mSv
per regular PET/CT scan). Low-dose radiation exposure (,100
mSv) has been shown to induce (epi)genetic changes as well as
abnormal neurogenesis in the brain, but the extent to which this
is harmful depends on many variables such as genetic back-
ground, age, sex, dose, and the type of exposure (Shi et al., 2009).
Prenatal exposure and chronic exposure have been shown to be
the most harmful (Tang et al., 2017). Few studies have investi-
gated the effects of low-dose radiation exposure in mice within
the first three postnatal weeks (Buratovic et al., 2014, 2016;
Eriksson et al., 2016). They showed that a single dose of g radia-
tion of 350 mGy or more at P10 leads to altered behavior at two
and fourmonths of age (Buratovic et al., 2014; Eriksson et al.,
2016). The period before P10 has been shown to be the most vul-
nerable, because disrupted spontaneous behavior at twomonths
of age was only seen when a single dose of 500 mGy was given at
P3 or P10, but not at P19 (Eriksson et al., 2016). Next, repeated
low-dose exposures of 200 mGy over 3 consecutive days (P10, P11,
and P12) were shown to cause disrupted behavior at twomonths
of age (Buratovic et al., 2016).

Second, the radioactive tracer used in PET imaging must be
administered intravenously through a tail vein catheter. The
small tail size of infant rodents, especially mice, can make it diffi-
cult to perform PET imaging within the first few weeks of life.
Third, since the rodents need to be scanned at a preweaning age,
it is preferable to allow the rodents to recover in their mother’s
cage after the procedure. This could potentially result in radioac-
tive contamination of the mother because of urine loss from the
scanned pup. In addition, rejection by the mother after the pups
return to the cage has been described (Hickman and Swan, 2011).

Finally, anesthetics are used to ensure immobilization and to
avoid motion artefacts during the scanning procedure. However,
they could potentially affect PET results when studying neurode-
velopment between different age groups. Anesthetics are known
to affect the cerebral vasculature, heart rate and body tempera-
ture, and these effects may alter radiotracer uptake (Miranda et
al., 2019). Some studies have shown differential effects of isoflur-
ane, the most commonly used anesthetic, on physiological pa-
rameters in rodents from infancy to adulthood (Loepke et al.,
2006; Stokes et al., 2021). However, it is currently unknown
whether these age-dependent differential effects of anesthetics
also affect radiotracer uptake. If so, this would make it difficult to
compare different stages of neurodevelopment. Second, inhaled
anesthetics, such as isoflurane and sevoflurane, could also induce
cognitive impairment in rodents, but only when exposed for sev-
eral hours per day (Shen et al., 2013). To circumvent the
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anesthetic challenges, efforts are being made to perform awake
PET in freely moving rodents (Miranda et al., 2019). However,
sedation would also be required in preschool children.

SV2A PET: a novel and promising tool to study
neurodevelopment
In recent years, several PET radiotracers have been developed to
visualize synaptic vesicle glycoprotein 2A (SV2A) in vivo (Carson
et al., 2022). A number of radiotracers, including [11C]-UCB-J and
[18F]-SynVesT-1, have also been shown to bind with optimal
kinetics in mice (Bertoglio et al., 2020, 2022b). SV2A is expressed
in virtually all synapses and plays an important role in the Ca21-
dependent regulation of presynaptic neurotransmitter release dur-
ing repetitive stimulation in all vertebrates (Janz et al., 1999).
Therefore, SV2A quantification has been proposed as a surrogate
marker for synaptic density. SV2A PET has been used to detect
pathologic changes in synaptic density in humans and animal
models of neurodegenerative disorders and spinal cord injury
(Delva et al., 2020; Bertoglio et al., 2021, 2022a; Chen et al., 2021).
Because synapse formation and subsequent synaptic pruning are
essential during neurodevelopment, and because synaptic function
underlies cognition, SV2A PET may be a promising tool to study
neurodevelopment. Indeed, one study showed that SV2A meas-
urements increase during the third trimester in the fetal brain of
pregnant rhesus monkeys (Rossano et al., 2022). In addition, indi-
vidual component analysis (ICA) on SV2A PET can be used to
identify presynaptic density networks (Akkermans et al., 2022).
These networks are proposed to be neurophysiologically linked to
functional RSNs, and may provide providing complementary in-
formation in disorders with both functional and molecular altera-
tions (Fang et al., 2023). To our knowledge, no SV2A PET studies
have been performed to study (abnormal) neurodevelopment in
humans or rodent models.

Conclusion
Several studies have demonstrated how rs-fMRI and PET studies
have contributed to our knowledge of neurodevelopment and
neurodevelopmental abnormalities in specific NDDs, mainly in
humans but also in specific rodent models. Further work to
explore the feasibility of performing functional and molecular
imaging studies in small infant animals is essential. Ultimately, if
these challenges can be overcome, transgenic rodent models of
NDDs are ideal for gaining further insight into disease pathogene-
sis, developing noninvasive preclinical imaging biomarkers of neu-
rodevelopmental dysfunction, and assessing treatment response.
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