Chaozheng Wu

Chaozheng Wu
South China University of Technology | SCUT · Department of Electronic Engineering

Master of Engineering

About

6
Publications
374
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
130
Citations

Publications

Publications (6)
Preprint
The ability to understand the ways to interact with objects from visual cues, a.k.a. visual affordance, is essential to vision-guided robotic research. This involves categorizing, segmenting and reasoning of visual affordance. Relevant studies in 2D and 2.5D image domains have been made previously, however, a truly functional understanding of objec...
Preprint
Full-text available
This paper is motivated from a fundamental curiosity on what defines a category of object shapes. For example, we may have the common knowledge that a plane has wings, and a chair has legs. Given the large shape variations among different instances of a same category, we are formally interested in developing a quantity defined for individual points...
Article
Existing deep learning algorithms for point cloud analysis mainly concern discovering semantic patterns from the global configuration of local geometries in a supervised learning manner. However, very few explore geometric properties revealing local surface manifolds embedded in 3-D Euclidean space to discriminate semantic classes or object parts a...
Preprint
Learning robotic grasps from visual observations is a promising yet challenging task. Recent research shows its great potential by preparing and learning from large-scale synthetic datasets. For the popular, 6 degree-of-freedom (6-DOF) grasp setting of parallel-jaw gripper, most of existing methods take the strategy of heuristically sampling grasp...
Preprint
Existing deep learning algorithms for point cloud analysis mainly concern discovering semantic patterns from global configuration of local geometries in a supervised learning manner. However, very few explore geometric properties revealing local surface manifolds embedded in 3D Euclidean space to discriminate semantic classes or object parts as add...

Network

Cited By