
Amaging: Acoustic Hand Imaging for Self-adaptive
Gesture Recognition

Penghao Wang§, Ruobing Jiang§ and Chao Liu∗
Department of Computer Science and Technology, Ocean University of China, P.R.China

Email: wangpenghao@stu.ouc.edu.cn, jrb@ouc.edu.cn, liuchao@ouc.edu.cn

Abstract—A practical challenge common to state-of-the-art
acoustic gesture recognition techniques is to adaptively respond
to intended gestures rather than unintended motions during
the real-time tracking on human motion flow. Besides, other
disadvantages of under-expanded sensing space and vulnerability
against mobile interference jointly impair the pervasiveness of
acoustic sensing. Instead of struggling along the bottlenecked
routine, we innovatively open up an independent sensing dimen-
sion of acoustic 2-D hand-shape imaging. We first deductively
demonstrate the feasibility of acoustic imaging through multiple
viewpoints dynamically generated by hand movement. Amag-
ing, hand-shape imaging triggered gesture recognition, is then
proposed to offer adaptive gesture responses. Digital Dechirp is
novelly performed to largely reduce computational cost in demod-
ulation and pulse compression. Mobile interference is filtered by
Moving Target Indication. Multi-frame macro-scale imaging with
Joint Time-Frequency Analysis is performed to eliminate image
blur while maintaining adequate resolution. Amaging features
revolutionary multiplicative expansion on sensing capability and
dual dimensional parallelism for both hand-shape and gesture-
trajectory recognition. Extensive experiments and simulations
demonstrate Amaging’s distinguishing hand-shape imaging per-
formance, independent from diverse hand movement and immune
against mobile interference. 96% hand-shape recognition rate is
achieved with ResNet18 and 60× augmentation rate.

Index Terms—acoustic hand imaging; ubiquitous gesture
recognition; mobile interference filtering; adaptive gesture re-
sponse;

I. INTRODUCTION

Motivation: Acoustic gesture recognition has received in-

creasing attention due to the advantages offered by acoustic

sensing, e.g., privacy-preserving, fast and low-cost deploy-

ment, higher accuracy and feasibility with low illumination

or opaque obstacles. However, a significant issue in practice

has been completely neglected by existing studies, i.e., self-

adaptive segmentation to differentiate intended indicative mo-

tions from unintended transitional motions in natural human

motion flow. As illustrated by Fig. 1, after the user performing

a left swiping, a nature and necessary transition to withdraw

the hand for the next left swiping will be rashly misidentified

as a right swiping. A generally adopted but extremely awkward

choice is to force users to perform unique marking gestures

for manual segmentation. The failure to adaptively respond

to meant gestures rather than unmeant transitions extremely

reduces the ubiquitousness of acoustic gesture sensing.

Limitations of Prior work: Prior work on acoustic ges-

ture recognition can be classified into two kinds, based on
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either trajectory tracking [1]–[9] or echo feature based pattern

recognition [10]–[16]. The former kind tracks and recognizes

target trajectory by roughly modeling the target hand/finger as

a single reflecting particle. Such trajectory tracking approaches

blindly keep tracking all through without adaptively differen-

tiating meant gestures from unmeant transitions. Moreover,

the simplified particle model is unable to filter out multi-

path effect caused by complex hand shapes. To enhance

the recognition resolution by taking the hand-shape factor

into consideration, the later kind extracts integrated channel

features from the reflected signals throughout each gesture.

Due to the uninterpretable integrated features, where the 2-

D hand-shape features cannot be independently extracted and

recognized, the feature space and differentiating ability of such

feature pattern based methods are limited while with high

training cost.

Challenges: Based on a comprehensive insight into existing

research advances, we have identified three advanced chal-

lenges to deploy practical ubiquitous gesture recognition.

1) Adaptive response. Ubiquitous gesture sensing requires

smart identification of intended user gestures, while

natural human movements will inevitably be interspersed

with some unconscious transitional motions.

2) Sensing capability expansion. The feature space con-

structed by acoustic channel sensing has not been ad-

equately developed, limiting the gesture differentiating

capability.

3) Mobile interference filtering. The filtering of mobile
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Fig. 1. Motivation of adaptive gesture recognition: an unintended but
necessary withdraw preparing for the next gesture is unexpectedly responded.



interference caused by close moving objects within the

sensing range is still a significant open problem.

Our approach: Inspired by the recognition capability of

human vision, we propose Amaging to enable acoustic signals

‘see’ 2-D hand shape while tracking the trajectory of a gesture.

Only when an intended hand shape is seen/imaged, the seg-

mentation will be adaptively triggered until the intended hand

shape changes. To steadily image a moving hand, we trans-

form the movement into an equivalent rotation and perform

Rotating Objects Imaging. Multi-frame imaging is performed

in macro time-scale by Joint Time-Frequency Analysis (JTFA)

to eliminate target blur while maintaining adequate image

resolution. Amaging filters out the interference from ‘visible’

mobile objects by Moving Target Indiction (MTI) filter. The

significant advantage of Amaging is to multiplicatively expand

the recognizable gesture space by opening up a new feature

dimension. The multiplicative expansion is achieved to be

the product of the scale of the two dimensions, hand-shape

dimension and trajectory dimension.

Amaging can be implemented in off-the-shelf smartphones

with speakers and microphones. The ratio of signal processing

time to collection time is reduced lower than 1, enabling pipe-

lined processing for further reduction on response delay. The

major contributions are summarized as follows.

• We pioneer the new era of acoustic hand-shape imaging

to establish a landmark in the area of acoustic gesture

recognition. The proposed Amaging achieves a multi-

plicative expansion on acoustic gesture sensing capability

by dimensional extension.

• Amaging steadily images the hand shape while moving,

together with clarity improvement and 60× data augmen-

tation. The filtering of dynamic interference within the

sensing range is also novelly addressed by MTI.

• The signal processing overhead has been greatly reduced

by applying digital Dechirp, requiring single FFT for

pulse compression. Extensive experiments demonstrate

the distinguishing imaging performance irrelevant to

movement, and 96% hand shape recognition rate.

II. THE BIG PICTURE

Acoustic motion sensing tracks time-varying 1-D radial

distance of a moving target, e.g., hand and fingers. However,

the routine to perform echo analysis has already become the

bottleneck of current acoustic sensing techniques, severely

limiting the sensing capability. As a result, we pioneer an

independent sensing dimension of acoustic 2-D imaging in

addition to existing available trajectory plotting [1]–[8].

In this section, we first explore the feasibility of applying

acoustic signals for 2-D hand-shape imaging and briefly in-

troduce the overview of the proposed Amaging. We then use

the following three sections to describe three key components

of Amaging. We evaluate the recognizing performance in Sec-

tion VI, present the related work in Section VII and conclude

in Section VIII.
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Fig. 2. Rotation based 2-D imaging model.

A. Feasibility Analysis

Whether the reflected echoes by a moving target contain

enough information to portrait its 2-D image? Let’s consider

the visual experience that 3-D images can be visually captured

through multiple viewpoints while single viewpoint only sees

2-D. As for acoustic sensing, a similar intuition arose: now that

a single acoustic transceiver tracks the radial distance of all

the reflectors on a moving target, multi-viewpoint transceivers

will be able to image the 2-D shape of the target. Restricted

by the fixed position (single viewpoint) of acoustic transceiver

in practice, we turn to equivalently exploit target side rotation

to dynamically generate multiple viewpoints. And fortunately,

target rotation can be extracted from movement.

We now deductively demonstrate our intuition that target

side rotation contributes to 2-D target-shape imaging. Fig. 2

illustrates an instantaneous projection of a moving target onto

the plane of the instantaneous speed vector and the transceiver.

Suppose the instantaneous movement of the target is decom-

posed into a rotation around O with an angular velocity ω.

Any point P on the target projection with a distance r to O
and an angle θ to x-axis has the coordinates

x
P
= r cos θ, y

P
= r sin θ. (1)

The distance R between P and O at time t is then approxi-

mated as

R =
√

R2
0 + r2 + 2R0r sin (θ + ωt)

≈
√

(R0 + r sin (θ + ωt))
2

= R0 + x
P
sinωt+ y

P
cosωt

(2)

where R0 is the distance between the transceiver and O.

The Doppler Frequency Shift (DFS) fd of the echo reflected

by P is

fd =
2

λ

dR

dt
= ω

(
2x

P

λ
cosωt+

2y
P

λ
sinωt

)
, (3)

where λ is the acoustic wavelength. When t → 0, the doppler

shift fd and round-trip propagation delay τ , which can be
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Fig. 3. System overview of the proposed Acoustic target-shape imaging based gesture recognition, named Amaging.

detected by the transceiver through echo analysis, can be

expressed by

fd =
2ω

λ
x

P
,

τ =
2R

c
=

2

c
y
P
+

2R

c
.

(4)

Thus the 2-D coordinates (x
P
, y

P
) of P can be achieved.

As a result, it is feasible to acoustically image real-time 2-D

projections of a moving target by extracting real-time rotations

from the movement. Note that the real-time projection plane

is determined by the instantaneous line-of-sight vector and the

instantaneous moving vector.

B. System Overview

An orthogonal sensing dimension of target shape imaging

has been built up by the proposed Amaging in addition to exist-

ing target trajectory recognition. Amaging expands the gesture

recognition space through multiplying the scale of target-shape

dimension by the scale of target-trajectory dimension.

The outline of Amaging, illustrated in Fig. 3, is to process

the raw echoes, image and recognize the target shape, simul-

taneously recognize target trajectory, and adaptively respond

to intended gestures.

Echo Processing (Section III): Digital Dechirp performs

demodulation and primary pulse compression on the received

raw echo. Then the raw echoes of the sequentially sent

symbols are aligned into matrices to present the distance of all

reflectors in a macro time-scale. Thus the movement evolution

can be tracked within a second-level time window, instead

of symbol-by-symbol. The sensing area will be dynamically

focused around the target, e.g., the hand, indicated by the

reflectors with relatively greater Doppler Frequency Shift

(DFS). The slower and static reflectors, e.g., the arm, can

finally be filtered out with MTI filter.

Target Shape Imaging (Section IV): As analyzed in Sec-

tion II-A, it is feasible to keep imaging a moving target in

real time by extracting the rotation component of each instan-

taneous movement. We first model the measurable responses

of echo parameters to movement parameters. The formulated

echo responses is further decomposed into rotational and

translational component. The later part is then compensated

by using Image Contrast Based Autofocus (ICBA) to esti-

mate translation parameters, e.g., radial velocity. Finally, each

symbol matrix is multi-frame imaged by JTFA to generate an

image matrix, instead of a single image, to avoid target blur

and increase original samples.

Target Shape Recognition (Section V-A): Images from

each image matrix are enhanced in batches by centering target

and jointly denoising. Data augmentation is performed based

on originally sampled frames to improve training efficiency.

ResNet18 is used for hand shape classification.

Self-adaptive Response (Section V-B): Amaging is enabled

to respond as expected to exactly those enrolled gestures

scattered in a coherent motion flow. The response mechanism

is based on parallel recognition along two orthogonal gesture

dimensions. The target-shape dimension triggers the target-

trajectory dimension and indicates the corresponding segment

of an intended gesture. The segment range determination based

on image-sequence joint analysis is fault tolerant and robust

against burst interference.

III. ECHO PROCESSING

A. Digital Dechirp

Digital Dechirp is innovatively proposed to migrate the

advantages of analog Dechirp to portable-device scenarios.

The advantage of Dechirp to perform pulse compression

over time/frequency-domain matched filtering is the significant

reduction in computational cost and intermediate storage.

Dechirp applies a signal mixer for both demodulation and

pulse compression, only requiring signal multiplications and

once FFT. Whereas existing time-domain matched filtering

[17]–[20] requires the compute-intensive convolution on sig-

nals, and frequency-domain matched filtering [21], [22] re-

quires multiple FFT/IFFT operations and considerable storage

space.
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Fig. 4. Flow chart of digital Dechirp
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Fig. 5. Echo matrixing

To address the issue that the signal mixer used in ana-

log Dechirp is not available in existing portable devices,

we novelly perform digital-manner Dechirp, integrating IQ

demodulation and pulse compression after A/D conversion,

illustrated by Fig. 4. For the transmitted signal

st (t) = rect

(
t

Tt

)
cos

(
j2π

(
fc +

k

2
t

)
t

)
,

rect(·) =
{
1, − 1

2 ≤ · ≤ 1
2

0, rest
,

(5)

where fc is the carrier frequency, k is the chirp rate and Tt is

the transmitting duration within a whole symbol duration T ,

the received signal after A/D conversion is

sr(n) = rect

(
n− τ

Tt

)
cos

(
2π

(
fc +

k

2
(n− τ)

)
(n− τ)

)
, (6)

where n is often short for nTs and Ts is the sampling period.
The Intermediate Frequency(IF) digital signal, sI(n), is

achieved by two-way multiplication, low-pass filtering, and
combining,

sI (n) = rect

(
n− τ

Tt

)
exp (−j2πfcτ + jπk (n− τ)2). (7)

The digital mixing is thus completed to achieve the base
signal sb(n) by multiplying sI(n) with the conjugate of the
reference signal sref(n) = exp (jπkn2),

sb (n) = rect

(
n− τ

Tt

)
exp

(−j2πfcτ − j2πkτn+ jπkτ2) . (8)

The pulse compression will be efficiently executed with

single FFT on sb in later matrixing (Section III-B) and imaging

(Section IV-C) for direct signal localization and range profile

generation, respectively, i.e.,

Sb (f) =Ttsinc(πT t (f + kτ)) exp (−j2πfτ)

exp (−j2πfcτ) exp (jπkτ
2).

(9)

B. Echo Matrixing

The received signals are aligned to the direct arrivals of

sent symbols since the direct path brings obvious largest signal

amplitude. As shown in Fig. 5, starting with the direct arrived

signal, each symbol has N sampling periods Ts and every M
consecutive symbols form a symbol matrix of (N ×M)Ts .
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Fig. 6. MTI structure.
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Identification of direct signal. By performing pulse com-

pression on a segment of received signals, signal delay and

the corresponding amplitude can be achieved. The delay with

largest amplitude will be considered as direct arrivals. Note

that the pulse compression can be efficiently performed with

our digital Dechirp and only once FFT on the base signal sb.

Basics of echo Matrix. According to the different speeds of

time change along the two directions, we name the horizontal

direction as slow-time dimension and the vertical direction

as fast-time dimension. The corresponding 2-D base signal

to the 2-D signal matrix, denoted by sb(n,m), can be ob-

tained by performing parallel digital Dechirp on M aligned

symbols along the fast time dimension. The 2-D range profile

R(n,m) = FFT(sb(n,m), 1) corresponding to the 2-D signal

matrix can also be efficiently obtained for further 2-D target

shape imaging in Section IV-C.

C. Target Echo Extraction

We extract target echoes by filtering out not only static

echoes but also slower moving object echoes in presence of

random noises. Existing sliding-window subtraction method

[23] fails for stable elimination of static echoes with spatio-

temporal random noise, let alone dynamic echoes. Instead

of struggling in time domain, we novelly shift to frequency-

domain distinguishing on diverse DFS.

We apply Moving Target Indiction (MTI) filter [24], a

frequency-domain combo band-pass filter, to automatically

filter out low-DFS static and dynamic echoes. For static echoes

and direct signals without DFS, such periodic signals with

the pulse repetition frequency (PRF) fr = 1/T can be

broken down into harmonics with integer multiples of fr,

i.e., ifr, i = 1, 2, . . . . While target echoes with greatest DFS

have deviated frequency ifr+fd. The structure of the applied

MTI, presented in Fig. 6, is thus designed to stop signals with

f = ifr and pass signals with f = ifr + fd. The impulse

response can be expressed as,

h (t) =δ (t)− 4δ (t− T ) + 6δ (t− 2T )− 4δ (t− 3T )

+δ (t− 4T ) .
(10)

The corresponding power gain illustrated in Fig. 7 is

|H (f)|2 = 256 (sin (2πfT/2))
8
. (11)

As to slower moving objects with small DFS, the smaller

their DFS, the closer their frequency with ifr, which will

also be filtered. According to Equ. (11), signals with f ∈
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Fig. 8. Performance comparison of target echo extraction by sliding-window subtraction and MTI filter. (a) R (n,m) of raw symbol matrix. (b) R (n,m)
with sliding-window subtraction. (c) R (n,m) with MTI filter. (d) Dynamically target range focusing.

((i + 0.167)fr, (i + 0.833)fr) are largely retained. Suppose

fr = 100Hz, movements within the speed range of 16.7 cm/s

- 83 cm/s will pass.

The combo-shaped MTI filter can be elegantly implemented

by performing weighted sum on corresponding columns of

our echo matrices. Fig. 8 shows the target extraction per-

formance of MTI filter in the form of 2-D range profile

over existing time-domain sliding-window subtraction. In the

experiment, the target hand pushes towards the smartphone

transceiver. Fig. 8(a) shows the range profile R(n,m) =
FFT(sb(n,m), 1) of a raw symbol matrix. Only static echoes

and direct signals with much larger amplitude over the target

echoes can be obviously seen. Fig. 8(b) presents the resulted

R (n,m) with time-domain subtraction, where the target is not

obvious due to vast residual static echoes and direct signals

with random noises. Fig.8(c) illustrates the distinguishing

performance of MTI filter. The pushing from around 95 cm

to around 35 cm during about 150 units along the slow-time

dimension (1.5 s) can be obviously observed. The target extrac-

tion is further enhanced by dynamic target range focusing. As

shown in Fig. 8(d), the residual clutters much closer than the

target range is first removed. Then the target range along the

other slow-time dimension is also automatically determined

by setting a dynamic signal amplitude threshold,

Th = Avg + k · Std, (12)

where Avg and Std are respectively the mean and standard

deviation of the vertical accumulations on the range profile,

i.e., Sum (R (n,m) , 1), and k is a customized parameter.

IV. TARGET SHAPE IMAGING

A. Movement Decomposition

The 2-D base signal sb(n,m) is modeled as separate

impacts of decomposed movement components on signal

parameters. For a matriculated 2-D sent signal,

st (n,m) = exp

(
j2π

(
f0 +

k

2
n

)
n

)
rect

(
n−mT

Tt

)
, (13)

the reflected signal sr from a reflector X = (x, y, z) can be

received as

sr(X, n,m) = ρ(X)st(n− τ(X, n,m),m), where

τ(X, n,m) = 2R(X, n,m)/c
(14)

denotes the echo delay, ρ (X) denotes the signal reflection

intensity of X, and R(X, n,m) is the absolute distance of X
with respect to the transceiver at time [(m− 1)N + n]Ts.

The received signal integrating all the echoes from all

reflectors over the whole target can be achieved as,

sr (n,m) =

∫
ρ (X) st(n− τ (X, n,m) ,m) dX. (15)

As analyzed in Section II-A, the distance R of a reflector

X can be transformed into the absolute distance of a reference

point O combining the relative distance of X towards O, i.e.,

R (X, n,m) ≈ R0 (n,m) + x · iLoS (n,m) , (16)

where R0(n,m) is the reference distance, x = (x′, y′, z′) is

the relative coordinate of X to the reference point O in the

reference coordinate system, and iLoS (n,m) denotes the unit

vector along the line of sight direction. Thus the delay in

Equ. (15) is converted to

τ (X, n,m) = τ0 (n,m) + τ ′ (x, n,m) , (17)

where τ0 (n,m) = 2R0 (n,m) /c denotes the delay change

due to target translation, i.e., the radial distance change of O,

and τ ′ (x, n,m) = 2x · iLoS (n,m) /c denotes the delay change

due to the relative rotation of x towards O. The received signal

can be finally achieved as,

sr(n,m) =

∫
ρ(x)st(n− τ0(n,m)− τ ′(x, n,m),m) dx.

(18)

The corresponding 2-D base signal is also obtained,

sb (n,m) = exp (jϕ0 (n,m))∫
ρ (x) exp (j (ϕ1 (x, n,m) + ϕ2 (x, n,m))) dx,

(19)

where

ϕ0 (n,m) = −2π (fc + kn) · τ0 (n,m) + πkτ20 (n,m) ,

ϕ1 (x, n,m) =− 2π (fc + kn) · τ ′ (x, n,m) ,

ϕ2 (x, n,m) =− 2πkτ0 (n,m) · τ ′ (x, n,m)

+ πk (τ ′ (x, n,m))
2
,

(20)

ϕ0 is the phase change caused by target translation and ϕ1

and ϕ2 are the phase changes caused by relative rotation.
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B. Rotation Extraction

The rotational effect on the base signal sb is extracted

by compensating sb with a compensation signal to be the

conjugate of the translational effect, i.e.,

sb (n,m) · exp(−jϕ0(n,m)). (21)

We now generate the compensation signal by estimating ϕ0

in following two steps.

1) Modeling the translational effects: The absolute distance

of the reference point during a short time can be expressed as

R0 (t) = R0 + v
R
t+

1

2
a

R
t2, (22)

where R0 is the initial distance, v
R

and a
R

are the radial

velocity and acceleration of the reference point, respectively.

Since the acoustic signals are transmitted by symbols with the

period T = 10ms, the initial distance of the m th symbol can

be expressed as

R0 (m) = R0 + v
R
mT +

1

2
a

R
(mT )

2
. (23)

During the extremely short symbol period, target velocity

within each symbol can be approximated to be stable, i.e.,

v
R
(m) = v

R
+ a

R
mT. (24)

Thus the target distance during m th symbol is obtained,

R0 (n,m) = R0 (m) + v
R
(m)n. (25)

Finally the translation effect on echo phase, ϕ0 (n,m), can

be formulated as

ϕ0 (n,m) =− 2π (f0 + kn)

(
τ0 (m) +

2

c
v
R
(m)n

)
+ πk

(
τ0 (m) +

2

c
v
R
(m)n

)2

,

(26)

where τ0(m) = 2R0(m)/c. In summary, ϕ0 is actually a

function of v
R
, a

R
. Therefore, it is feasible to compensate ϕ0

with the radial movement parameters v
R
, a

R
.

2) Estimating Translation Parameters by ICBA: The radial

velocity v
R

is first estimated with Radon Transform [25] on

target range profile.

The radial velocity v
R

is actually the slope of the target

distance trajectory, which can be observed from the range

profile shown in Fig. 8(d), i.e., v
R
= tan (φ). φ is the angle

Translation 
Compensation

Equivalent
Rotation

Fig. 11. Illustration of translation compensation and rotation extraction.

between the distance trajectory and the time dimension, which

can be determined by Radon Transform on R(n,m),

φ̂ = arg (maxφ(RT (φ, r)))− π

2
, (27)

where RT (φ, r) in Fig.9 is the results of Radon Transform

on Fig.8(d). The estimated angle φ̂ is the x-coordinate of the

circled point and the velocity is estimated as v̂
R
= tan

(
φ̂
)

.

The radial acceleration a
R

is then estimated by linear

search and Image Contrast Maximization. Potential acceler-

ations ã
R
∈ [min (a

R
),max (a

R
)] are sequentially selected to

compensate the base signal sb along with v̂
R

. Then imaging

trials with FFT2 are performed for test,

I (v̂R , ãR) = FFT2 (sb (n,m) · exp (−jϕ0(n,m, v̂R , ãR))) .

(28)

The following metric of Image Contrast(IC) is maximized over

all the potential accelerations,

IC (v̂
R
, ã

R
) =

√
Mean (I (v̂

R
, ã

R
)−Mean (I (v̂

R
, ã

R
)))

Mean (I (v̂
R
, ã

R
))

.

(29)

The metric IC indicates the focus degree of imaging. Since

the focus degree essentially depends on the compensation

performance of ã
R

, the best acceleration can be determined

as the one maximizing IC (v̂
R
, ã

R
), i.e.,

â
R
= arg

(
maxã

R
(IC (v̂

R
, ã

R
))
)
. (30)

Now we can use the translation parameters v̂
R

and â
R

to

compensate target radial movement for rotation extraction.

Fig. 10 exhibits the compensation performance on the range

profile in Fig. 8(d). It is obvious in the figure that the target

radial distance along the time dimension has been flattened at

a stable distance around 95 cm.

As illustrated in Fig. 11, the translation compensation to

eliminate radial movement component is equivalent to pull the

target moving at a fixed distance. Thus multiple viewpoints

can be dynamically generated for 2-D shape imaging with the

equivalent rotation model demonstrated in Section II-A.
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Fig. 12. Distinguishing imaging performance of the advanced imaging over
the basic imaging.

C. Multi-farme Imaging by JTFA

Basic Imaging. A basic rotation imaging model can be

constructed based on the compensated base signal,

s′b (n,m) = sb (n,m) · exp (−jϕ̂0 (n,m))

=

∫
ρ′ (x, y) exp (j (x ·Q1 + y ·Q2)) dx dy,

Q1 =
2

c

(
fc − τ0 (m)− 1

2
τ ′ (x, y, n,m)

)
cos (θ (n,m)),

Q2 =
2

c

(
fc − τ0 (m)− 1

2
τ ′ (x, y, n,m)

)
sin (θ (n,m)),

(31)

where ρ′ (x, y) is the reflection intensity by the projection of x
onto the plane containing target moving vector and orthogonal

to the rotation axis. A single-frame 2-D target shape image is

achieved by performing dual-dimension FFTs on s′b (n,m),

I (nr,mf ) = FFT2 (s′b (n,m)) = FFT (R(n,m), 2) , (32)

where I(nr,mf ) represents the reflectivity of the target pro-

jection. FFT2(·) denotes dual-dimension FFTs, the first along

the fast time dimension and the second along the slow time

dimension. The first dimension FFTs produce range profile

R(n,m), representing the distance image of all the reflec-

tors on the target projection. The second dimension FFTs,

FFT (R(n,m), 2), produce distance-dimension spectrum of

same-distance reflectors over different distances. Different

reflectors at same distance can be distinguished in the reflec-

tivity image because they have different Doppler shifts in the

spectrum during rotation. As in Fig. 12(a), A,B at distance

R1 and C,D at distance R2 will be separately ranged by

first dimensional FFTs. A with positive DFS and B with

negative DFS will further be separated by zero-f axis. C and

D with same range and both positive DFS but different DFS

magnitude will accordingly be distinguished.

Advanced Imaging. The basic imaging, producing single

image for an echo matrix, has the significant disadvantage

of image blur. In the rotation imaging model, the symbols

spreading a large time scale in a matrix record non-negligible

target rotation angle. Thus the overlapping of rotating images

results in the imaging blur. Unfortunately, simply shortening

the echo matrix will reduce the image resolution. We address

the image blur issue by applying Joint Time-Frequency Analy-

sis (JTFA) [26], [27] to replace FFT (R(n,m), 2). Overlapped

multiple frames are separately imaged from single matrix to

improve clarity. Moreover, the original image sample set is

largely increased to reduce the cost of training data collection.

Fig. 12 demonstrates the obvious higher clarity of JTFA-

based imaging over FFT-based option.

V. IMAGING BASED ADAPTIVE RESPONSE

A. Image Enhancement and Target Shape Recognition

The imaged multiple frames of spectrum-range reflectivity

I(nr,mf ) are further enhanced by image processing to facil-

itate target shape recognition.

Target centering and noise eliminating. Amaging supports

dynamic gesture sensing range by automatic target range

focusing. Thus targets may locate at diverse ranges in the

reflectivity image. We center targets by uniformly shifting

the max-reflectivity point to the zero-range axis. In addition,

random noises are eliminated by setting a dynamic reflectivity

threshold as Equ. (12).

Data augmentation. In addition to the multi-frame increase

of original image samples (5× augmentation rate) in Sec-

tion IV-C, a series of data augmentation techniques are applied

to reduce data collection cost.

• Horizontal scaling (3× augmentation rate): Original im-

ages are horizontally scaled to emulate non-uniform hand

moving velocity.

• Mirroring (2× augmentation rate): By horizontally flip-

ping 2-D hand-shape images, unilateral gestures can be

doubled to bilateral gestures. Bilateral gesture recognition

thus is elegantly available.

• Salt-Pepper Noise (2× augmentation rate): To prevent

overfitting and increase recognition robustness, salt-

pepper noises are added.

Classification. The desired collection of enrolled hand

shapes can be customized. The training network optimization

is out of the research scope and thus a general ResNet

[28] is used as our classifier. Note that our gesture response

mechanism features error-correction capability against possi-

ble classification faults of general classifiers.

B. Adaptive Response Mechanism

Amaging responses to enrolled gestures with shape & trajec-

tory double dimensions among the flow of natural human mo-

tions. The hand-shape image sequence is jointly analyzed and

adaptively segmented, which triggers the trajectory-dimension

recognition on the corresponding section of the symbol stream.

Classification faults or burst interference, can be corrected

by a sliding window on the image sequence to jointly vote

the local dominant shape. Then the frame range of a gesture

can be immediately determined once the dominant shape

changes. The continuous hand shape imaging and trajectory

recognition on selective sections can be highly paralleled to

reduce response delay.

VI. PERFORMANCE EVALUATION

In this section, we first demonstrate the orthogonality of the

novel target shape dimension against the trajectory dimension

commonly used by state-of-the-art studies. Since the integrated

gesture recognition rate, affected by both dimensions, is inca-

pable to reflect the shape-dimension recognition performance,
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Fig. 13. Independent rotation extraction performance to distinct movements.

-10 -5 0 5 10

Doppler Shift (Hz)

-30

-20

-10

0

10

20

30

R
an

ge
 (

cm
)

(a) Rock

-10 -5 0 5 10

Doppler Shift (Hz)

-30

-20

-10

0

10

20

30

R
an

ge
 (

cm
)

(b) Paper

-10 -5 0 5 10

Doppler Shift (Hz)

-30

-20

-10

0

10

20

30
R

an
ge

 (
cm

)

(c) Scissors

-10 -5 0 5 10

Doppler Shift (Hz)

-30

-20

-10

0

10

20

30

R
an

ge
 (

cm
)

(d) Six

-10 -5 0 5 10

Doppler Shift (Hz)

-30

-20

-10

0

10

20

30

R
an

ge
 (

cm
)

(e) Love

Fig. 14. Imaging performance of common gestures.

we individually exhibit the shape imaging performance and

evaluate the joint shape recognition accuracy.

A. Setup

Experimental parameters. Off-the-shelf smartphone Sam-

sung Note10 Plus is used to transmit and receive linear fre-

quency modulated (LFM) signals from 10 kHz to 24 kHz [29].

Symbol period T = 10ms. Transmission duration Tt = 5ms.

Sampling rate fs = 48Hz.

Data collection and training. We invited 10 volunteers (5

men and 5 women), two of whom are left-handers, to perform

single-hand gestures of the 6 hand shapes with different

speed and trajectories. Training samples are collected from 8

volunteers, each conducting 10 samples per hand shape. The

final number of samples is 28,800 with 60× data augmentation

rate. Testing samples are collected from the other 2 volunteers.

Each sample is conducted within 3 s. 4 experimental scenarios

are varied in terms of different background objects and noise

intensities. ResNet18 is selected to be the classifier, trained by

PyTorch on a server with Intel Core i9-11900K CPU, 32 GB

RAM, and a GeForce RTX 3090 Graphics Card.

B. Dimensional Independence Demonstration

We first exhibit the independent shape imaging perfor-

mance exhausting the movement dimension. The imaging

performance is represented by the dominant factor of rotation

extraction performance.

Each hand shape is repeated with extremely different

speeds, start and end positions, and start time. The rotation ex-

traction performance for the hand shape with greatest moving

difference are exhibited by Fig. 13. Fig. 13(a) and Fig. 13(c)

respectively show a palm moving from far right to near left

early and rapidly, and from near left to far right late and

slowly. The respective rotation extraction results are given by

Fig. 13(b) and Fig. 13(d). It is obvious that movement does not

impact the rotation model of a hand shape. In other words, the

imaging performance is independent of hand movements.

In addition, the experiments are conducted with a moving

interference at a comparable speed with the slower moving

in Fig. 13(c) at the range of 70 cm. The interference is more

obvious in Fig. 13(c) than in Fig. 13(a) because of the different

speed gaps. The robustness of Amaging against such mobile

interference will next be shown by the imaging performance.

C. Imaging Performance and Joint Recognition Accuracy

The imaging performance on the other 5 hand shapes are

shown in Fig. 14 except the palm in Fig. 12. The shapes can

be easily distinguished. The fragmentary image is caused by

uneven reflectivity over the hand surface.

Separate Recognition Rate. Fig. 15 presents the confusion

matrix of average recognition rate of six hand shapes with

100 test frames (20 test conductions) for each shape. From

the figure, Rock and Paper have 100% recognition rate, while

other hand shapes have a fault rate lower than 6% because of
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the shape similarity. For example, Love may be recognized as

Six with 6% probability.

Joint Recognition Rate. In this experiment, fault correction

is applied on multiple images of each test trial by jointly voting

the dominant shape. In noisy scenarios, the average recognition

rates over all the hand shapes with 100 tests for each are shown

in Fig. 16. Amaging achieves distinguishing recognition rate,

96% with 30 db audible sound.

Response Delay. The simulated running time to process a

matrix containing 100 symbols (lasting 1 s) is presented in

Tab. I. The pre-processing operations can be approximately

finished with the current symbol collection and the processing

of current matrix (0.917 s) can be finished during the next

round (1 s). Thus pipe-lined processing can be enabled to

further reduce response delay.

VII. RELATED WORK

State-of-the-art acoustic gesture recognition techniques can

be classified into trajectory-based ones [1]–[8] and echo

feature pattern based ones [10]–[16]. In addition, the only

acoustic imaging attempt with lightweight devices [29] is

finally be introduced.

A. Trajectory based Recognition

This kind of recognition methods exploit single dimension

of gesture trajectory, neglecting the parallel hand-shape di-

mension with simplified particle model. The major challenge

for the particle model is the filtering of multi-path effect [30]

caused by actually complex hand shapes. This category further

develops along two different directions.

Relative displacement accumulation. Target initial posi-

tions are needed to be determined, uninterruptible tracking is

required and accumulative errors may occur. Representative

solutions are LLAP [1] and Strata [2]. LLAP detects echo

phase changes reflecting target displacement. Strata performs

time-domain channel estimation to improve tracking accuracy.

Absolute distance measurement. Round-trip Time of

Flight (ToF) is commonly used to range target absolute

distance to avoid accumulative error. FingerIO [3] exploits

phase encoded OFDM for ToF measurement. AMT [4] tracks

multiple targets by constructing a MIMO system with speaker-

mic pairs.

B. Echo Feature Pattern based Recognition

This kind of approaches learn echo features reflecting the

integrated impacts of both hand shape and movement, which

TABLE I
Amaging’S PROCESSING DELAY ON 100 SYMBOLS

Pre-processing Processing

Matrixing MTI DDechirp ICBA Imaging Classification

0.004s 0.003s 0.153s 0.683s 0.152s 0.082s

is a good attempt to extend gesture features. However, the

two feature dimensions are not independently considered and

the uninterpretable features severely limit the differentiation

space. In addition, considerable training cost based on large

scale training data collection is introduced.

AudioGest [10] only learns the Doppler frequency shift

reflecting radial velocity of moving targets to recognize six

gestures. RobuCIR [12] exploits Channel Impulse Response

(CIR) to track real-time 1-D radial distance of a moving target.

Combining CNN and LSTM for image feature extraction and

gesture recognition, 15 gestures can be differentiated.

C. Acoustic Imaging by Lightweight devices

Acoustic target-shape imaging opens up a new sensing

dimension to develop acoustic sensing capability. Combining

both radial distance tracking and Doppler frequency shift

differentiation at same range, all the reflectors on the target can

be dual-dimensional imaged. Image recognition algorithms are

also required for target shape classification.

AIM [29] is the only work on target-shape imaging with

lightweight devices such as smartphones in recent years.

However, AIM cannot be used for gesture recognition. Firstly,

the imaged target is required to keep static during the imaging.

Secondly, the imaging device is required to dynamically scan

the whole fixed target. Finally, the relative movement between

the device and the target should be known, including scan

distance and moving trajectory.

VIII. CONCLUSION

The novel dimension of 2-D target-shape imaging has been

opened up for acoustic sensing by this work. Targeting at

the identified three key challenges on ubiquitous acoustic

gesture recognition, namely adaptive response, sensing ca-

pability expansion, and mobile interference filtering, a series

of techniques essentially based on target-shape imaging have

been implemented. The target-shape image is actually a plot

of range-spectrum reflectivity over a 2-D target projection.

The proposed system features dual-dimension recognition of

gesture components and high concurrency, applicable to edge

computing scenarios. The satisfactory target-shape recognition

rate optimized by image sequence joint analysis exhibits

promising potential of real-time acoustic imaging in diverse

application scenarios.
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