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Abstract—Trajectories obtained from Global Position System
(GPS)-enabled taxis grant us an opportunity not only to extract
meaningful statistics, dynamics, and behaviors about certain ur-
ban road users but also to monitor adverse and/or malicious
events. In this paper, we focus on the problem of detecting
anomalous routes by comparing the latter against time-dependent
historically “normal” routes. We propose an online method that is
able to detect anomalous trajectories ‘‘on-the-fly”” and to identify
which parts of the trajectory are responsible for its anomalous-
ness. Furthermore, we perform an in-depth analysis on around
43800 anomalous trajectories that are detected out from the
trajectories of 7600 taxis for a month, revealing that most of the
anomalous trips are the result of conscious decisions of greedy taxi
drivers to commit fraud. We evaluate our proposed isolation-based
online anomalous trajectory (iBOAT) through extensive experi-
ments on large-scale taxi data, and it shows that iBOAT achieves
state-of-the-art performance, with a remarkable performance of
the area under a curve (AUC) > 0.99.

Index Terms—Anomalous trajectory detection, Global Position-
ing System (GPS) traces, isolation, online.

1. INTRODUCTION

HE RECENT advances in sensing, communication, stor-
age, and computing have revolutionized the way that
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we interact with the world. Many of these interactions leave
behind digital traces of our actions, providing a rich source of
information for understanding social behaviors and community
dynamics in different contexts [42]. This results in improved
services in various areas, including public safety, urban plan-
ning, and transportation management [7], [16], [19], [29], [39].

Global Positioning Systems (GPS) have become a tool
present in most vehicles for localization and navigation. The
traces left behind by GPS-enabled vehicles provide us with
an unprecedented window into the dynamics of a city’s road
network. This information has been analyzed to uncover traffic
patterns [26], city dynamics [37], driving directions [33], a
city’s “hot spots” [8], [38], finding vacant taxis around a city
[31], and good taxi operation patterns [21], [28].

Recent years have witnessed an increasing interest in au-
tomatically detecting anomalous trajectories [6], [14], [20].
Although several aspects of abnormality have been used for
automatic detection by previous works, a few of them have been
analyzed with respect to the practical applications, which they
may serve. We would like to use one potential application to
motivate the work presented in this paper.

Example: Many passengers are victims of fraud caused by
greedy taxi drivers who overcharge passengers by deliberately
taking unnecessary detours [1]. The detection of these fraudu-
lent behaviors is essential to ensure high-quality taxi service.
These frauds are currently detected by manual inspection from
experienced staff, based on complaints from passengers. This is
rather costly and not very effective as most frauds are not even
noticed by passengers if they are unfamiliar with the city. Given
that anomalous traces usually deviate significantly from “nor-
mal” traces, it is possible to automatically detect them by com-
paring them against a large collection of historical trajectories.

To effectively support the application, a successful anomaly
detection method should possess the following characteristics.

1) Accurate classifications: This implies that the method
should have high detection accuracy and a low false-
alarm rate.

2) Subtrajectory specificity: In addition to labeling tra-
jectories as anomalous, it can inform which parts or
subtrajectories are responsible for the trajectory’s anoma-
lousness.

3) Real-time response: This implies that the method should
detect anomalous trajectories in real time. Alerts can be
provided once anomaly is detected while the trip is still
ongoing.

4) Characterizing the anomaly degree: This implies that
the method should provide a score quantifying the degree

1524-9050/$31.00 © 2013 IEEE
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Fig. 1.

Example taxi trajectories between S and D.

of anomalousness for each trajectory. This score can be
used to rank a collection of trajectories.

A set of trajectories are considered “normal” with respect
to a particular travel itinerary (i.e., from a specified point to
another). We must then specify source (S) and destination (D)
areas, and we consider only those trajectories traveling from
S to D.

Consider the three groups of “normal” trajectories between
S and D, along with five anomalous trajectories (¢; through ¢5),
displayed in Fig. 1. The anomalous trajectories are labeled so
because they are infrequent and differ from the majority of other
trajectories. Not only those trajectories that follow a completely
different route (1, t4,t5) should be considered anomalous but
also those that detour for a part of the trajectory (t2,t3). The
anomalous trajectories can be long detours made by greedy
taxi drivers (t; and t5 in Fig. 1), or they can be short cuts or
new routes taken by experienced drivers (¢4 and t5 in Fig. 1).
Detecting these anomalous trajectories is no trivial task due to
the following challenging issues.

1) As shown in Fig. 1, there may be many different normal
routes between S and D, and these clusters are usually
with different densities and separated from each other.
Traditional anomaly detection techniques [6], [14], [20],
which are based on differences in distance or density, may
be difficult to identify all the anomalies.

2) Multiple normal routes also mean different driving dis-
tances. If we model driving distance, it is not able to
discover those anomalies whose driving distance is close
to that of the normal trajectories (such as t3 and ¢5).

3) Anomalous trajectories can be diverse. Similar to ¢1, to,
t3, t4, and t5 in Fig. 1, they are regarded as anomalous due
to quite different reasons. Then, it is not straightforward
to characterize them with a single method.

4) The concept of anomalous trajectory might drift over
time because the road network may change (i.e., newly
built or blocked roads). Hence, it is important to be able
to capture these changes and incorporate them into the
model. Moreover, GPS traces often suffer from the low-
sampling-rate problem since GPS devices usually send
data at a low and changing frequency.
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In this paper, we aim to propose a novel anomalous trajectory
detection method that addresses the given four challenges.
First, we extract valid taxi rides from all the taxi GPS traces,
divide the city map into grid cells of equal size, group all
the taxi rides crossing the same S-D cell pair, and augment
and represent each taxi trajectory in each S-D pair as an
ordered sequence of traversed cell symbols. In such a way, the
problem of anomalous trajectory detection is converted to that
of finding anomalous trajectories from all the trajectories with
the same S-D cell pair. Second, for all the taxi trajectories
between a certain S-D cell pair, we define those trajectories
that are “few” and “different” from the normal trajectory clus-
ters as anomalies. We then propose an isolation-based online
anomalous trajectory (iBOAT) detection method that exploits
the property that anomalies are susceptible to a mechanism
called isolation [27]. Third, we perform an empirical evaluation
comparing iBOAT and other state-of-the-art methods with real-
world taxi GPS data. Finally, we show how iBOAT can be used
to effectively support real-world applications. In summary, the
main contributions of this paper include the following.

1) We present an iBOAT detection method that successfully
addresses all the challenges listed earlier while still pos-
sessing the four characteristics previously mentioned.

2) We evaluate iBOAT with real-world GPS traces collected
from 7600 taxis for one month. We demonstrate the
remarkable accuracy of our method, its ability to identify
which subtrajectories are anomalous, and its low compu-
tational cost. We also show that iBOAT outperforms the
state-of-the-art anomalous trajectory detection methods.

3) After detecting the anomalous trajectories, we perform an
analysis revealing that most of the anomalous trips are
the result of conscious decisions of greedy taxi drivers to
commit fraud. In addition, we further provide evidence to
deny possible excuses that some cunning drivers may use.

The rest of this paper is organized as follows. We begin
by reviewing related work in Section II. After introducing
related background in Section III, we describe our method in
Section IV. An empirical evaluation along with an analysis of
its differences with related methods are presented in Section V.
We analyze the different types of anomalous trajectories and
provide evidence to deny possible excuses for fraudulent be-
haviors in Section VI. Finally, we present concluding remarks
in Section VII.

II. RELATED WORK

Here, we will review the related work, which can be cate-
gorized into two groups. The first group consists of the work
on analyzing or exploiting GPS traces for purposes other
than anomaly detection, whereas the second group focuses on
anomaly detection methods that are related to this paper.

A. Trajectory Pattern Mining

There have been many studies on mining GPS traces for
a number of different applications. Liao et al. [24] and
Patterson et al. [30] studied the problem of predicting a user’s
mode of transportation and daily routine to provide reminders
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when needed, whereas Li ef al. [21] and Liu et al. [28] un-
covered taxi drivers’ operating patterns. Giannotti et al. [15]
provided concise descriptions of frequent movement patterns
in terms of space and time. Alvares et al. [3] developed a model
to enrich the raw trajectory data with semantic geographical
information and discovered knowledge based on semantic tra-
jectory data. Other studies show how to predict the route and
the destination based on historical GPS traces [12], [18], [40],
in addition to providing driving directions by exploiting taxi
drivers’ knowledge [33]. GPS traces have also been used for
uncovering interesting “hot spots” and recommending travel
routes for tourists [10], [36], [38], for uncovering the attrac-
tiveness of commercial centers [34], for passengers searching
for vacant taxis [31], or for classifying the social functions of
different regions in a city [29].

B. Anomalous Trajectory Detection

In the literature, some solutions of anomalous trajectory
detection have already been reported, each addressing certain
aspects of abnormality. For instance, Lee er al. [20] split a
trajectory into various partitions (at equal intervals), and a
hybrid of distance- and density-based approaches was used to
classify each partition as anomalous or not; however, as we pre-
viously mentioned, solely using distance and density can fail to
correctly classify some trajectories as anomalous. Bu et al. [6]
presented an outlier detection framework for monitoring out-
liers over continuous trajectory streams, whose key idea was
to build local clusters upon trajectory streams and to detect
outliers by a cluster join mechanism. Ge et al. [14] studied a
similar problem of detecting evolving trajectory outliers, and
they computed the anomaly score based on evolving direction
and density of trajectories. Somewhat related, but addressing a
different problem, Li et al. [23] identified outlier road segments
by detecting drastic changes between current data and historical
trends. Their approach detected what can be labeled as global
anomalous events. These were events that affect many taxis;
thus, their method would not be able to detect anomalous
behaviors on an individual level. Balan et al. [4] reported trajec-
tories with extremely long traveling distances as anomalous; as
we previously mentioned, this rather simplistic approach may
fail to detect other types of anomalous behaviors. Ge et al. [13]
identified fraudulent taxi trajectories by using a model combin-
ing two forms of evidence: distance and density characteristics.
Specifically, they first computed the independent components
(using independent component analysis) of a set of trajectories,
and they computed the coding cost (which is essentially the
entropy) of a trajectory’s independent components. Once this
was done, they determined the expected distance for the most
common routes, and they computed how much a trajectory’s
distance differs from the norm. These two pieces of evidence
were combined using the Dempster—Schafer theory. Finally,
some recent studies have used learning methods to identify
anomalous trajectories [2], [22], [25], [32]. However, these last
methods usually required training data, which are expensive to
label. After reviewing existing studies on anomalous trajectory
detection, it is not difficult to find that we are investigating a
different problem from previous studies. That is, given all the

Fig. 2. Traces of a taxi in Hangzhou city during a month, where red or blue
indicates the taxi is occupied or vacant.

taxi trajectories between a certain S—-D pair, our objective is
to discover those few that take very different routes from the
majority.

Most of these methods identify anomalous trajectories based
on their physical distance to “normal” clusters or their orienta-
tions [5], [17]. Based on the idea of isolating anomalies [27],
our previous work [9], [35] proposed a method that identifies
trajectories as anomalous when they follow paths that are rare
with respect to historical trajectories. This paper builds on them
but differs in the following respects. First, we introduce a novel
anomaly scoring method that considers both the anomalous
subtrajectory and the number of trajectories “supporting” it.
Anomalous trajectories with a longer anomalous subtrajectory
and less support would be ranked higher. Second, the effect
of the anomaly threshold and the size of the set of historical
trajectories on the detection performance are investigated. This
paper allows developers to trade off between the detection
accuracy and the cost (i.e., computation time and memory).
Finally, motivations behind the anomalous behaviors are ana-
lyzed. Different applications corresponding to this motivation
could be developed, leveraging the proposed iBOAT method.

III. PRELIMINARIES AND PROBLEM DEFINITION

A taxi’s GPS trace consists of a sequence of timestamped
GPS points (i.e., latitude/longitude, the estimated speed, and
vacant/occupied state) generated by a GPS device. Our data set
consists of the GPS trajectories for 7600 taxis in Hangzhou,
China, where each GPS record is received at a rate of around
once per minute. Fig. 2 shows the trajectories for one taxi
during a month; the red lines indicate when the taxi is occupied,
whereas the blue lines indicate when it is vacant. In this paper,
we will only use occupied trajectories since fraud detection is
one of the motivations for this paper, and fraud can only be
committed with a passenger.

Definition 1: A trajectory t consists of a sequence of points
(p1,p2--.,pn), Where p; € R? is the physical location (i.e.,
latitude/longitude). We will use ¢; to reference position ¢ in
t, and for any 1 <i < j <, t;,_,; denotes the subtrajectory
(Dir- -5 pj)-

Points p; exist in a continuous domain; therefore, directly
dealing with them is difficult. To mitigate this problem, we
assume that we have access to a finite decomposition of the
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area of interest. Specifically, we decompose the city area into a
matrix G of grid cells, and we define p : R? — G as a function
that maps locations to grid cells. The criterion for choosing
the grid cell size is to ensure the accuracy of the anomalous
trajectory detection while maximizing the grid cell size. We ex-
perimented with different grid cell sizes and found that 250 m x
250 m is the biggest grid size with the set detection accuracy.

Definition 2: Mapped trajectory ¢, which is obtained from
trajectory ¢, consists of a sequence of cells (g1,92...,dn),
where forall 1 <i <n, g; € G, and t; = p(t;). We will write
g € t whent; = g for some 1 <7 < n.

Henceforth, we will only deal with mapped trajectories;
therefore, we will drop the mapped qualifier. Because of the rate
at which GPS entries are received and the small size of our grid
cells, the mapped points (black squares in Fig. 3) may not be
adjacent, thereby leaving gaps. We augment all the trajectories
to ensure that there are no gaps in the trajectories by (roughly)
following the line segment (green line in left panel) between the
two cells in question and “coloring” the cells underneath (gray
cells in figure). Whereas the original trajectory consisted only
of the black grids in Fig. 3, the augmented trajectory consists of
both the black and gray grids.

Let T denote the set of all mapped and augmented trajecto-
ries. Define function pos : T x G' — N, given that trajectory
t and element g returns the first index in ¢ that is equal to g, as
follows:

pOS(t, g) _ {arg M eN+ {tl = g}a lfg et (1)

00, otherwise.

For example, if ¢t = (g1, 92, 93, g5, g3, gs ), then pos(t,g3) = 3
and pos(t, g7) = 0.

We will be comparing an ongoing trajectory against a set of
trajectories 7T'. Because of the low sampling rates, two taxis
following the same path may have points mapping to disjoint
cells. In the right panel of Fig. 3, we display the augmented
trajectory from the left panel, along with a new trajectory
(colored squares and green line). Some of the grid cells of
the new trajectory fall on the augmented path (blue squares),
whereas others fall in “empty” grid cells (orange and red cells).
Because of the simplicity of the augmentation method, there
is the possibility that the augmented path was not completely
accurate; therefore, we must account for this type of error.
If a grid cell of the new trajectory is adjacent to one of the
augmented cells, we consider it as if it were along the same path
(orange cells), whereas if it is not adjacent to any augmented
cells, we consider it as following a different path (red cell).
For this purpose, we define N : G — P(G) as a function that
returns the adjacent neighbors of a grid cell (each nonborder

(Left) Example of a trajectory with augmented cells. (Right) Comparing existing trajectory with a new trajectory.

gl [ g2 | g3 | g4 | g5 | g6

g7 | g8 .g10 gl

g13(g14 [ g15|gl16 | gl17

gl2

g18

g19 [ 920 | g21 | g22 | g23 | g24

g25 | 926 | g27 | 928 | g29 | g30

g31|g32 | g33 | g34 | g35 | g36

Fig. 4. Sample trajectory used to illustrate a cell’s neighbors.

grid cell will thus have nine neighbors, including itself). For a
grid cell g and trajectory ¢, we let N(g) € ¢ denote the fact that
at least one of the neighbors of g is in ¢, and pos(t, N (g)) return
the first index in ¢ that is equal to one of the neighbors of g. For
instance, given the grid cells in Fig. 4 and sample trajectory
t = (g1, 92, g3, 94, 911, g12), we would obtain pos(t, N (go)) =
2 (since gg € N(g2)).

Problem statement: We say that subtrajectory ¢ is anoma-
lous with respect to 7" (and the fixed S—D pair) if the path that it
follows rarely occurs in 7'. Given a fixed S-D pair (.5, D) with
a set of trajectories 7' between them and an ongoing trajectory
t={g1,92,--,9n) going from S to D, we would like to
verify whether t is anomalous with respect to 7. Furthermore,
we would like to identify which parts of the trajectory are
anomalous.

Definition 3: We define function hasPath : P(T) — P(T)
(where P(X) is the power set of X) that returns the set of
trajectories that contain all of the points in ¢ in the correct order.
Note, however, that the points need not be sequential; it suffices
that they appear in the same order, as given in the following:

(i)V1 <i<n.N(g;) et
hasPath(T, t)=<t' € T| (i) V1 <i < j < n.

pos (¥, N(g;)) < pos (t',N(g,))
(2)

For instance, if T={¢1,2,¢3}, where t1=(g1, 92, g3, 94, g5,
g8 99, 910)» 12=(g1, 92, 94, g5 96, 98, 910)» and t3=(g1, g3, 9a,
93, 96, s, g10), and an ongoing trajectory t = (g1, g2, g5, gs)»
then hasPath(T), t) = {t1,¢2}. Given these definitions, we can
specify when two trajectories are identical, given our augmen-
tation method.

Definition 4: Given threshold 0 < 6 < 1, trajectory ¢ is
0-anomalous with respect to a set of trajectories T if

_ |hasPath(T, ©)|

support(7, t) = i <. 3)
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Fig. 5. Overview of our approach.
IV. ISOLATION-BASED ONLINE ANOMALOUS
TRAJECTORY DETECTION

Having defined the necessary preliminaries, we are ready
to present our method for anomalous trajectory detection. The
process is split into an offline preprocessing phase and an online
detection phase (see Fig. 5). In the offline phase, we receive a
set of historical trajectories, which we classify and index using
a sophisticated but highly efficient method. This allows us to
respond to the online algorithm’s queries in real time. In the
online phase, we process a series of incoming GPS points from
each occupied taxi and provide an indication as to whether
each point is anomalous or not. Once this ongoing trajectory
is completed, we add it to our historical database.

A. Offline Preprocessing

The offline phase is in charge of collecting and classifying
a set of historical trajectories, which will be used to determine
“normal” routes between an S—D pair. These historical trajec-
tories must be accessible in an efficient manner to provide a
real-time response.

We begin by grouping the trajectories according to S—D pairs
and the time of occurrence. It is important to separate trajecto-
ries according to the time of occurrence since the “normalcy”
of routes may depend on traffic patterns. We index the set
of historical trajectories using a triple (sg, eg, time), where sg
is the starting grid cell, eg is the end grid cell, and time is
the time at which the trajectory occurred. Note that to avoid
the unnecessarily fine granularity of time, we divide time into
coarser bins. Each set indexed by a triple may contain both
normal and anomalous trajectories. Once the trajectories have
been classified, we map and augment them. For each trajectory,
we store the resulting mapped grid cells (in the correct order) in
arecord in the MappedTraj database, and we index the records
by their (unique) trajectory number and the time of occurrence.

To determine the anomalousness of a new mapped GPS
point, we must be able to access all trajectories that contain
this mapped point (or some point in its neighborhood) in the
same time bin. Using MappedTraj for this purpose would be
terribly inefficient as it would imply searching through all
trajectories for each new point. Instead, we make use of the

inverted index mechanism [41] for fast retrieval of relevant
trajectories. For this mechanism, we maintain a second database
where we maintain a record for each possible grid cell; the
elements of each record are trajectory—position pairs, indicating
the trajectories where the indexing grid cell appears, along
with its position in that trajectory. For instance, consider the
following trajectories:

t1:91 = g5 — gs — 1o
to:1g1— 92— gs — gs — g5 — g9
t3 g2 — gs — go.

In the inverted index database InvInd, the record indexed by
grid cell g; will be Invind(g;) = {(¢1, 1), (t2, 1)}, the record
indexed by g5 will be InvInd(g5) ={(¢1, 2), (t2, 3), (t2,5)}, and
the record indexed by gg will be InvInd(gg){(t2,6), (t3,3)}.
Thus, if a new GPS point maps to gy, by accessing InvInd(go),
we will immediately know that this grid cells occurs in trajec-
tories to and t3.

We now have an efficient mechanism for accessing the trajec-
tories that contain a particular grid cell. In Section V, we will
incrementally use this (as new GPS points arrive) to determine
the anomalousness of an ongoing trajectory.

B. iBOAT

Our iBOAT detection method is based on the idea of isolating
trajectories. Anomalous (sub-)trajectories will be isolated from
the majority of routes, whereas normal trajectories will be
supported by a large number of trajectories. The less support
a trajectory has, the higher its degree of anomalousness would
be. In [35], Zhang et al. determine the anomalousness of a
trajectory once the trajectory is completed. This is unfortunate,
since it prevents one from providing alerts to the passenger
while a trajectory is ongoing. On the other hand, using purely
density-based methods as described earlier will most likely
result in inaccurate classifications. We aim to overcome this
problem by using an adaptive working window that provides
us with historical contexts to better determine the anomalous-
ness of the incoming trajectory. We will use the definition of
f-anomalousness presented in Section III to describe our pro-
posed algorithm.

1) Basic idea: The basic idea of iBOAT is to maintain an
adaptive working window of the latest incoming GPS points
to compare against the set of historical trajectories. As a new
incoming point is added to the adaptive working window,
the set of historical trajectories is pruned by removing any
trajectories that are inconsistent with the subtrajectory in the
adaptive working window. New points continue to be added to
the working window as long as the support of the subtrajectory
in the adaptive working window is above 6. If the support
drops below 6, then the adaptive working window is reduced
to contain only the latest GPS point. We outline this approach
in Algorithm 1.

We maintain a working set of trajectories (initially equal to
T) and an adaptive working window w. After ¢ — 1 entries are
received, our partial trajectory ¢ (adaptive working window)
consists of (p1, pa, ..., pi—1), and we have a working set T;_1.
Upon arrival of point p;, we map it to grid cell g; (line 8) and
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Fig. 6. Running example for iBOAT.

concatenate g; to the adaptive working window w (line 9). We
then compute support(7;_1,w) (line 10). If its value is less
than 6, the trajectory points contained in the adaptive working
window are said to have anomalies; then, point p; is considered
anomalous. Therefore, it is added to the set of anomalous points
x (line 13), and we reset the working set (line 14) and the
adaptive working window (line 15); otherwise, we set T; =
hasPath(7;_1,w) (line 11). This procedure is repeated as long
as the trip does not reach the destination. Note that 7y = 7" and
that, every time an anomalous point is encountered, the working
set is reset to the original trajectory set 7". This resetting is what
enables our adaptive algorithm to accurately detect anomalous
subtrajectories in real time with finer granularity than the fixed
window approach (with & > 1). Additionally, by reducing the
working set with each incoming point, the adaptive approach
has a computational advantage over the fixed window approach.

To illustrate the process, we will use a running example, as
shown in Fig. 6. We assume there are three common routes that
drivers take when delivering passengers from S to D. There are
100 taxi drivers who have taken Route I (in black), 200 taxi
drivers have taken Route 2 (in red), and 150 drivers have taken
Route 3 (in blue). The test trajectory is depicted using the
numbered yellow circles and the purple line (indicating the
order of arrival of the points). We can immediately see that,
although the test trajectory visits only “common” cells in the
initial part, it does so in reverse order between points 4 and 7.
In the beginning, the adaptive working window will grow
to contain points (g1, g2, g3, ga) since this subtrajectory has
enough support. However, when g5 is added to the adaptive
working window, the support of this subtrajectory drops below
the threshold; thus, g5 is considered as an anomalous point, and
the new adaptive working window contains only gs. The size
of the adaptive working window would not increase (only con-
taining the single latest GPS point) until receiving g7; now, the
adaptive working window will be (gg, g7). Again, the working
window will shrink to contain only a single point throughout
the anomalous section ({gs, g9, g10)). When the trajectory is
completed, iBOAT will return x = {gs, g6, g3, 9o, 910} as the
set of anomalous points.

We can also consider a simple variant of iBOAT: maintaining
a fixed-sized window. In this approach, the sliding window con-
sists only of the most recent k& points. Specifically, given a set
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Fig. 7. Weighting function o.

of trajectories 7" and an ongoing trajectory ¢t = (p1, D2, ..., Pn)s
we verify whether the last k-sized subtrajectory from ¢ occurs
with enough frequency in 7' to determine if it is anomalous.
Note that, when k& = 1, we have the density method used for
comparison in [25]. Following the example in Fig. 6, we have
the following results for different values of k:

{98, 99}, ifk=1
X = 4 {95, 96,98, 99,910}, ifk=2
{95, 96,97, 98, 99, 910, 911}, if k= 3.

Note that the size of y depends on the value of k. For
the same anomalous trajectory, the larger k is, the larger y
would be. While the size of x for k = 2 and iBOAT is closer
to that of the real anomaly segments, it produces larger y
when k increases, leading to excessive counting of the anomaly
segments. However, in the case of £ = 1, the size of y is much
smaller than that of the real anomaly segments. This explains
why the anomaly detection algorithm with £ = 2 and adaptive
window outperforms that with £k =1 or £ > 3. However, in
some specific cases, as shown in Section V, the proposed iBOAT
method with an adaptive window can detect certain anomalous
trajectories that the fixed sliding window methods are not able
to detect, making iBOAT the most effective anomaly detection
approach.

2) Anomaly score: As the trajectory is ongoing, we main-
tain an anomalous score, which will be used to provide alerts
and to rank the trajectories once they are completed. Intuitively,
a trajectory with smaller support and longer anomalous distance
should be ranked higher; therefore, we compute this score based
on the length of the anomalous subsection, and the density
in each anomalous subsection, rather than only summing the
length of each anomalous part [9]. We weigh the support
according to function o, which is a logistic function (shown
in Fig. 7), as follows:

o(z) :

T 10

Here, A is a temperature parameter and 6 is the aforementioned
threshold. For our experiments, we choose A = 150. This func-
tion will assign a larger weight to very low supports, and the
weight will drop to zero for values above . The advantage
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of using this weighting function is that it smoothes the cutoff
point imposed by the chosen threshold 6; in a sense, it plays a
similar role as sigmoid functions in neural networks. For each
incoming point p;, we compute its score as shown in line 17
of Algorithm 1. We add the score for the previous point to the
distance just traveled multiplied by the weighted support (note
that we also do for the fixed window approach).

Given the way the ongoing score is computed, once the
trajectory is completed after n steps, we have the final score
as given by the following equation, which is a weighted sum of
the distance between points:

n 1 )
score =score(n) = E | A (SUppOTE( ) dist(pi, pi-1) (4
i=2

where dist : R? x R? — R is the standard sphere distance be-
tween two points.

Algorithm 1 iBOAT with adaptive window

Input: incoming trajectory — t = (p1,pa, .. .)
T - set of mapped and augmented historical trajectories
0 - anomaly threshold

Output: score; x- set of anomalous points

: x + 0 // initialization

. To T

: ¢ <— 0 // Position in incoming trajectory

:w < 0 // Adaptive window from ¢

s score(0) <+ 0

: while the testing trajectory is not completed do

11+ 1

9i = p(pi)

W= w - g;

10:  support(i) = |hasPath(T;_1, w)|/|T;-1]

11:  T; < hasPath(7;_1,w) // working set reduced

12:  if support(i) < 6 then

13:  x <+ xUp;

14: T, < T // reset the working set

150 w<yg;

16: end if

17: score(i) = score(i — 1) + o(support(s)) *
dist(p;—1,ps)

18: end while

I IV R NI R

h

V. EMPIRICAL EVALUATION

Here, we provide an empirical evaluation and analysis of
our proposed approaches. All the experiments are run in
Matlab on an Intel Xeon W3500 PC with 12-GB RAM running
Windows 7.

A. Data sets

Out of the 7.35 million of trajectories extracted from the one-
month GPS records of 7600 taxis, we picked nine S—D pairs!
(T-1 through T-9) with sufficient trajectories between them (at

I'The S and D areas are twice as big as the regular grid cells.

TABLE 1
DATA SETS USED IN OUR EXPERIMENTS
| #Trajectories  #Anomalousness(%)
T-1 453 15(3.3%)
T-2 1494 57(3.8%)
T-3 528 43(8.1%)
T-4 946 58(6.1%)
T-5 1018 68(6.7%)
T-6 1369 72(5.3%)
T-7 1310 67(5.1%)
T-8 1216 71(5.8%)
T-9 1254 24(1.9%)

least 450, but on average over 1000) and asked volunteers
to manually label whether the trajectories are anomalous or
not. On average, about 5.1% of the trajectories are labeled as
anomalous. We summarize the information for each data set
in Table 1.

B. Evaluation Criteria

A classified trajectory will fall into one of four scenarios:
1) True positive (TP), when an anomalous trajectory is correctly
classified as anomalous; 2) false positive (FP), when a normal
trajectory is incorrectly classified as anomalous; 3) false nega-
tive (FN), when an anomalous trajectory is incorrectly classified
as normal; and 4) true negative (TN), when a normal trajectory
is correctly classified as normal. The TP rate (TPR) measures
the proportion of correctly labeled anomalous trajectories, and
it is defined as

TP

TPR = ——. (5)
TP + FN
The FP rate (FPR) measures the proportion of false alarms
(i.e., normal trajectories that are labeled as anomalous) and is
defined as

FP
= —. 6
FP + TN ©)

A perfect classifier will have TPR = 1 and FPR = 0. In a
receiver operating characteristic (ROC) [11] curve, we plot
FPR on the z-axis and TPR on the y-axis, which indicates the
tradeoff between false alarms and accurate classifications. By
measuring the area under a curve (AUC), we can quantify this
tradeoff.

FPR

C. Results

To test iBOAT, we selected trajectory ¢ as an ongoing trajec-
tory from data set 7' and used both iBOAT and fixed window
approaches with # = 0.05. In Section V-D1, we will discuss
the effect that the choice of 6 has on the performance. In the
left panel of Fig. 8, we display the output of our method for
a test trajectory from T-6, where we plot the set of trajectories
T — {t} in light blue; for the test trajectory (¢), the anomalous
points are drawn in red and the rest (normal points) in dark
blue. As shown, our method can accurately detect which parts
of a trajectory are anomalous and which are normal. In the
middle and right panels of Fig. 8, we plot support(T — {t},t)
[see (3)] and the score [see (4)] for the ongoing trajectory ¢. We
can see that the value of support is a clear indication of when
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trajectories become anomalous and that there is little difference
between the different variants of iBOAT. Note, however, that
there is a trailing lag for the fixed window approach, which
is equal to k. This is because the last anomalous point in
an anomalous subtrajectory will be included in the following
k subtrajectories. Although setting £ = 1 will solve the lag
problem, this minimal window size contains no contextual
information on the trajectory and will therefore have poor
prediction quality. This was observed in [35] (therein referred
to as the density method) and will be evident in the following
figures.

D. Varying Parameters

To better understand iBOAT, we conduct experiments to
study its performance (in terms of running time and accuracy)
under different parameter settings. We choose the three largest
data sets (T-2, T-6, and T-7). We begin by varying the choice
of @ in Section V-DI. In Section V-D2 we vary the size of
the data sets; specifically, for each of the three data sets, we
choose n ={2,4,8,16,32,64,128,256,512,1024,...} tra-
jectories randomly to serve as the historical trajectories. We
measure the average time, which is the average amount of
processing time per completed trajectory.

1) Varying 6: Since 6 is the threshold value for determining
anomalousness, it is important to investigate its effect on the
performance of the algorithm. We study the effect on perfor-
mance when 6 ranges between 0.01 and 0.2.

In Fig. 9, we plot the AUC and the average time for different
values of #. We can see that 6 should not be set any higher
than 0.1 since beyond this the performance would significantly
decrease. The average time increases with . This is because
as 6 becomes larger, the working set is reset more frequently,
resulting in larger working sets on average. We can also see that
our choice of & = 0.05 is reasonable as it has good accuracy
with low average time.

2) Varying n: It is evident that the average time will be
longer with larger values of n since there are more comparisons
necessary for each incoming GPS point; on the other hand, if
n is too small, then more trajectories will be isolated since
there are fewer trajectories to support it. It is thus important
to investigate how many trajectories are necessary between two
endpoints for iBOAT to return accurate results. In Fig. 10, we
plot the AUC value and average time for different values of
n. We can see that iBOAT achieves remarkable performance
even with a small subsample size; the figure suggests that data
sets have around 500 trajectories to guarantee a reasonable
performance.
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TABLE II
AUC VALUES OF THE DIFFERENT ALGORITHMS

| k=1 | k=2 | k=3 | Adaptive

T-1 | 0.9635 | 0.9904 | 0.9811 0.9985
T-2 | 0.9367 | 0.9902 | 0.9887 0.9952
1-3 | 0.8140 | 09733 | 0.9152 0.9962
T-4 | 0.9005 | 0.9586 | 0.9575 0.9890
T-5 | 0.9323 | 0.9885 | 0.9821 0.9967
T-6 | 0.9227 | 0.9912 | 0.9840 0.9952
T-7 | 0.8806 | 0.9853 | 0.9849 0.9937
T-8 | 0.9438 | 0.9739 | 09724 0.9937
T-9 | 0.9788 | 0.9991 | 0.9987 0.9995

The given analysis suggests that if we maintain a fixed
number of trajectories, we can ensure good performance at a
low computing and storage cost. Trajectories can be maintained
in a first-in—first-out (FIFO) queue; as new trajectories are
coming and processed, they can replace the oldest trajectories
in the queue. This technique can also capture the change of
distribution of trajectories.

E. Adaptive Versus Fixed Window Approach

We display the AUC values of the different approaches on
the nine data sets in Table II. While the density approach (k =
1) has the worst performance, our proposed iBOAT method
slightly outperforms the fixed sliding window approach with

=2, and the fixed sliding window method with k=2
is better than that with £k =1 and k£ > 3. As explained in
Section IV-B, the fixed sliding window method with £ =1 is
worse than that of £ = 2 because the anomalies detected are
fewer than the actual anomalies, whereas the fixed sliding win-
dow method with k£ = 3 is worse than that of k = 2 because the
anomalies detected are much more than the actual anomalies.
The performance of the fixed window approach with k£ =2
and that of the adaptive approach are nearly identical. This is
because, for the anomalous sections, the adaptive approach ends
up using a window with a size of 2, just as k = 2. The advantage
of the fixed window approach is that it requires a very small
amount of memory for real-time anomalous detection, whereas
the adaptive method requires memory proportional to the size of
the longest “normal” subtrajectory. In practice, this difference
is negligible. In the following, we will use an example to
demonstrate that the adaptive approach has an advantage over
the fixed window approach due to its use of longer historical
“contexts.”

In Fig. 11, we display an anomalous trajectory that
“switches” from one normal route to another. The fixed window
method with £ = 2 is not able to detect this anomalous switch.
Going from point 19 to point 20 seems normal since this
sequence occurs in route A, and going from point 20 to point 21
also seems normal since it occurs in route B. On the other
hand, iBOAT would maintain the entire route up to the point
when the driver switches routes and would immediately detect
it as an anomalous point. Although this example is specific to
window sizes equal to 2, similar situations (with longer overlaps
between routes) will produce a similar effect.

F. iBOAT Versus iBAT

iBAT is a recent anomaly detection method introduced in
[35] that is similar to our approach. To determine whether

a trajectory is anomalous, iBAT picks cells from the testing
trajectory at random to split the collection of trajectories into
those that contain the cell and those that do not. This process
is repeated until the trajectory is isolated or until there are
no more cells in the trajectory. Usually the number of cells
required to isolate anomalous trajectories will be much less than
the number of cells in the trajectory. This isolation procedure
is repeated a number of times, and E(n(t)), i.e., the average
number of cells required to isolate a trajectory, is used to
compute the score, which is proportional to 2 (),

Our proposed method is a clear improvement over iBAT on
two levels. First of all, we are able to determine which parts of a
trajectory are anomalous, in contrast to iBAT that only classifies
full trajectories as anomalous. Second of all, our method works
in real time. We can detect anomalous sections as soon as they
occur and do not require a full trajectory as an input.

In Fig. 12, we show an example where a road block has
forced a taxi to retrace its path and search for another route
to its destination. We focus on the first part of the trajectory
where the taxi retraces its steps. In the right panel of Fig. 12,
we can see that the support is accurately identifying the anoma-
lous section of the trajectory. We determined what anomalous
ranking (based on the scores) both methods assign this partial
trajectory in comparison with all other trajectories.> Out of
1418 trajectories, iBOAT ranked this trajectory in the 48th
place, whereas iBAT ranked it in the 831st place. Furthermore,
iBAT assigned this trajectory a score of 0.4342, which is below
their usual threshold of 0.5. Thus, while iBAT is unable to detect
that this trajectory is anomalous, iBOAT has ranked it among the
top 3% of anomalous trajectories, as well as identifying which
part is anomalous. The reason iBAT fails in this example is that
their method does not take the order that the points appear in
into consideration; despite the fact that the taxi is retracing its
steps and actually going away from the destination, it is only
visiting “normal” grid cells.

Now, consider the hypothetical example in Fig. 13, which
highlights the differences in the two scoring functions. In this
simple situation, the value E(n(t)) for iBAT is just the expected
number of times that their algorithm must pick cells before an
anomalous cell (in red) is picked. This is essentially a Bernoulli
trial with “success” probability p equal to the proportion of
anomalous cells to total number of cells in the trajectory. It is
well known that the expected number of trials before reaching
success in a Bernoulli trial is given by 1/p. Let n be the
number of cells in the straight line between S and D; then,
trajectories of the form on the left will have 2n — 2 anomalous
cells and 5n — 4 total cells, whereas trajectories of the form
on the right will have 2n — 2 anomalous cells and 2n + 2
total cells. It follows that, for trajectories of the form on the
left, E(n(t)) = (5n —4)/(2n — 2) — 5/2 = score ~ 0.1768,
whereas for trajectories of the form on the right, E(n(t)) =
(2n+2)/(2n —2) — 1 = score = 0.5. Thus, iBAT will qual-
ify trajectories of the form on the right as more anomalous
than those on the left. This runs contrary to intuition, which
would perceive trajectories such as the one on the left at least

2 A higher ranking means a higher degree of anomalousness.
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Fig. 13.  Two anomalous trajectories of different types. The normal trajectory
between S and D is in blue, cells adjacent to normal cells are in orange, and
anomalous cells are in red.
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Fig. 14. Running times of iBOAT and iBAT on all the data sets.

as anomalous as the one on the right, given that the path taken
is much longer and they are clearly taking longer routes than
necessary. iIBOAT’s scoring method, on the other hand, would
assign the left trajectory an anomalous score around 33% higher
than the one on the right.

Finally, we compared the running time of both algorithms
on all the data sets, and we display the results in Fig. 14.
We computed the running time for checking each trajectory

Trajectory where the taxi had to retrace its path due to a blocked route. (Left) Illustration of situation. (Middle) Real trajectory. (Right) Ongoing support

in each data set and averaged over the size of the data set.
Although iBAT will usually check fewer grid cells than iBOAT
(since one anomalous cell is enough to classify the trajectory as
anomalous), iBAT is based on random cell selections; therefore,
they must average over m runs; as in [35], we set m = 50.
We can see that iBOAT is consistently faster than iBAT on all
data sets.

VI. FRAUD BEHAVIOR ANALYSIS

Here, we first perform an in-depth statistical study of de-
tected anomalous trajectories. Then, we further provide evi-
dence to deny possible excuses for fraud behaviors because
some cunning taxi drivers may use detour reasons such as traffic
accidents on roads as excuses.

A. Statistical Study

One main motivation for this paper is fraud detection and
the ability to alert passengers to fraudulent behaviors. Travel
distance and time are two crucial parameters to judge if a certain
taxi trajectory is a long detouring trip committed by fraudulent
behaviors. Thus, here, we perform an analysis of the anomalous
trajectories to attempt to discover whether anomalous behaviors
are the result of conscious decisions to commit fraud, by visu-
alizing where most of the anomalous trips begin and comparing
the average distance and travel time of anomalous routes with
that of normal routes.

For this analysis, we collected around 441 million records in
March 2010, and detected about 438 000 anomalous trajectories
out of 7.35 million trips. This provides us with an opportunity
to perform a statistical analysis of the anomalous trajectories,
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Fig. 15. Areas where most of the anomalous trips began.

in the hope of uncovering common characteristics of the trajec-
tories and driving “trends” of those responsible for anomalous
behaviors.

In Fig. 15, we display the areas where most of the anomalous
trips began. We can see that many of the places are long-
distance coach stations, where tourists would generally arrive. It
is not surprising that they are responsible for a large fraction of
the anomalous trajectories. This provides strong evidence that
anomalous behaviors are conscious decisions. Note that it is
possible that some passengers who are not familiar with the
city cannot provide the detailed address of destination. This
might have a certain impact on choosing the best route for
drivers. However, as we group the historical trajectories with
vague S-D (in an area with around 500 m x 500 m), and
judge the ongoing trajectory by comparing it with historical
ones with the same S—D it will not thus cause problems when
the system shows the reasonably longer trajectory traveled to
the unfamiliar passengers.

In most research revolving around detecting anomalous taxi
driving behaviors, one is mainly interested in detecting fraudu-
lent activities. We believe that many of these fraudulent trips
will take passengers along routes that are much longer than
what is considered normal. Given our database of historical
trajectories, we can determine the length of the longest normal
trip between S and D; we can safely say that an anomalous
trip is detouring if the trip distance is longer than this maximal
distance. For an S—D pair, we denote max D and min D as the
maximal and minimal lengths among the normal trips. It may
be the case that a longer trip is actually a faster route, placing
in doubt whether the driver’s actions were fraudulent. We could
try to determine max 7" and min 7 for the traveling time taken
between two points, but due to varying traffic conditions, these
values have high variability. Because of this, for each S—-D pair,
we compute the mean time among the normal trajectories pr
and the standard deviation op. We then define our boundaries
as max T = pp + op and minT' = pup — op. In Table 111, we
display the distribution of the anomalous trips with respect
to these classifications. We can see that over 60% of the
anomalous trajectories are taking longer time and distance than
the maximal normal trajectories, clearly suggesting that fraud
is one of the main motivating factors behind anomalous taxi
driving behaviors.

TABLE III
DISTRIBUTION OF ANOMALOUS TRAJECTORIES WITH
RESPECT TO TRAVELING DISTANCE AND TIME

Travel time
Trip length [0,minT) | [minT, maxT] | (maxT, co)
[0, minD) 0.0013 0.0137 0.0117
[minD, max D] 0.0062 0.1063 0.0881
(maxD, 00) 0.0045 0.1522 0.6162

Fig. 16. Avoiding excuses for taxi driving fraud detection. (Left) (red solid)
anomalous trajectory is compared with (green dashed) previous trips of the
same driver. (Right) Anomalous trajectory is compared with (green dashed)
trajectories in the same time slot.

B. Deny Possible Excuses

From the evidence provided in Table III, we can see that a
large proportion of detected anomalous trajectories are actually
due to detours. Some cunning drivers who take a detour may ar-
gue that: 1) they are unfamiliar with this area; or 2) unexpected
car accidents or heavy traffic occurred. Sometimes passengers
request a detour in order to pick up a friend or avoid a traffic
jam. In these cases, the passenger will not complain, even when
the system shows the longer detour trajectory to them.

To justify the driver’s excuses, more evidence needs to be
provided. To deal with the first excuse, if an anomalous tra-
jectory is detected, we can get all previous trajectories of the
corresponding driver to verify whether he truly has had little
previous experience driving through this area. Note that one
taxi may be operated by more than one driver; therefore, a
mechanism for detecting driver shift change may be necessary.
This is an interesting problem in itself but outside of the
scope of this paper. For the second excuse, we can find all
the trajectories that took place around the same time and area
to check whether there is some traffic disturbance. In Fig. 16,
we give an illustrative example. Suppose that we detect an
anomalous trajectory (solid red line in the left panel of Fig. 16).
We compare it with the driver’s previous trips (dashed green
lines) between the same S and D and can verify that this driver
has experience driving between these two points. In parallel,
we recall all the trips (dashed green lines in the right panel of
Fig. 16) that happened around that same time slot since time-of-
day has impact on the occurrence of anomalous routes. Since,
in this example, we can see that many other drivers did not
detour, it is unlikely that there is a traffic disturbance. Having
discredited both types of excuses, we can be more confident in
our assessment of fraud.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm for fast real-
time detection of anomalous trajectories obtained from GPS
devices equipped in taxis. Rather than using time and distance
to directly judge whether a test trajectory is anomalous or not,
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we compare it against a set of sampled historical trajectories
with the same S-D pair. In addition to classifying completed
trip trajectories as anomalous or normal, iBOAT can work
with ongoing trajectories and can determine which parts of a
trajectory are responsible for its anomalousness. We validated
iBOAT on a large data set of taxi GPS trajectories recorded over
a month and found that our method achieved excellent perfor-
mance (AUC > 0.99 for all data sets), which is comparable
to iBAT’s performance; however, we demonstrated a number
of examples that highlight iBOAT’s advantage over iBAT and
the sliding window method. We further showcased iBOATs use
for fraudulent behavior analysis. The result suggests that most
anomalous trajectories are in fact due to fraud. We also provide
evidence to deny possible excuses for fraud behaviors.

In the future, we plan to broaden this paper in several direc-
tions. First, we plan to explore using statistical approaches to
enhance detection performance and data processing efficiency.
Second, we also plan to develop a real-life anomalous trajectory
detection system with the proposed method. Third, to address
the issue that some S—D pairs may not have enough samples, we
would like to either cluster S and/or D areas in a principled way
to “combine” trajectories from different S—D pairs, or simply
collect more historical data, or partition the map into different
grid sizes. Finally, we would like to conduct further analysis
on the GPS traces obtained to better understand the motivations
and characteristics of fraudulent activities.
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