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Preface

In many ways, estimation by an appropriate minimum distance method is one
of the most natural ideas in statistics. A parametric model imposes a certain
structure on the class of probability distributions that may be used to describe
real life data generated from a process under study. There hardly appears to
be a better way to deal with such a problem than to choose the parametric
model that minimizes an appropriately defined distance between the data and
the model.

The issue is an important and complex one. There are many different
ways of constructing an appropriate “distance” between the “data” and the
“model.” One could, for example, construct a distance between the empir-
ical distribution function and the model distribution function by a suitable
measure of distance. Alternatively, one could minimize the distance between
the estimated data density (obtained, if necessary, by using a nonparametric
smoothing technique such as kernel density estimation) and the parametric
model density. And when the particular nature of the distances has been set-
tled (based on distribution functions, based on densities, etc.), there may be
innumerable options for the distance to be used within the particular type of
distances. So the scope of study referred to by “Minimum Distance Estima-
tion” is literally huge.

Statistics is a modern science. In the early part of its history, minimum
distance estimation was not a research topic of significant interest compared to
some other topics. There may be several reasons for this. The neat theoretical
development of the idea of maximum likelihood and its superior performance
under model conditions meant that any other competing procedure would have
had to make a real case for itself before being proposed as a viable alternative
to maximum likelihood. Until other considerations such as robustness over
appropriate neighborhoods of the parametric model came along, there was
hardly any reason to venture outside the fold of maximum likelihood, partic-
ularly given the computational simplicity of the maximum likelihood method
in most common parametric models, which minimum distance methods in
general do not share.

The growth of the area of research covered by the present book can be at-
tributed to several factors. Two of them require special mention. The first one
is the growth of computing power. As in all other areas of science, research in
statistical science got a major boost with the advent of computers. Previously
intractable problems became numerically accessible. Approximate methods
could be applied with enhanced degrees of precision. Computational complex-

XV
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Xvi

ity of the procedure became a matter of minor concern, rather than the major
deciding factor. This made the construction of distances and the computa-
tion of the estimators computationally feasible. The second major reason is
the emergence of the area of robust statistical inference. It was no longer suf-
ficient to have a technique which was optimal under model conditions but
had weak robustness properties. Several minimum distance techniques have
natural robustness properties under model misspecifications. Thus, the com-
putational advances and the practical requirements converged to facilitate the
growth of research in minimum distance methods.

Among the class of minimum distance methods we have focused, in this
book, on density-based minimum distance methods. Carrying this specializa-
tion further, our emphasis, within the class of density-based distances has
been on the chi-square type distances. Counting from Beran’s path breaking
1977 paper, this area has seen a major spurt of research activity during the
last three decades. In fact, the general development of the chi-square type dis-
tances began in the 1960s with Csiszér (1963) and Ali and Silvey (1966), but
the robustness angle in this area probably surfaced with Beran. The proce-
dures within the class of “¢-divergences” or “disparities” are popular because
many of them combine strong robustness features with full asymptotic model
efficiency.

There is no single book which tries to provide a comprehensive documenta-
tion of the development of this theory over the last 30 years or so. Our primary
intention here has been to fill in this gap. Our development has mainly fo-
cused on the problem for independently and identically distributed data. But
we have tried to be as comprehensive as possible in this regard in establishing
the basic structure of this inference procedure so that the reader is sufficiently
prepared to grasp the applications of this technique to more specialized sce-
narios. We have discussed the estimation and hypothesis testing problems
for both discrete and continuous models, extensively described the robustness
properties of the minimum distance methods, discussed the inlier problem and
its possible solutions, described weighted likelihood estimators and considered
several other related topics. We trust that this book will be a useful resource
for any researcher who takes up density-based minimum distance estimation
in the future.

Apart from minimum distance estimation based on chi-square type dis-
tances, on which we have spent the major part of this book, we have briefly
looked at three other topics. These may be described as (i) minimum distance
estimation based on the density power divergence; (ii) some recent develop-
ments on goodness-of-fit tests based on disparities and their modifications,
and (iil) a discussion of the applications of these minimum distance methods
in information theory and engineering. We believe that the last item will make
the book useful to scientists outside the mainstream statistics area.

In this connection it is appropriate to mention some closely related books
that are available in the literature. The book by Pardo (2006) gives an excellent
description of minimum ¢-divergence procedures and is a natural resource for
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xvil

this area. However, Pardo deals almost exclusively, although thoroughly, with
discrete models. In our book we have also provided an extensive description
of continuous models. Besides, the robustness angle is a driving theme of our
book, unlike Pardo’s case.

Our discussion of the multinomial goodness-of-fit testing problem has been
highly influenced by the classic by Read and Cressie (1988). However, we have
made every effort not to be repetitive, and only described such topics not
covered extensively by Cressie and Read (or extended their findings beyond the
power divergence family). Unlike the minimum distance inference case where
we have tried to be comprehensive, in the goodness-of-fit testing problem we
have been deliberately selective.

We have also kept the description to a level where it will be easily ac-
cessible to students who have been exposed to first-year graduate courses in
statistics. Our presentation, although sufficiently technical, does not assume
a measure theoretic background for the reader and, except in Chapter 11, the
rare references to measures do not arrest the flow of the book. The book can
very well serve as the text for a one-semester graduate course in minimum
distance methods.

We take this opportunity to acknowledge the help we have received from
many colleagues, teachers, and students while completing the book. We should
begin by acknowledging our intellectual debt to Professor Bruce G. Lindsay,
two of the three authors of the current book being his Ph.D. advisees. Dis-
cussions with Professors Leandro Pardo, Marianthi Markatou and Claudio
Agostinelli have been very helpful. Discussion with Professor Subir Bhandari
has helped to make many of our mathematical derivations more rigorous.
Many other colleagues, too innumerable to mention here, have helped us by
drawing our attention to related works. We also thank Professor Wen-Tao
Huang, who was instrumental in bringing this group of authors together.

Special thanks must be given to Dr. Abhijit Mandal; his assistance in
working out many of the examples in the book and constructing the figures
has been invaluable. Dr. Rohit Patra and Professor Biman Chakraborty also
deserve thanks in this connection.

Finally, we wish to thank all our friends and family members who stood
by us during the sometimes difficult phase of manuscript writing.

Ayanendranath Basu
Indian Statistical Institute
India

Hiroyuki Shioya
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