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Abstract—This article is concerned with the problem of
multiple attacks detection (MAD) for distributed sensor networks
(SNs) under multiple malicious attacks. The goal of this arti-
cle is to develop an effective method capable of simultaneously
detecting multiple attacks in distributed SNs. By integrating the
theories of random finite set (RFS), fusion rules, and consensus,
a novel distributed filter named consensus arithmetic average
Gaussian mixture probability hypothesis density (AA-GMPHD)
filter is proposed in this article, which can achieve the simulta-
neous detection of multiple attacks in the context of distributed
SNs. The main contribution of this article, lies in the proposed
consensus AA-GMPHD filter that solves the MAD problem in
distributed SNs for the first time. Simulation experiments con-
firm the effectiveness of the proposed filter for the distributed
MAD problem in the context of distributed SNs.

Index Terms—Arithmetic average (AA) fusion, consensus,
distributed sensor networks (SNs), multiple attacks detection
(MAD), probability hypothesis density (PHD) filter.
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I. INTRODUCTION

NOWADAYS, SNs have found widespread applications
in various fields, e.g., industrial processes monitor-

ing [1], [2], intelligent transportation [3], [4], localization,
tracking [5], [6], etc. Although SNs usually have a variety
of topologies for different applications or scenarios, gen-
erally speaking, according to whether a central authority
(i.e., fusion center) exists or not, the topologies of SNs fall into
three categories: 1) centralized; 2) decentralized; and 3) dis-
tributed [7], [8]. In centralized topology, individual sensors
have to communicate with a central authority to communi-
cate with each other [9]. In decentralized topology, there are
multiple authorities that serve as a central authority for a
subsection of sensors [10]. Distributed topology, refers to a
network topology where each sensor can communicate with
one another without going through a central authority [11].
In comparison with the SNs with centralized or decentralized
topologies, the main differences of the distributed SNs lie in
the lack of the central authority and the feature that they are
composed of equal and interconnected sensors. Thus, the dis-
tributed SNs are more flexible, transparent, scalable, and fault
tolerant [12].

Since SNs are being incorporated into more and more crit-
ical infrastructure hardware and applications, their security is
becoming a pressing issue, and it is of great importance to pro-
tect them from malicious attacks by detecting these attacks
accurately and quickly. In addition, from the perspective of
malicious attackers, in their pursuit of increasing the likeli-
hood of success and maximizing the impact of their attacks,
they tend to employ a cooperate strategies, simultaneously
launching multiple attacks [13]. For example, on 7 February
2022, Vodafone Portugal suffered from multiple cyber attacks,
resulting in mobile networks offline overnight [14]. Based on
the white paper recently released by Sophos, the problem of
multiple attackers has emerged as a prominent and imminent
threat [15], [16]. Thus, it is urgent to deal with the problem
of MAD for SNs.

Moreover, from the perspective of the SN’s supervisor, it
is also meaningful to accurately detect multiple attacks. First,
global detection of multiple attacks plays a pivotal role in
comprehending and profiling the behaviors of attackers, which
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not only aids in the detection and prediction of attacks but
also contributes significantly to mitigating the damage to the
SN [17]. Second, the global detection of multiple attacks
also provides the direction for designing defensive strategies
against potential attacks. However, it is much more difficult to
detect multiple attacks simultaneously in a distributed SN. The
reasons are twofold, on the one hand, due to the lack of cen-
tral authority, the only way the distributed SN’s supervisor can
get global detection information is through individual sensors,
but it is intractable for individual sensors to achieve the com-
prehensive detection of multiple attacks. On the other hand,
for the MAD problem, both the number of attacks and all of
the attacked sensors need to be accurately and simultaneously
detected.

Although numerous studies have been dedicated to attack
detection for SNs or other similar systems so far [18], [19],
[20], [21], [22], [23], most of them are carried out in the
context of centralized or decentralized topologies. As a con-
trast, few existing methods have been proposed to cope with
the problem on how to detect an attack in the distributed
SNs. Moreover, it is also worth noting that rare work has
investigated the MAD problem for distributed SNs.

Motivated by this, this article devotes to developing an
effective MAD algorithm to simultaneously multiple attacks
in distributed SNs. To this end, we first inherit our previous
idea of detecting multiple attacks by means of the RFS
theory [24], and utilize the PHD filter to obtain the local detec-
tions of individual sensors. Second, we introduce AA fusion
rule to cope with the problem on how to fuse local detec-
tions. Third, consensus is exploited at individual sensors to
achieve the agreement on the global detection over the entire
distributed SNs.

By integrating the theories of RFS, fusion rules and consen-
sus, we propose a novel distributed filter named consensus
AA-GMPHD filter for the distributed MAD problem. In
comparison with the existing works on distributed attacks
detection [25], [26], [27], [28], [29], [30], the proposed filter
is not only capable of simultaneously detecting the num-
ber of attacks and individual attacked sensors but also does
not require the knowledge of the entire topologies, which
is suitable for the distributed SNs. In comparison with the
existing works on distributed RFS-based fusion [12], [31], the
proposed filter overcomes cardinality inconsistency [32], and
poses obvious advantages in computation efficiency, which is
suitable for distributed SNs composed of sensors with limited
sensing and processing capabilities.

In summary, the main contribution of this article lies in the
proposed consensus AA-GMPHD filter that solves the MAD
problem in distributed SNs for the first time. Meanwhile, to the
best of our knowledge, the proposed consensus AA-GMPHD
filter is the first work on distributed detection algorithms
against multiple attacks.

The remainder of this article is organized as follows.
Section II provides a brief overview of related work.
Section III presents the preliminaries on notations descrip-
tion and the RFS theory. Section IV formulates the distributed
MAD problem by means of the RFS theory. Section V
describes the proposed consensus AA-GMPHD filter in detail.

Numerical simulations are provided in Section VI, followed by
conclusions in Section VII.

II. RELATED WORK

Numerous studies have been dedicated to attack detec-
tion for SNs or other similar systems so far [18], [19], [20].
However, most of them are carried out in the context of cen-
tralized or decentralized topologies. As a contrast, up to now,
few existing methods have been proposed to cope with dis-
tributed attack detection. According to the target of attacks,
these methods can be divided into three categories: 1) the
methods against the attacks targeting the network layer; 2) the
methods against the attacks targeting the physical layer; and
3) the methods against the attacks targeting both the network
layer and the physical layer.

For the methods against the attacks targeting the network
layer, Boem et al. studied the problem of detecting cyber
attacks in communication links for distributed control system,
and designed a distributed detection architecture that does not
require the knowledge of the global topologies [25]. In the
designed architecture, cyber attacks are formulated as faults
in communication links, and a threshold-based local detection
scheme is developed, and consensus-based control is used to
improve the accuracy of detection. Gallo et al. proposed a
distributed architecture capable of detecting attacks for lin-
ear large scale systems, which consists of two models, i.e., a
Luenberger observer for estimating the state of local subsys-
tems and a bank of unknown-input observer for estimating the
states of neighboring subsystems [26]. By combining the esti-
mated results from the two models, the proposed architecture
is capable of detecting cyber attacks targeting communication
layers.

For the methods against the attacks targeting the physi-
cal layer, Shi et al. proposed [27] a distributed data-driven
method to detect stealthy false data injection attack in multi-
area interconnected power systems. In this method, each area
first estimates the local state of the entire system via dis-
tributed state estimation algorithms, and then the estimated
local state is taken as the input of a trained neural network
to detect the stealthy false data injection attack. Rathore and
Park [28], a fog-based framework for distributed attack detec-
tion in Internet of Things (IoT) systems was proposed. By
analyzing the data from each IoT device, the fog node con-
nected to the IoT device is capable of detecting attacks on this
IoT device.

For the methods against the attacks targeting both the
network layer and the physical layer, Adepu and Mathur [29]
proposed a distributed attack detection method by means of
the concept of “process invariant.” Unlike most existing meth-
ods that rely on state estimation, the proposed method is
based on the observation of real-time systems and the consis-
tent relationships between state variables. Guan and Ge [30]
proposed a distributed attack detection estimator to cope with
the problem of joint attack detection and secure estimation
when both the network layer and the physical layer are under
attacks. The proposed estimator first runs a two-step mech-
anism to detect the attacks targeting the physical layer, and
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then uses the compensated measurements to alleviate the effect
caused by the attacks targeting the network layer.

Although the above work has advanced the study of dis-
tributed attack detection significantly, there are still some
limitations. First, the mentioned work is referred to as “dis-
tributed,” but the system topologies considered in most of them
are not exactly matched the definition of distributed topologies,
sensors or nodes in the considered system topologies are not
completely equal. Second, except for the remarkable works
in [25], [26], and [27], most of them still require the knowl-
edge of the entire topologies, which is usually inaccessible for
distributed SNs. Meanwhile, it is also worth noting that little
work has been done on the MAD problem for SNs or other
similar systems. Among them, Li et al. [13] first addressed
this problem and proposed an algebraic approach to detect
multiple attacks aiming at communication channels. The works
in [24] copied with the simultaneous detection of the number
of attacks and the attacked sensors. Nevertheless, the systems
considered in [13] and [24] are based on centralized topolo-
gies. As far as the authors’ know, there is rare research on the
MAD problem for the SNs or other similar systems with dis-
tributed topologies. In a word, the above limitations motivate
our research on the MAD problem for distributed SNs.

III. PRELIMINARIES

A. Notations

Throughout this article, we use the following notations.
Scalars and variables are denoted by small letters (e.g., x).
matrices are represented by capital letters (e.g., H). RFSs are
represented by capital Greek letters (e.g., �). Spaces are repre-
sented by blackboard bold letters (e.g., X). The floor function
that outputs the greatest integer that is no more than x is
denoted by �x�. N(x; m, P) represents the Gaussian probability
density function (PDF) with mean m and covariance P.

B. RFS Theory

In essence, an RFS like � = {x1, x2, . . . , xn} can be treated
as a set-valued random variable [33]. Given the following
definition of set integral:

∫
f (�)d� = f (∅) +

∞∑
n=1

1

n!

∫
f ({x1, . . . , xn})dx1 · · · dxn

(1)

the statistical characteristics of the RFS � can be entirely
captured by its multiobject PDF f (�) with

∫
f (�)d� = 1.

Usually, the number of the elements in the RFS �, denoted
as |�|, is called the cardinality of �.

A Poisson RFS is an RFS with

f (�) = e−λ
∏
x∈�

λp(x)

= e− ∫
v(x)dx

∏
x∈�

v(x) (2)

where λ denotes the expected cardinality of �, p(x) is the
independent identically distributed (IID) PDF that all elements
subject to, and v(x) = λp(x) is the PHD of the Poisson RFS

Fig. 1. Illustration of a distributed SN under multiple attacks.

� [32], [33]. According to (2), one can find that the multiob-
ject PDF of an Poisson RFS only depends on its PHD. Thus,
a Poisson RFS is completely characterized by its PHD [32].
The propagation of Poisson RFSs in the multiobject Bayesian
estimation is at the core of the PHD filter [32], in which the
posterior multiobject state is assumed to follow a Poisson RFS.
The PHD filter will be introduced in the following sections.

IV. RFS-BASED PROBLEM FORMULATION

As shown in Fig. 1, consider a distributed SN, which
consists of numerous heterogeneous and geographically
distributed sensors connected by wireless communication
links [12], [31]. Thereinto, each sensor has the limited capac-
ities of local detection, local estimation, and data exchange
with its neighbors, whereas it has no knowledge of the entire
topology.

For simplicity, each sensor is identified by an ordered
index j, where j ∈ X and X is the discrete space for all
sensors’ indices. This SN can be abstractly described by a
directed graph G = (N ,A). Thereinto, N and A represent
the set of sensors and the set of communication links, respec-
tively, |N | denotes the number of sensors, and (i, j) ∈ A means
that sensor j can receive data from sensor i. For each sensor j,
N (j) = {i ∈ N : (i, j) ∈ A} is called its in-neighbors, in
particular, N (j) \ j denotes its in-neighbors without itself.

On the other hand, as shown in Fig. 1, aiming at disrupting
the above SN, suppose that multiple malicious attackers are
employed to launch multiple attacks on different sensors in this
SN. In what follows, we assume that all of these attackers
have limited energy resource and can launch attacks with a
cooperate or uncooperative way.

A. RFS-Based Formulation for Multiple Attackers’ Behaviors

Similar to [24], the behaviors of these attackers are supposed
to satisfy the following reasonable assumptions.

A1: At each time step, each attacker only has two states,
active or dormant. The former means that it is launching
an attack at the current time step, while the latter means
that it does not launch an attack. Due to the limited energy
resource [34], [35], [36], the number of the active attackers is
time-varying at each time step.

A2: From the perspective of the efficient utilization of the
limited energy resource, at each time step, each attacker will
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only attack no more than one sensor, and these attackers
will not simultaneously attack the same sensor at the same
time [24]. According to this assumption, one can find that the
number of the attacked sensors equals to the number of attacks
(active attackers) at each time step.

A3: The transition between active state and dormant state
satisfies the following statements. On the one hand, for each
active attacker at the current time step, it will become dormant
with probability 1 − ps, or survive and keep active with prob-
ability ps at the next time step. On the other hand, for each
dormant attacker at the current time step, it also has a prob-
ability to become a newborn active attacker,1 or still keeps
dormant at the next time step.

Let xi,k ∈ X denote the index of the sensor attacked by the
ith active attacker at time step k, then the set of all of the
attacked sensors at this time step can be modeled by an RFS

�k = {
x1,k, x2,k, . . . , xn(k),k

}
(3)

= �k(�k−1) ∪ �k. (4)

It follows that |�k| = n(k), representing the number of the
attacked sensors. From A2, n(k) can be also taken as the num-
ber of attacks (active attackers) at this time step. According
to A3, (4) holds true since �k can be divided into two cat-
egories: 1) the sensors attacked by the surviving attackers,
�k(Xk−1) and 2) those attacked by the newborn attackers, �k.

For each surviving attacker, assume that its attack behavior
(i.e., its attacked sensors versus time) follows an integral dis-
crete Markov stochastic process. For example, a linear discrete
Gaussian stochastic process

xi,k = ⌊
Fxi,k−1 + νk

⌋
(5)

where F is the transition matrix and νk is the Gaussian process
noise with zero mean and covariance Q.

B. RFS-Based Formulation for Reports at Each Sensor

Suppose that each sensor has the limited capacities of local
detection, local estimation, and data exchange with its neigh-
bors. In particular, for monitoring purposes, each sensor j is
equipped with a local detector to detect whether it suffers from
attacks or not. If detected, it will report its index to its local
estimator for further analysis. More precisely, if it is under an
attack launched by the ith attacker, then its report is

z(j)
k = Hxi,k = j (6)

where H is the measurement matrix that can be taken as the
identity matrix. If no detection, its report can be treated as an
empty set. Thus, if an attack aiming at sensor j happens, the
report can be formulated by the following RFS:

�
(j)
k =

{∅, with probability 1 − p(j)
d{

z(j)
k

}
, with probability p(j)

d
(7)

where p(j)
d is the detection rate of the local detector. For sim-

plicity, assuming that all detectors share the same detection
rates, i.e., p(j)

d = pd.

1It will be treated as a newborn attacker even it ever was active in the past.

Fig. 2. Schematic of the proposed consensus AA-GMPHD filter.

Due to the lack of all of the reports over the entire SN, it is
impossible for individual sensors to obtain the accurate detec-
tions of multiple attacks only depending on their individual
reports. Therefore, to simultaneously detect multiple attacks,
a distributed MAD algorithm is indispensable.

V. PROPOSED CONSENSUS AA-GMPHD FILTER

In this section, we present a novel distributed algorithm
named consensus AA-GMPHD filter for MAD. As illustrated
in Fig. 2, the proposed filter consists of three procedures, i.e.,
local detection of multiple attacks, consensus AA fusion, and
global MAD.

A. Local Detection of Multiple Attacks

For any sensor j at time step k, based on the reports �
(j)
k

from its local detector, the objective of its local estimator is
to detect multiple attacks over the entire SN G. Since the
information about attacks is completely capsuled by the RFS
�k and the corresponding multiobject PDF, this objective is
equivalent to the posterior estimation of the multiobject PDF
of �k conditioned on �

(j)
k , i.e., π

(j)
k (�k|�(j)

k ). Unfortunately,
due to the abstract set integration, it is intractable to directly
calculate π

(j)
k (�k|�(j)

k ). Thus, as one of the RFS-based filters,
the PHD filter, which recursively estimates the first moment
(also called the PHD) of π

(j)
k (�k|�(j)

k ), is introduced [37].
Generally speaking, there are two implementations for the

PHD filter, i.e., SMC implementation and GM implementation.
The former uses lots of particles to represent PHDs, whereas
the latter uses a linear combination of Gaussian components
to represent PHDs. Usually, the number of required Gaussian
components is far smaller than the number of required particles
for a given PHD, leading to lower-computation burden that
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the GM implementation poses. Therefore, due to the limited
computation capacity and energy resource of individual sen-
sors, the PHD filter with GM implementation (also called the
GMPHD filter) is considered in what follows. Specifically, the
following GMPHD filter that includes prediction and update
steps, is carried out at the jth sensor.

Prediction: At time step k − 1, for sensor j, given the
posterior PHD v(j)

k−1(x) with the GM form

v(j)
k−1(x) =

I(j)k−1∑
a=1

w(a)
k−1N

(
x; m(a)

k−1, P(a)
k−1

)
(8)

where w(a)
k−1 is the weight of the ath Gaussian component, m(a)

k−1

and P(a)
k−1 are the mean and covariance of the ath Gaussian

component, respectively, and I(j)
k−1 is the number of Gaussian

components. Then, the predicted PHD v(j)
k|k−1(x) is also a GM

form given by [37]

v(j)
k|k−1(x) = v(j)

s,k|k−1(x) + γk(x) (9)

where

v(j)
s,k|k−1(x) = ps

I(j)k−1∑
a=1

w(a)
k−1N

(
x; m(a)

s,k|k−1, P(a)
s,k|k−1

)

m(a)
s,k|k−1 = Fm(a)

k|k−1

P(a)
s,k|k−1 = Q + FP(a)

k−1FT

and γk(x) denotes the PHD of the birth RFS �k, both F and
Q are defined in (5). In particular, γk(x) is also supposed to
be the following GM form:

γk(x) =
Ir∑

a=1

w(a)
r,kN

(
x; m(a)

r,k, P(a)
r,k

)
. (10)

Update: Suppose that the predicted PHD v(j)
k|k−1(x) is given

in (9), with the GM form

v(j)
k|k−1 =

I(j)k|k−1∑
a=1

w(a)
k|k−1N

(
x; m(a)

k|k−1, P(a)
k|k−1

)
. (11)

After receiving the reports �
(j)
k , v(j)

k (x) still is a GM form
calculated as [37]

v(j)
k (x) = (1 − pd)v

(j)
k|k−1(x) +

∑
z∈�

(j)
k

v(j)
d,k(x; z) (12)

where

v(j)
d,k(x; z) =

I(j)k|k−1∑
a=1

w(a)
k (z)N

(
x; m(a)

k (z), P(a)
k

)

w(a)
k (z) = pdw(a)

k|k−1q(a)
k (z)

κk(z) + pd
∑I(j)k|k−1

b=1 w(b)
k|k−1q(b)

k (z)

q(a)
k (z) = N

(
z; Hm(a)

k|k−1, HP(a)
k|k−1HT + R

)

m(a)
k (z) = m(a)

k|k−1 + K(a)
k

(
z − Hm(a)

k|k−1

)

P(a)
k =

[
I − K(a)

k H
]
P(a)

k|k−1

K(a)
k = P(a)

k|k−1HT
[
HP(a)

k|k−1HT + R
]−1

where H is defined in (6), R denotes the covariance of mea-
surement noise, and κk denotes the PHD of clutter measure-
ments at time step k. In particular, from the report model (7), it
follows that no measurement noise and clutter measurements
exist among the reports. Thus, let R = 0 and κk = eps.

B. Consensus AA Fusion

As mentioned before, due to the lack of all of the reports
over the entire SN, it is impossible for individual sensors
to achieve the accurate global detections of multiple attacks
unless their local detections are fused. In this section, we first
present the adopted fused rule, followed by the method on
how to achieve the global detection via the consensus theory.

For local PHDs, there exist two fusion rules:
1) AA [38], [39] and 2) GCI [40]. Although both them
have reasonable interpretations from the view of minimizing
discrimination of information [32], in comparison with the
GCI fusion rule, the AA fusion rule poses the following two
advantages: 1) it poses smaller computational complexity
since it can be taken as the linear weighted mean of the local
multiobject PDFs and 2) it is more suitable for fusing local
multiobject PDFs defined within different fields-of-views
(FoVs). For example, if there exists a local multiobject
PDF f (i)(�) = 0 at a specific sensor i, then the GCI
fused multiobject PDF f̄ (�) = 0 even if f (j)(�) 	= 0 for
all j ∈ N , j 	= i, while it can be seen that the AA fused
multiobject PDF f̄ (�) 	= 0 in this case. Considering the fact
that the sensors always have limited computational capacities
and most sensors are under no attack at each time step,
resulting in f (i)(�) = 0 for most sensors, the AA fusion
rule is more appropriate for the distributed MAD problem.
Specifically, the AA fusion rule for local PHDs is as follows.

Lemma 1: If the local multiobject PDF f (i)(�) is the mul-
tiobject PDF of a Poisson RFS, shown in (2), with cardinality
λ(i), PDF p(i), and PHD v(i) = λ(i)p(i), then the AA fused mul-
tiobject PDF f̄ (�) still is the multiobject PDF of a Poisson
RFS, and is characterized by λ̄ and p̄ given as follows [32]:

λ̄ =
∑

i∈Nω(i)λ(i), p̄(x) =
∑

i∈N ω(i)λ(i)p(i)∑
j∈N ω(j)λ(j)

(13)

and the corresponding AA fused PHD is

v̄(x) =
∑

i∈Nω(i)v(i)(x). (14)

In particular, if ω(i) = 1/|N |, (14) is simplified to the
unweighted AA fused PHD v̄(x) = 1/|N |∑i∈N v(i)(x).

Cardinality Inconsistency: In practice, only (14) needs to
be conducted for the fusion of local PHDs. The reasons are
twofold.

1) As mentioned before, a Poisson RFS is completely
characterized by its PHD [32].

2) The fused cardinality in (13) is inconsistent.
For instance, in a special case in which two sensors with dif-
ferent FoVs exist, if one sensor detects no attack, leading to
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λ(1) = 0, while the other sensor detects a real attack, lead-
ing to λ(2) = 1, then the fused cardinality in (13) turns to be
λ̄ = ω(2) ≤ 1, resulting in an over-conservative fused cardi-
nality. In fact, in this case, λ̄ = 1 is more reasonable since the
two sensors have different FoVs. On the contrary, if only (14)
is computed, the problem of cardinality inconsistency can be
alleviated. The reason is that the fused cardinality can be
extracted by counting the Gaussian components with high
weights in the fused PHD, instead of being directly computed
via (13).

For the distributed SN G, due to the lack of central proces-
sor, it is impossible to directly calculate the AA fused PHD
via (14). Fortunately, consensus can be used to achieve dis-
tributed averaging over a distributed topology by allowing each
sensor to iteratively update and exchange local information
with its in-neighbors [12], [31]. In the context of MAD, con-
sensus is utilized to perform distributed computation for the
global unweighted AA fused PHD over all sensors i ∈ N .

To this end, suppose that, at time step k, each sensor i starts
with its local PHD v(i)

k (x) as the initial iterated PHD v(i)
k,0(x),

and calculates the lth consensus iteration of the local PHD as

v(i)
k,l+1(x) =

∑
j∈N (i)

ω(i,j)v(j)
k,l(x) ∀i ∈ N (15)

where w(i,j) is the consensus weight satisfying

w(i,j) ≥ 0 ∀i, j ∈ N
1 =

∑
j∈N (i)

w(i,j) ∀i ∈ N

w(i,j) = 1

1 + max
{|N (i)|, |N (j)|} , i ∈ N , j ∈ N (i) \ i

w(i,i) = 1 −
∑

j∈N (i)\i

w(i,j).

If the topology of the distributed SN G is strongly connected,
then it has been proved that the consensus iteration (15) trends
to the unweighted AA fused PHD [12], [31]

lim
n→∞v(i)

k,n(x) = 1

|N |
∑

i∈N v(i)(x). (16)

In brief, the second step of the proposed filter, i.e., con-
sensus AA fusion, can be summarized as follows: given an
appropriate iteration number L, each sensor i performs con-
sensus iteration. In each iteration l, each sensor i sends its
information, i.e., the main components of its local GMPHD,
including {w(a)

k,l , m(a)
k,l , P(a)

k,l }a∈{1:I(i)k,l}, to its in-neighbors j ∈
N (i) \ i, and waits until it receives information from them.
Then, each sensor i performs the consensus AA fusion (15)
over N (i). Note that most of sensors are under no attack,
to improve computational efficiency, v(j)

k,l(x) whose cardinal-
ity equals to zero can be omitted in (15). After consensus,
to limit the increasing number of Gaussian components, the
steps of pruning, merge and capping are necessary, which can
be found in [37] for details.

C. Global Multiple Attacks Detection

After consensus, the PHD of each sensor has achieved the
consensual global PHD. Given a threshold τ , each sensor picks

Algorithm 1 Consensus AA-GMPHD Filter for Distributed
MAD
1: for sensor i = 1, . . . , |N | do
2: Initialization
3: end for
4: for time step k = 1, 2, · · · do
5: Procedure 1: Local Detection of Multiple Attacks
6: for sensor i = 1, . . . , |N | do
7: Input: Local report of sensor i
8: Local GMPHD prediction via (9)-(10)
9: Local GMPHD update via (11)-(12)

10: end for
11: Procedure 2: Consensus AA Fusion
12: for l = 1, . . . , L do
13: for sensor i = 1, . . . , |N | do
14: Data exchange
15: Consensus AA fusion (15) over N (i)

16: Pruning, merge and capping, see [37]
17: end for
18: end for
19: Procedure 3: Global Multiple Attacks Detection
20: for sensor i = 1, . . . , |N | do
21: The detection of the number of attacks
22: The detection of each attacked sensor
23: Output: The number of total attacks and the indices of the

attacked sensors over the entire distributed SN
24: end for
25: end for

up all the Gaussian components with w(a)
k > τ in the consen-

sual global PHD, and takes the integer that is closest to the
sum of the weights of the picked Gaussian components as the
consensual cardinality n̂k. Meanwhile, the consensual cardi-
nality is treated as the detected number of attacks over the
entire SN G.

For each sensor, selecting n̂k Gaussian components with
highest weights. For each selected Gaussian component
{(w(a)

k , m(a)
k , P(a)

k )}, the index of the attacked sensor can be
taken as the integer which is nearest to the first element of
m(a)

k .2

In summary, to detect multiple attacks, at each time step k,
each sensor i in this SN carries out in parallel, beginning with
its previous local PHD, producing its new consensus PHD at
the end of consensus iteration, and extracting the detection
information of multiple attacks. Specifically, the schematic
of the proposed consensus AA-GMPHD filter is illustrated
in Fig. 2, and the corresponding pseudo-code is shown in
Algorithm 1.

D. Performance Analysis

1) Security Analysis: According to [41], cyber attacks can
be divided into three categories, i.e., availability, integrity, and
confidentiality attacks. The availability attacks is to make data
unavailable by disrupting communication networks, which
include jamming and denial of service (DoS) attacks. The
integrity attacks, such as false data injection attacks, are to
inject false data or control commands in sensors or communi-
cation networks. The confidentiality attacks may happen at any
part of SNs, including eavesdropping, and the combination of
DoS and integrity attacks.

2The vector m(a)
k may has different rows, while the first element is the

estimated index of the attacked sensor.
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Obviously, not all of the above attacks can be detected by
the proposed filter. In fact, the kinds of the attacks which can
be detected by the proposed filter need to simultaneously sat-
isfy the following two conditions, the first is that the attacks
are targeting the sensors, rather than the communication links
between sensors, which means that only the integrity attacks
and confidentiality attacks are satisfactory. The second is that,
neglecting the aspect of missing detection, the attacks is unable
to evade the local detectors installed on individual sensors,
which further means that only the integrity attacks and con-
fidentiality attacks that cannot escape from the local detector
can be detected.

2) Complexity Analysis: It has been shown that the com-
plexity of the PHD filter is O(mn) [12], [37], where m and n
are the number of reports and the number of attackers, respec-
tively. As far as the proposed filter is concerned, Note that
each sensor has to operate local PHD filter and the number
of its reports does not exceed 1 at each time step, then the
computational complexity for the local PHD filter is clearly
independent of the number of sensors, and can be expressed
as O(n). Moreover, one can find that the consensus AA fusion
for each sensor requires O(Ld) computations, where L is the
consensus iteration number and d is the degree of this sensor.
Thus, the computational complexity is max{O(n),O(Ld)}.

3) Relationship Between Detection Performance and The
Number of Attackers: Theoretically speaking, the number of
attackers does not affect the detection performance of the
proposed filter. However, in the specific implementation of
the proposed filter, the following two factors are affected by
the number of attackers, consequently, indirectly affecting the
detection performance. The first is the number of Gaussian
components used to represent PHDs. Since the information
of attackers is represented by the corresponding PHDs, the
increase of the number of attackers means the increase of
the complexity of PHDs, which means that more Gaussian
components are needed to represent PHDs. The second is
the convergence rate of consensus AA fusion, the increase
of the number of attackers means the increase of the com-
plexity of PHDs, consequently, affecting the convergence rate
of consensus AA fusion shown (15).

VI. NUMERICAL EXPERIMENTS

In this section, the performances of the proposed filter
for MAD are assessed via numerical experiments over two
distributed SNs.

A. Parameters Settings

As illustrated in Figs. 3 and 4, the number of sensors in
the two SNs are 30 and 57, respectively, and the two SNs
are with the topologies of the IEEE 30-bus system and IEEE
57-bus system, respectively. The lines in the two SNs rep-
resent the communication links, which means that the two
sensors connected by one line can exchange their local detec-
tion information with each other. Meanwhile, the local detector
equipped by each sensor is the χ detector, and the detection
rate is set to pd = 0.99.

Fig. 3. Distributed SN with the topology of the IEEE 30-bus system.

Fig. 4. Distributed SN with the topology of the IEEE 57-bus system.

Suppose there exist six attackers who share the same linear
attack behaviors following (5) with:

F =
[

1 1
0 1

]

and

Q =
[

0.12 0
0 0.12

]
.

For all of the attackers, they will launch multiple attacks on
different sensors in the two SNs. Without consideration of
missing detection, these attacks are assumed to be detected by
the χ2 detectors equipped by individual sensors. The persistent
attack duration of these attackers are 1–30, 5–30, 8–30, 15–30,
20–30, and 25–30 time steps, respectively.

Meanwhile, suppose that these attackers share the same sur-
viving probability ps = 0.9, and newborn model �k. The PHD
of the newborn model �k with the GM form (10) is assumed
to be described as follows: The number of Gaussian compo-
nents is Ir = 2; For each Gaussian component, w(a)

r,k = 0.001,

and the first element of m(a)
r,k follows an integral uniform dis-

tribution between 1 and |N |, where |N | = 30 and |N | = 57
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Fig. 5. Detection results of the number of attacks of all sensors via the
proposed filter for the distributed SN with the topology of the IEEE 30-bus
system over one trial.

Fig. 6. Detection results of the attacked sensors of sensor 10 in the distributed
SN with the topology of the IEEE 30-bus system over one trial.

for the two SNs, respectively, and

P(a)
r,k =

[
10 0
0 10

]
.

In the proposed filter, the local GMPHD filter with the max-
imum allowable number of Gaussian components I = 20 for
each PHD is adopted. The number of consensus iteration L and
the threshold τ are set to 50 and 0.01, respectively. Similar
to [24] and [31], the OSPA distance [42] with p = 1 and
c = 100 is taken as the performance metric to evaluate the
detection error of MAD.

B. Simulation Results

For the distributed SNs shown in Figs. 3 and 4, the proposed
filter is executed in parallel in each sensor, and the global
detection results (i.e., the number of attacks and the indices
of attacked sensors over the entire SN) are extracted via the
third step of the proposed filter (i.e., global MAD).

For the distributed SN with the topology of the IEEE 30-bus
system, simulation results are shown in Figs. 5–8 . Thereinto,
Fig. 5 presents all sensors’ detection results of the number of
attacks via the proposed filter. From Fig. 5, it can be seen

Fig. 7. Detection results of the attacked sensors of sensor 20 in the distributed
SN with the topology of the IEEE 30-bus system over one trial.

Fig. 8. Detection error (OSPA distance) for the distributed SN with the
topology of the IEEE 30-bus system over 100 MC trials.

that the detection results of all sensors have converged to a
consensual value at each time step. Moreover, the consensual
value exactly equals to the true number of attacks in most
time.

Since the detection results of all sensors have converged,
we randomly choose the detection performance of two sen-
sors (sensors 10 and 20) to demonstrate the effectiveness of the
proposed filter. Specifically, Figs. 6 and 7 present the detec-
tion performance of the attacked sensors of the two sensors,
respectively. As shown by the red rectangular symbols in the
two figures, the two sensors without the proposed filter can
only detect the attacks launched on themselves in a very short
time, and fail to detect multiple attacks over the entire SN.
On the contrary, after performing the proposed filter, as shown
by the blue circular symbols, it follows that the two sensors
achieve the detection of multiple attacks over the entire SN.

Next, the averaged detection error over 100 Monte Carlo
(MC) trials is illustrated in Fig. 8. As Fig. 8 shows, the detec-
tion error of the sensors without the proposed filter versus time
always is high (more than 60), because they fail to detect any
attack unless they themselves are under attack. As a com-
parison, the sensors with the proposed filter achieve much
smaller detection error (no more than 20), further confirming
the advantages of the proposed filter on distributed MAD.
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Fig. 9. Detection results of the number of attacks of all sensors via the
proposed filter for the distributed SN with the topology of the IEEE 57-bus
system over one trial.

Fig. 10. Detection results of the attacked sensors of sensor 10 in the
distributed SN with the topology of the IEEE 57-bus system over one trial.

To assess the effectiveness of the proposed filter under
the case of large-scale SNs with distributed topologies, the
distributed SN with the topology of the IEEE 57-bus system
is considered, and simulation results are shown in Figs. 9–12.
Thereinto, Figs. 9–11 present the detection performance of the
attacked sensors over one trial, and Fig. 12 presents the aver-
aged detection error over 100 MC trials. Comparing Figs. 5–8
and Figs. 9–12, it can be seen that the detection performance
for the two distributed SNs is similar, which implies that
the proposed filter shows robustness with network sizes and
network topologies.

To further verify the effectiveness of the proposed filter,
different initial conditions are set. Specifically, the detection
rate of each sensor pd decreases from 0.99 to 0.95, and other
settings are the same as before. The results over 100 MC trials
are shown in Fig. 13. From Fig. 13, it can be seen that the
detection error increases when pd decreases. It is reasonable
since the lower the value of pd, the more attacks will escape
from detection.

VII. CONCLUSION

This article has addressed a fundamental issue in the dis-
tributed SNs, i.e., how to detect multiple attacks aiming at

Fig. 11. Detection results of the attacked sensors of sensor 20 in the
distributed SN with the topology of the IEEE 57-bus system over one trial.

Fig. 12. Detection error (OSPA distance) for the distributed SN with the
topology of the IEEE 57-bus system over 100 MC trials.

Fig. 13. Detection error (OSPA distance) for the distributed SN with the
topology of the IEEE 57-bus system over 100 MC trials, where pd are 0.95
and 0.99, respectively.

different sensors in a distributed way. By means of the the-
ories of RFS, fusion rules and consensus, this problem has
been cast in a distributed PHD filter, and a novel filter named
consensus AA-GMPHD filter has been proposed to solve
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this problem. Numerical experiments concerning with the dis-
tributed SNs with the topologies of the IEEE 30-bus and
IEEE 57-bus systems have been investigated, which verifies
the effectiveness of the proposed filter for distributed MAD.

In the future work, two possible research directions will be
considered.

1) Although the proposed filter aims at coping with the
problem of distributed MAD, it also provides a promis-
ing perspective to handle some tough problems, such as
distributed multiple target tracking and distributed data
fusion. Thus, we will consider how to use the proposed
filter to handle the above problems.

2) The types of attacks that can be detected by the proposed
filter are still limited. Thus, we will pay attention to the
research on the detection of multiple more sophisticated
and stealthy attacks.
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